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APPENDIX A: OBSERVABILITY CONDITION 
 
A discrete-time system, 
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has rank n (Luenberger, 1979). 

Observability is related to the ability to infer what the model is doing in terms of the unique 

estimation of state variables from a given sequence of observing time series (see Joo and Jun 

1997; Jun et al. 2012). The observability matrix must be nonsingular to prevent spurious 

decomposition. We aim to prove that c must be no more than p+1 to satisfy the observability 

condition in ARC( , )p c . 
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Because 0≠Ω , the observability condition is satisfied.
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A.2 ARC( ,2)p  

For 2p≥ , 
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A , and O is a zero matrix. 
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To prove that 0≠Ω , we consider the equation 2 2 2
1 2

p
pc c c −+ + + =H HF HF O⋯ . To show 

that the rows of Ωare linearly independent, we aim to verify that 1 2 0pc c c= = = =⋯  is the only 

solution of the equation for all 1 2( , , , )pφ φ φ⋯ . Suppose that there is a nonzero solution for the 

equation. From the equation, 1 1 2 1 2 1 2 2 1 2( , , , ) ( , , , ) ( , , , )p p p p pg c c c g c c c g c c c+ + +v v v⋯ ⋯ ⋯ ⋯ =

1 p×O for some 1 2, ,..., pg g g , where 1 2, , , pv v v⋯ are the row vectors of F. Because the determinant 

of F is not zero, the rows of F are linearly independent. Thus, given1 2( , , , )pφ φ φ⋯ , 

1 2 1 2( , , , | , , , ) 0i p pg c c c φ φ φ =⋯ ⋯ for i =1,…, p. 

The equations can be transformed into the following system of linear equations: 
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If the rank of R is zero, 0iφ = for all i. This is a contradiction because 0pφ ≠ ; therefore, 

1 ( )rank≤ R p< . Then, the dimension of the null space of R is p − rank(R), which indicates that 

p − rank(R) equations of 1 2, , , pφ φ φ⋯ must be satisfied; therefore, the dimension of the space of 

1 2( , , , )pφ φ φ⋯ is less than p for the system to have a nonzero solution. This is a contradiction. 

Consequently, a nonzero solution does not exist in general. 

A.3 ARC( , )p c  

Case I  p+1 < c 
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for somec c× matrix A. 
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Thus,Ω is singular.
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for somec c× matrix A. 
 

( 1) 1
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Ω
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⋯
for some( 1) ( 1)c c− × − matrix B.

  
With the proof in Appendix A.2, we can verify thatΩ is nonsingular. 
 
Case III  p+1 > c 
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for somep p× matrix A. 
 

0≠Ω ; the proof is the same as in Appendix A.2. 

 

APPENDIX B: PROOFS 
 
In ARC( , )p c , 

 1
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where 1( ) 1 p
pL L Lφ φ φ= − − −⋯ , 0tε =  for 0t≤ , and 2~ (0, )t NID ηη σ . L is the lag operator. We 

verify the following lemmas and Theorem 1 so that the identification procedure can be 

established for the two-stage process of disaggregation. In the proofs, we carefully treatctε and a
ctε  

because the difference is subtle between the two notations with regard to the lag operator: 

1(1 )a a a a
ct ct ct ctLε ε ε ε −∇ = − = − , and 1(1 )c c c c a a

t t t t ct ct cLε ε ε ε ε ε− −∇ = − = − = − . 



-6- 
 

Lemma 1. tε ~ I(d) if and only if a
tε ~ I(d). 

Proof. The proof is straightforward from system (2). 
 
Lemma 2. Suppose thatatε  and c

tε are integrated processes. Then, 
a
tε  is stationary if and only if c

tε

is stationary. 

Proof. Suppose thatatε  is a zero mean stationary process. By Wold’s decomposition, a
tε =

( ) tLψ ξ , where 2
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stationary. Conversely, we assume thata
tε is not stationary. There is an integer, 1ad ≥ , such that 

~a
tε I ( )ad . We can assume that 1ad =  without loss of generality. Then, a
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it is trivial to prove that a
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stationary. Therefore, ( )c
t tLε θ η∇ = , where tη is white noise with the same variance as tκ  and

( ) (1L Lθ = + + 1) ( )cL Lψ−+⋯ . Thus, c
tε is an integrated process with order 1 because(1) 0θ ≠ . 

Consequently, c
tε is not stationary. 

Theorem 1. Suppose tε is an integrated process. The following statements are equivalent. 

(i) tε ~ I(d),  (ii) a
tε ~ I(d),  (iii) c

tε ~ I(d)    for 0d ≥ . 

Proof. (i) is equivalent to (ii) by Lemma 1. (ii) holds if and only if (iii) holds for d = 0 by 

Lemma 2. Now, we consider the following equation: 
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Because tε  is an integrated process, 
a
tε  is an integrated process from the second equation in 

system (2), and equation (3) indicates thatc
tε is also an integrated process. Then, by using 

equation (3) and Lemma 2, we can verify thatd a
tε∇ is stationary if any only if d c

tε∇ is stationary 

for 1d ≥ . Consequently, (ii) is equivalent to (iii) for a nonnegative integer d. 

 

APPENDIX C: THE INFORMATION LOSS FUNCTION FOR ARC(3, 3) 
 
Figure 1 shows the level curves of 1 2 3ILF( , , )φ φ φ  at some different values of 3φ . As 3φ  increases, 

the aggregation effects on the ILF decrease at a different rate according to 1 2( , )φ φ . In particular, 

the ILF values decrease at a relatively much slower pace if / 2θ π< and 1R → ; thus, this allow 

the complex-type effects to gradually emerge in each of the level curves because 3φ  is close to 1. 

Moreover, given3φ , each layer of 1 2 3ILF( , , )φ φ φ  shares the same pattern as 1 2ILF( , )φ φ , which 

indicates that the aggregation effects can explain the general shape of the level curves in Figure 1 

as inARC(2,3). 

Figure 1 shows the direction of changes in the ILF of ARC(3,3). The level curves shift right 

to left as 3φ  increases, which implies that the brunt of forces to decrease the information loss 

occurs near2 0φ = along with 1 kφ = . This result corresponds to the additive property of ILF. 
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          3 0.85φ = −                   3 0.55φ = −  

 

         3 0.25φ = −               3 0.05φ = −  

 

          3 0.05φ =                 3 0.25φ =  

 
          3 0.55φ =                3 0.85φ =  

 

Figure 1. Monte Carlo simulation results for the ILF of ARC(3, 3). Each level curve has a similar pattern 
to the ILF of ARC(2, 3), which shows that the aggregation effects (Type I–III) can be applied to ARC(3, 
3); the information loss function values are decreased along with the line, 1 kφ = , as 3φ increases. This 
confirms the additive property of the ILF. 
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APPENDIX D: INCONSISTENCY OF THE MLEs OF THE PARAMETERS IN ARC(1,2) 

Consider a fraction of the time series, ,i tε  and ,
c
i tε  for t = 1,…, 4, and i = 1,…, n, where 
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the weak law of large numbers. Thus, 2
cσ  converges in probability to a constant number that is 

less than 2
cσ . 

In ARC(1, 2): 
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cσ  increases in φ and 2

ησ . Let 
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for some 0 1φα< < . Similarly, 2 2ˆ
p

η η ησ α σ→ , for some 0 1ηα< < . Consequently, in this fraction of 

the time series, the MLEs of φ  and 2
ησ  converge to some constants that are less than the true 

values. This result aligns with Neyman and Scott’s (1948) proposition that maximum likelihood 

estimates of the structural parameters related to a partially consistent series of observations need 

not be consistent. It is analytically intractable to consider the entire time series to show this 

phenomenon. Table 4 in the article, however, confirms that the Monte Carlo simulations provide 

the maximum likelihood estimates of φ  and 2
ησ  that are less than the true values.



-11- 
 

APPENDIX E: TEST RESULTS 
 

Table 1. Unit root and cointegration tests: Real retail and food services sales (RFS), personal consumption expenditure (PCE), and unemployment 

rate (UER) of the United States (1992.1–2004.12) 

 Unit Root Test  Cointegration Rank Test 

 Monthly Quarterly  Monthly Quarterly 

Series Dickey–Fuller 
No. of 
CEsa 

 Trace Eigenvalue Cointegrating Vectors  Trace Eigenvalue Cointegrating Vectors 

RFS -2.579 -2.019 None 54.876*   0.215*  1.000 0.000    44.066*  0.412* 1.000 0.000 

PCE -0.579 -0.951 At most 1 17.908*   0.108*  0.000 1.000    18.590*  0.265* 0.000 1.000 

UER -1.081 -2.180 At most 2   0.454   0.003 
-0.114 

  (0.225) 
-0.039 

 (0.021) 
     3.827  0.077 

-0.372 
(0.204) 

-0.062 
(0.020) 

 1 2 No. of lags 2    3    

NOTE: The asterisk signifies rejection of the corresponding null hypothesis at the 5% level of significance. a The number of cointegrating equations. 
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