
Supplemental Material for

Multiple Imputation of longitudinal categorical data through

Bayesian mixture latent Markov models

A Setting the prior distribution

As outlined in Section 2.1, independent Dirichlet distributions can be specified for each Multi-

nomial in model (1)-(2). In an MI context, in which the imputation model does not nec-

essarily match the analysis model, it is common to have no previous knowledge about the

imputation model parameters. In such a case, symmetric Dirichlet priors can be chosen:

Dirichlet(c1, c2, ..., cD) where c1 = c2 = ... = cD. This is the approach we used in all the

experiments of the paper, and implied in the remaining of the current section.

Rousseau and Mergensen (2011) found out that when a Bayesian mixture model is over-

fitting the data (as our model selection approach of Section 2.2 implies), units are allocated

by the Gibbs sampler to some of the extra LCs if each component of the latent probabilities

hyperparameter is at least as large as half times the number of free parameters within each com-

ponents. For the BMLM model, this means that each pseudo-count of the LSs αk ∀ k should

be set at least equal to
∑

j(Rj − 1)/2. Following the guidelines given in Vidotto, Vermunt, and

van Deun (2018), who examined the behavior of the prior distribution in standard Bayesian

LC models (for the MI of cross-sectional missing data), we suggest increasing αk and γk ∀ k in

such a way that as many states s1, ..., sT as possible are occupied during the imputation stage,

which can be assessed with the MCMC output. By manipulating with trial-and-error (before

the imputation step) the hyperparameters in the priors of the latent states probabilities, we de-

cided to set αk = γk = 5 in the study of Section 3, while in the empirical experiment of Section

4 - in which the number of within-state free parameters was equal to 27 - we arbitrarily set
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αk = γk = 100. As reported in Vidotto et al. (2018), full allocation of the latent classes/states

helps to capture all relevant associations in the data, preventing the sampler from becoming

unstable; in fact, in this way the states are identified by the data, rather than by the prior

distribution of the emission probabilities. As a consequence, an unstable Gibbs sampler can

yield poor imputations.

In the empirical study we found out by means of pre-imputation inspections that reinforcing

the prior persistence probabilities caused the Gibbs sampler to produce higher likelihood values

(on average) during its iterations. In turn, this could help the BMLM model to better recover

the lagged relationships specified for that study. Persistence probabilities are represented by

the diagonal elements of the matrix Xl. These probabilities can be reinforced by manipulating

the hyperparameter vector of the q-th row of Xl, by setting it equal to γ = (γ1, ..., γ
∗
q , ..., γK)

with γ∗q > γk ∀ k 6= q. In the empirical study this was achieved by setting γ∗q >
∑

k 6=q γk, with

γk = 100 and γ∗q = Kγk = 100K (in which K = 9). Reinforcing the persistence probabilities

in the simulation study of Section 3 was not necessary, since increasing it did not entail any

increase in the (averaged) likelihood values produced during the Gibbs sampler iterations.

Concerning the hyperparameters for the weights of the time-constant LCs, we decided to

perform the imputations of both the study in Section 3 and the experiment in Section 4 by

setting ηl equal to the number of free parameters within each time-constant component, i.e., we

set ηl = {(K − 1)(K + 1) +K(
∑

j Rj − 1) +
∑

p Up − 1} ∀ l.

Lastly, for the time-constant conditional and the time-varying emission probabilities we

follow the guidelines of Vidotto et al. (2018) and set ζupl = δrjkl = 0.01 or 0.05 ∀ u, p, r, j, k, l

(final results are usually similar for these two values). This setting helps to make the prior

pseudo-counts of the parameters ruling the conditional distribution of the observed data less

influential in the imputation step.

B BMLM model estimation

In this section, the Gibbs sampler for the BMLM model estimation is described. It is assumed

that L, K, and the model hyperparameters have been established already according to the

guidelines of Section 2.2 and Appendix A. Furthermore, also the total number of Gibbs sampler

iterations B should be chosen. I of these B iterations will be used as burn-in (such that model
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estimation is performed on the last B − I iterations). I should be large enough to make the

sampler attain the equilibrium distribution of the model parameter, which can be assessed

by typical MCMC output inspection, e.g., by considering the traceplot of the log-likelihood

functions generated at each iterations (as suggested by Vidotto et al. (2018)). Additionally,

θ(0) is initialized by sampling all model parameters from uniform Dirichlet distributions, in

such a way to increase the likelihood of initializing the sampler in the interior of the parameter

space, speeding up convergence.

Algorithm 1 reports the steps for the Gibbs sampler. In order to sample the states of the

Markov chain for each subject, multi-move sampling is used. The steps necessary to perform

multi-move sampling are shown in Algorithm 2. Multi-move sampling, in turn, requires the

calculation of the filtered state probabilities Pr(st = k|θ, w = l,yit), the computation of which

is described in Algorithm 3.

B.1 The Gibbs sampler

Algorithm 1

For b=1,...,B:

1. for i = 1, ..., n sample a LS w(b) from a Multinomial distribution with probabilities

Pr(w(b) = l|θ(b−1), zi,yi) =
ω
(b−1)
l Λ

(b−1)
ul π

(b−1)
r̃l∑

c ω
(b−1)
c Λ

(b−1)
uc π

(b−1)
r̃c

for each l = 1, ..., L, and where π
(b−1)
r̃l = Pr(yi = r̃|w = l)(b−1) (equation 2);

2. for each i = 1, ..., n and for all time points t = 1, ..., T , conditioned on the LC w(b),

sample a LS st from

Pr(s
(b)
t |θ(b−1), w(b) = l,yit).

This can be achieved with multi-move sampling (see Algorithm 2 below);

3. for l = 1, ..., L, update the mixture weights ω with

ω(b)|w(b) = l,η ∼

Dirichlet

(
η1 +

n∑
i=1

Ii(w(b) = 1), ..., ηL +

n∑
i=1

Ii(w(b) = L)

)
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where Ii(w(b) = l) = 1 if for unit i w(b) = l and 0 otherwise;

4. for l = 1, ..., L, p = 1, ..., P update the conditional probabilities

λ
(b)
pl |w

(b) = l, zobs, ζpl ∼

Dirichlet

ζ1pl +
∑

i:w(b)=l

I(zip = 1), ..., ζUppl +
∑

i:w(b)=l

I(zip = Up)


where I(zip = u) = 1 if zip = u and zip ∈ zobs and 0 otherwise;

5. for l = 1, ..., L compute π
(b)
r̃l conditioned on w(b) = l after updating the parameter

values of each within-class LM model:

• for t = 1, update the initial state probabilities

ν(b)|s(b)1 , w(b) = l,α ∼

Dirichlet
(
α1 +

∑
i:w(b)=l Ii1(s

(b)
1 = 1), ..., αK +

∑
i:w(b)=l Ii1(s

(b)
1 = K,w(b) = l)

)
where Iit(s(b)t = k) = 1 if for unit i s

(b)
t = k and 0 otherwise;

• for q = 1, ...,K and ∀ t ≥ 2 update the transition probabilities

ξ
(b)
q |s(b)t−1, s

(b)
t , w(b) = l,γ ∼

Dirichlet
(
γ1 +

∑
i,t:w(b)=l,s

(b)
t−1=q

Iit(s(b)t = 1), ..., γK +
∑

i,t:w(b)=l,s
(b)
t−1=q

Iit(s(b)t = K)
)

;

• for k = 1, ...,K, j = 1, ..., J and ∀ t update the conditional response probabilities

φ
(b)
jk |s

(b)
t , w(b) = l,yobs, δjk ∼

Dirichlet
(
δ1jk +

∑
i,t:w(b)=l,s

(b)
t =k

I(yitj = 1), ..., δRjjk +
∑

i,t:w(b)=l,s
(b)
t =k

I(yitj = Rj)
)

where I(yitj = r) = 1 if yitj = r and yitj ∈ yobs and 0 otherwise.
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B.2 Multi-move sampling

Algorithm 2:

1. For i=1,...,n calculate and store the filtered state probabilities Pr(s
(b)
t |θ(b−1), w(b) =

l,yit) for t = 1, ..., T (see Algorithm 3);

2. for i = 1, ..., n sample s
(b)
T from Pr(s

(b)
T |θ(b−1), w(b) = l,yiT );

3. for t = T − 1, ..., 1 and i = 1, ..., n, given the known state s
(b)
t+1 = k sample s

(b)
t from

Pr(s
(b)
t = q|s(b)t+1 = k,θ(b−1), w(b) = l,yit) =

ξ
(b−1)
q,kl Pr(s

(b)
t = q|θ(b−1), w(b) = l,yit)∑

q ξ
(b−1)
q,kl Pr(s

(b)
t = q|θ(b−1), w(b) = l,yit)

.

B.3 Filtered State Probabilities

Algorithm 3:

1. At t=1, for i = 1, ..., n, κ = 1, ...,K compute

Pr(s
(b)
1 = κ|θ(b−1), w(b) = l,yi1 = r) =

ν
(b−1)
κl Φ

∗(b−1)
rκl∑

c ν
(b−1)
cl Φ

∗(b−1)
rcl

.

Since we are estimating the model only on yobs, we define Φ
∗(b−1)
rkl =

∏
j φ
∗(b−1)
rjkl where

φ
∗(b−1)
rjkl =

 φ
(b−1)
rjkl if yitj = r and yitj ∈ yobs

1 otherwise

∀ t, i, j, r.
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2. for t = 2, ..., T :

• for i = 1, ..., n, k = 1, ...,K compute

Pr(s
(b)
t = k|θ(b−1),yi(t−1)) =

∑
q ξ

(b−1)
q,kl Pr(s

(b)
t−1 = q|θ(b−1), w(b) = l,yi(t−1));

• for i = 1, ..., n, k = 1, ...,K compute the filtered state probabilities through

Pr(s
(b)
t = k|θ(b−1), w(b) = l,yit = rt) =

Φ
∗(b−1)
rkl Pr(s

(b)
t = k|θ(b−1), w(b) = l,yi(t−1))

Pr(yit = rt|θ, w(b) = l,yi(t−1))

where

Pr(yit = rt|θ(b−1), w(b) = l,yi(t−1)) =

∑
c

Φ
∗(b−1)
rcl Pr(s

(b)
t = c|θ(b−1), w(b) = l,yi(t−1)).
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