
ASIED: A Bayesian Adaptive Subgroup-Identification

Enrichment Design

(Supplementary Material)

A Split rules for random partition model

Below we describe the split rules for determining a partition of the biomarker space using

the example of two rounds of splits and various types of covariates, including continuous,

binary, categorical, and ordinal variables.

1. In the first split, we select biomarker k with probability νk, k = 1, . . . , K, to split

or not to split with probability ν0,
∑K

k=0 νk = 1. We assume νk = 1
K+1

, indicating a

uniform prior. Without loss of generality, we assume that xik ∈ (−1, 1) if the biomarker

k is continuous. Then we choose threshold ck to split the biomarker space into two

subgroups Uk and Lk. The prior of p(ck) differs depending on what type of variable

the biomarker k is.

(a) If biomarker k is binary, the split will be deterministic and we denote Uk = {i :

xik = 0} and Lk = {i : xik = 1}. Therefore p(ck) = 1.

(b) If biomarker k is continuous, denote Uk = {i : xik ≤ ck} and Lk = {i : xik > ck}.

We assume p(ck) = Uniform(−1, 1) = 1/2.
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(c) If biomarker k is ordinal, let Vk denote the number of labels that biomarker k

has. Let ck denote the endpoint of the left partition, e.g., if Vk = 5 and ck = 3,

the left partition is {1, 2, 3} and the right partition is {4, 5}. In this way we

denote Uk = {i : xik ≤ ck} and Lk = {i : xik > ck}. Moreover, if ck = Vk,

it is equivalent to not splitting, which has been considered with probability ν0.

Therefore, p(ck) = 1
Vk−1

.

(d) If biomarker k is categorical, let Vk denote the number of categories corresponding

to biomarker k. Let ck denote the elements in one subset Uk. The remaining

elements are stored in the other subset Lk. The ck are elements of the powerset

of {1, 2, · · · , Vk} without the empty-set or the full set. There are hence 2Vk − 2

options for ck. Note that the choice of ck is symmetric: we may flip ck and its

complement, leading to the same partition. Thus, p(ck) = 2
2Vk−2 .

2. In the second split, we assume that the number of available biomarkers is K̃. By

available, we mean that the split rules would not lead to empty subgroup. For example,

if a binary biomarker was used in the first round of split, then it would no longer be

available for splitting at the following rounds of split.

In the subset Uk, we choose biomarker k1 with probability p(k1) and threshold ck1 to

split the subgroup Uk into two subgroups UUkk1 and ULkk1 . In the subset Lk, we choose

biomarker k2 with probability p(k2) and threshold ck2 to split the subgroup Lk into

two subgroups LUkk2 and LLkk2 . Here, p(k1), p(k2), p(ck1) and p(ck2) differ depending

on what type of variable the biomarker is and the values obtained for ck1 and ck2 .

(a) If biomarker k1 is continuous, p(k1) = 1
K̃+1

. Denote UUkk1 = {i : xi ∈ Uk and xik1 ≤

ck1} and ULkk1 = {i : xi ∈ Uk and xik1 > ck1}. We have p(ck1) = 1
2

if k1 6= k;

p(ck1) = 1
ck+1

if k1 = k.

If biomarker k2 is continuous, p(k2) = 1
K̃+1

. Denote LUkk2 = {i : xi ∈ Lk and xik2 ≤
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ck2} and LLkk2 = {i : xi ∈ Lk and xik2 > ck2}. We have p(ck2) = 1
2

if k2 6= k;

p(ck2) = 1
1−ck

if k2 = k.

(b) If k1 is binary and k1 = k, then biomarker k1 is not an available biomarker to

choose to split Uk. If k1 6= k, denote UUkk1 = {i : xi ∈ Uk, and xik1 = 0} and

ULkk1 = {i : xi ∈ Uk, and xik1 = 1} with p(ck1) = 1.

If k2 is binary, and k2 = k, then biomarker k2 is not an available biomarker to

choose to split Lk. If k2 6= k, denote LUkk2 = {i : xi ∈ Lk, and xik2 = 0} and

LLkk2 = {i : xi ∈ Lk, and xik2 = 1} with p(ck2) = 1.

(c) If k1 is ordinal, we let ck1 denote the left endpoint of the second split within the

left partition, and if ck2 is ordinal, we let ck2 analogously denote the left endpoint

within the right partition. We have p(ck1) = 1
Vk1−1

if k1 6= k; p(ck1) = 1
ck

if k1 = k

and ck > 1; k1 is not an available biomarker to choose to split Uk if k1 = k and

ck = 1. Also, p(ck2) = 1
Vk2−1

if k2 6= k; p(ck2) = 1
Vk−ck

if k2 = k and (Vk − ck) > 1;

k2 is not an available biomarker to choose to split Lk if k2 = k and Vk − ck = 1.

(d) If k1 is categorical, we let ck1 denote one subset of the split within the subset Uk.

If ck2 is categorical, we let ck2 denote one subset of the split within the subset

Lk. We have p(ck1) = 2

2
Vk1−2

if k1 6= k; p(ck1) = 2
2|ck|−2 if k1 = k and |ck| > 1; k1

is not an available biomarker to choose to split Uk if k1 = k and |ck| = 1. Also,

p(ck2) = 2

2
Vk2−2

if k2 6= k; p(ck2) = 2
2Vk−|ck|−2 if k2 = k and (Vk − |ck|) > 1; k2 is

not an available biomarker to choose to split Lk if k2 = k and (Vk − |ck|) = 1.

B Detailed MCMC derivations

Here we describe the detailed MCMC steps for binary outcomes and continuous outcomes.

The MCMC derivations for categorical outcomes are similar to binary outcomes. Again, we

take two rounds of splits for example. Assume we select biomarker k with probability p(k)
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and the threshold ck in the first round, leading to two subsets Uk and Lk if we choose to split.

Then we select biomarker k1 with threshold ck1 to split Uk and biomarker k2 with threshold

ck2 to split Lk.

B.1 Sampling model with priors

We first review the sampling models.

Binary outcomes. Let yi ∈ {0, 1} and θt,m be the response rate of patients in subgroup

m under treatment t. In this case, Θ = {θt,m}. We assume

p(yi = 1 | zi = t,Π,xi ∈ Sm) = θt,m.

The likelihood function is simply the product of n Bernoulli probability mass functions. We

assign the prior θt,m | Π
iid∼ Beta(a, b), where Beta(a, b) denotes a beta distribution with

mean a/(a+ b).

Continuous outcomes. Let yi ∈ R and θt,m be the mean response of patients in subgroup

m under treatment t. We assume

p(yi | zi = t,Π,xi ∈ Sm) = N(θt,m, σ
2).

The likelihood can be written as follows:

p(Yn |Xn,Zn,Θ,Π) =
T∏
t=1

M∏
m=1

∏
{i:zi=t,xi∈Sm}

(2π σ2)−1/2 exp{− 1

2σ2
(yi − θt,m)2}. (B.1)

We assign the conjugate prior p(θt,m, σ
2) = p(θt,m|σ2)p(σ2) with p(θt,m|σ2) = N(θ0,

σ2

κ0
)

and p(σ2) = IG(ν0
2
,
SS2

0

2
), where SS2

0 = ν0σ
2
0.

4



B.2 MCMC steps

1. Update θt,m (for both binary and continuous outcomes) and σ2 (for continuous outcome

only).

• Binary outcome:

p(θt,m | ·) ∝ p(Yn |Xn,Zn,θ,Π) p(θ | Π) ∼ beta(ntm1 + a, ntm0 + b),

where ntmy =
∑

i I(xi ∈ Sm, zi = t, yi = y), y = 0, 1.

• Continuous outcome:

p(θt,m|Yn, σ2,Xn,Π) ∝ p(Yn|θt,m, σ2,Π) p(θt,m) ∼ N(

∑
yi + κ0θ0
n+ κ0

,
σ2

n+ κ0
)

p(σ2 | Yn,θ,Xn,Π) ∝ p(Yn | θ, σ2,Π) p(σ2) ∼ IG(
n+ ν0

2
,
SS2

0 +
∑

t,m

∑
xi∈Sm

(yi − θt,m)2

2
)

2. Keep the selected biomarkers k, k1, k2 fixed, and update the thresholds ck, ck1 , ck2 .

Assume the current value is βk = (ck, ck1 , ck2) and the new value β∗k = (c∗k, c
∗
k1
, c∗k2) is

generated from a proposal distribution q(β∗k | βk). Denote the partition determined by

k, k1, k2, c
∗
k, c
∗
k1
, c∗k2 to be Π∗. The acceptance ratio r is

r =
p(Yn |Xn,Zn,θ,Π

∗) p(θ | Π∗) p(Π∗ | k, k1, k2, β∗k) p(β∗k)
p(Yn |Xn,Zn,θ,Π) p(θ | Π) p(Π | k, k1, k2, βk) p(βk)

· q(βk | β
∗
k)

q(β∗k | βk)

=
p(Yn |Xn,Zn,θ,Π

∗) p(θ | Π∗) p(c∗k | k) p(c∗k1 | k, c
∗
k, k1) p(c

∗
k2
| k, c∗k, k2)

p(Yn |Xn,Zn,θ,Π) p(θ | Π) p(ck | k) p(ck1 | k, ck, k1) p(ck2 | k, ck, k2)
· q(βk | β

∗
k)

q(β∗k | βk)
(B.2)

3. Update both the selected biomarkers in two rounds of splits k, k1, k2, and the corre-

5



sponding thresholds ck, ck1 , ck2 . Note here we allow not to split with certain probability

in each split.

Due to the possibility of not splitting, updating k, k1, k2 leads to potential dimension

change due to the change of the number of subgroups. For computational efficiency

and simplicity, in Metropolis-Hasting step we choose a specific proposal distribution

that is the same as the prior, to generate the new value. That means, we sample the

new k∗, k∗1, k
∗
2 and the corresponding βk∗ = (ck∗ , ck∗1 , ck∗2 ) from the prior as the proposed

value, then determine if we accept it or not.

Denote the partition determined by k, k1, k2, c
∗
k, c
∗
k1
, c∗k2 to be Π∗. Then the acceptance

ratio r is reduced to the following form:

r =
p(Yn |Xn,Zn,θ,Π

∗) p(θ | Π∗) p(Π∗)
p(Yn |Xn,Zn,θ,Π) p(θ | Π) p(Π)

· q(Π | Π
∗)

q(Π∗ | Π)

=
p(Yn |Xn,Zn,θ,Π

∗) p(θ | Π∗) p(Π∗)
p(Yn |Xn,Zn,θ,Π) p(θ | Π) p(Π)

· p(Π)

p(Π∗)

=
p(Yn |Xn,Zn,θ,Π

∗) p(θ | Π∗)
p(Yn |Xn,Zn,θ,Π) p(θ | Π)

(B.3)

Both (B.2) and (B.3) can be computed for binary outcome and continuous outcome

by plugging the sampling model and the priors of binary outcome and continuous

outcome, respectively.
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C Determining ξ1 and ξ2

Table S1: Sensitivity analysis of the proposed ASIED design with respect to ξ1 and ξ2 in the
first interim analysis ( n = 100), under different β0 values. Pr(All) denotes the probability of
continuing the trial with original population until the end of the trial. Pr(Sub) denotes the
probability of continuing the trial with an enriched subpopulation until the end of the trial.
Pr(EarS) denotes the probability of stopping the trial due to futility. Pr(2All) denotes the
probability of continuing the trial with original population and plan a second interim analysis.
Pr(2Sub) denotes the probability of continuing the trial with an enriched subpopulation and
plan a second interim analysis. All probabilities are with respect to repeated simulations.

ξ2 = 0.05 β0 = 0.25 β0 = 0.25 β0 = 0.25 β0 = 2.6 β0 = 3.08
β1 = 2 β1 = 2.55 β1 = 2.83 β1 = 0 β1 = 0

No Effect Sub LRV Sub TV All LRV All TV
ξ1 = 0.80
Pr(All) 0 0 10 95 100
Pr(Sub) 1 96 90 0 0
Pr(EarS) 99 4 0 5 0
Pr(2All) 0 0 0 0 0
Pr(2Sub) 0 0 0 0 0
ξ1 = 0.85
Pr(All) 0 0 8 95 100
Pr(Sub) 0 92 91 0 0
Pr(EarS) 100 7 0 5 0
Pr(2All) 0 0 0 0 0
Pr(2Sub) 0 1 1 0 0
ξ1 = 0.90
Pr(All) 0 0 6 92 100
Pr(Sub) 0 88 90 0 0
Pr(EarS) 100 7 0 5 0
Pr(2All) 0 0 0 3 0
Pr(2Sub) 0 5 4 0 0
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ξ2 = 0.10 β0 = 0.25 β0 = 0.25 β0 = 0.25 β0 = 2.6 β0 = 3.08

β1 = 2 β1 = 2.55 β1 = 2.83 β1 = 0 β1 = 0

No Effect Sub LRV Sub TV All LRV All TV

ξ1 = 0.80

Pr(All) 0 0 10 95 100

Pr(Sub) 1 96 90 0 0

Pr(EarS) 99 4 0 5 0

Pr(2All) 0 0 0 0 0

Pr(2Sub) 0 0 0 0 0

ξ1 = 0.85

Pr(All) 0 0 9 95 100

Pr(Sub) 0 92 91 0 0

Pr(EarS) 100 8 0 5 0

Pr(2All) 0 0 0 0 0

Pr(2Sub) 0 0 0 0 0

ξ1 = 0.90

Pr(All) 0 0 8 95 100

Pr(Sub) 0 89 91 0 0

Pr(EarS) 100 11 0 5 0

Pr(2All) 0 0 0 0 0

Pr(2Sub) 0 0 1 0 0

Since we set the three risks as false stop risk=0.05, false go risk=0.1, and false enrich

risk=0.15, both ξ1 = 0.8, ξ2 = 0.05 and ξ1 = 0.8, ξ2 = 0.1 achieve the desirable results.

Usually pharmaceutical companies wants to be more stringent on false go in early phase

drug development, we determine ξ2 = 0.1.
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D Additional Simulation Study

In this section, we considered one more scenario in which there is no predictive biomarker

and one prognostic biomarker to evaluate the performance of the proposed Bayesian random

partition (BayRP) model . We assumed all the biomarkers were continuous and generated

xik from Uniform(−1, 1), i = 1, . . . , n and k = 1, . . . , 4. In this scenario, we assumed only

the first biomarker was the prognostic biomarker and generated yi = 0.75 + 3.25I(zi =

2) + 0.25I(xi1 > −0.4) + εi, where εi ∼ N(0, 1). Remember that we defined the true effective

subgroup as So =
{
i : [E(yi | zi = 2,xi)− E(yi | zi = 1,xi)] > LRV

}
, where LRV=2.37. In

this scenario, the simulated true effective subgroup includes all-comers.

We simulated 100 trials for this scenario and applied the BayRP to each simulated

dataset. BayRP successfully identified the all-comers as the effective group, and yielded

the true positive rate being 0.96. Note that we do not report the true negative rate since

the simulated true effective subgroup include all-comers, meaning that the denominator in

the definition of the true negative rate is 0.
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