Isolated compound in CD ₃ OD				Cy3Gal in CD ₃ OD and DCl ¹¹⁾		Cy3Gal in CD ₃ OD ¹²⁾		Cy3Gal in CD ₃ OD:CF ₃ COOD (20:1) ¹³⁾		Cy3Gal in acidified CD ₃ OD ¹⁴⁾	
position of		σH (ppm) HMBC		σH (ppm)		σH (ppm)		σH (ppm)		σH (ppm)	
4	9.03	s	2, 3, 4a	8.98	s	9.113	d, $J = 1.0 \text{ Hz}$	9.11	d, J = 0.9 Hz	8.96	s
6	6.65	d, J = 1.0 Hz	4a, 8	6.67	d, J = 1.5 Hz	6.738	d, $J = 2.0 \text{ Hz}$	6.74	d, J = 2.0 Hz	6.62	d, J = 2.0 Hz
8	6.9	d, $J = 1.0$ Hz		6.92	d, J = 1.5 Hz	6.982	dd, J = 2.0, 1.0 Hz	6.98	dd, J = 2.0, 0.9 Hz	6.84	d, $J = 2.0$ Hz
2'	8.03	d, J = 2.4 Hz	4', 6'	8.04	d, J = 2.5 Hz	8.158	d, J = 2.3 Hz	8.17	d, J = 2.4 Hz	8.01	d, J = 2.0 Hz
5'	7.01	d, J = 8.8 Hz	1', 3'	7.01	d, J = 8.7 Hz	7.105	d, J = 8.8 Hz	7.11	d, J = 8.8 Hz	6.97	d, J = 8.9 Hz
6'	8.27	dd, J =8.8, 2.4 Hz	2, 2', 4'	8.23	dd, J = 8.7, 2.5 Hz	8.358	dd, J = 8.8, 2.3 Hz	8.34	dd, J = 8.8, 2.4 Hz	8.2	dd, J = 8.9, 2.0 Hz
1"	5.25	d, J = 7.8 Hz		5.43	d, J = 7.3 Hz	5.35	d, J = 7.7 Hz	5.34	d, J = 7.7 Hz	5.27	d, J = 7.5 Hz
2"	3.98	dd, J = 9.5, 7.8 Hz		4.03	dd, J = 11.8, 6.2 Hz	4.08	dd, J = 9.6, 7.7 Hz	4.08	m	4.01	dd, J = 9.6, 7.5 Hz
3"	3.65	dd, J = 9.5, 3.5 Hz		3.62	dd, J = 11.8, 1.5 Hz	3.76	dd, J = 9.6, 3.4 Hz	3.76	dd, J = 9.9, 3.3 Hz	3.7	dd, J = 9.6, 3.4 Hz
4"	3.94	d, J = 3.5 Hz		3.81	dd, J = 11.8, 6.2 Hz	4.04	dd, J = 3.4, 0.5 Hz	4.04	t, J = 3.3 Hz	3.97	br dd, $J = 3.4$ Hz
5"	3.76	m		3.64		3.89	m	3.89	m	3.83	br dd, J = 8.2 Hz, 3.0Hz
6"a	3.82	m		3.71	dd, J = 9.0, 7.6 Hz	3.89	m	3.87	m	3.81	dd, J = 11.3, 8.2 Hz
6"Ъ	3.76-3.78	m		3.64	m	3.86	m	3.87	m	3.78	dd, J = 11.3, 2.3 Hz

Table S1 ¹H NMR data of Cy3Gal

Table S2 Sample Materials

Material		Leaves		Galls			
Starting material (g)	133.4	395.3	358.0	78.9	305.3	416.1	
After ODS column chromatography (mg)	346.7	112.1	66.3	301.0	108.1	204.1	
After HPLC (mg)	5.1	1.0	8.6	36.5	71.6	22.3	

Fig. S1 Isolation scheme for cyanidin-3-*O*-β-galactoside

Fig. S2 ¹H NMR Spectra of Isolated compounds

Cy3Gal from Gall tissue (upper) and leaves (lower).

¹H NMR (500 MHz, CD₃OD), Methanol 3.31 ppm as internal reference.

Fig. S3 HMQC NMR Spectrum of Isolated compound from gall tissue

Fig. S4 HMBC NMR Spectrum of Isolated compound from gall tissue

Fig. S5 NOE NMR Spectrum of Isolated compound from gall tissue

