
Supplementary Materials

A Brief Description

Supplementary Materials contains additional discussion, numerical illustrations and math-

ematical details. It is organized in six sections. In Section B, we describe applicability

of Randomized Independence Screening (RIS) as an independent screening algorithm. We

apply RIS to four penalized likelihood methods, and compare their performance with other

screening algorithms in light of the simulated datasets considered in Section 4.1 of the

paper.

Section C is a supplement to Section 2 of the paper. Choices of appropriate marginal

utility measure for TARP under the GLM setup are discussed in Section C.1. Sensitivity of

RIS-RP and RIS-PCR to different choices of tuning parameters is discussed in Section C.2.

The method of simple aggregation is compared with other ensemble leaning approaches in

Section C.3.

Section D is a supplement to Section 3 of the paper. It discusses the implications of

the conditions and assumptions used in the results on predictive accuracy of TARP, and

interpretation of the theorems (Section D.1). Proofs of Lemma 1, Theorem 2 and Theorem

4 are in Section D.1.3, D.2 and D.3, respectively.
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Section E contains additional simulation works. The detailed specifications of the com-

peting methods, and formulae applied to find prediction intervals for the competing meth-

ods are in Section E.1. Performance of the competing methods for some other choices of pn

is shown in Section E.2. Detailed discussion of the competitive performance of the methods

is in Section E.2.1.

Section F is a supplement to Section 4.3 of the paper. It contains results on three

real datasets, the GTEx data, Eye data (in Section F.1) and the ultrahigh-dimensional

GEUVADIS cis-eQTL data (Section F.3). Further, it contains predictive calibration of the

methods when applied to the binary response datasets (see Section F.2).

The final section (Section G) contains a proofs of the Lemma 3 and 5 from the Appendix

of the paper.

B RIS as a Screening Algorithm

Randomized independence screening (RIS) can be considered as a general screening algo-

rithm when the data dimension is very large and the predictors are highly correlated, for

e.g., in genome-wide association studies. It serves as a time-efficient alternative to SIS for

regressors with multicollinearity.

Recall that calculation of the posterior mean of regression coefficients involves inversion

of the matrix (X ′nXn + I)−1 = I − X ′n(I + XnX
′
n)−1Xn (by Woodbury matrix iden-

tity). While the inversion step has complexity at most order n3, the matrix multiplications

are of order n2pn. Screening algorithms reduce the complexity of the whole operation to

p2
γn + min{p3

γ , n
3}, by reducing the number of regressors from pn to pγ � pn. This re-

duction is in particular beneficial if pγ < n. However, due to multicollinearity and huge
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dimensionality, screening algorithms limited to n marginally optimal predictors may not

be appropriate. RIS provides the scope to access a larger list of predictors without making

the computational cost much higher. We give a toy example to demonstrate that.

Example. Consider a normal linear model having regressors with marginal correlation

coefficients |rj| ≈ (1 − 1/(2n))j−1. As n is large the marginal correlations of the first

2n predictors exceed exp(−1) ≈ 0.4, and they should be included in the set of screened

predictors. In RIS we take qj = |rj|δ = (1−1/(2n))δ(j−1) as the inclusion probability of the

jth predictor. The number of predictors selected, pγ , is a random quantity following Poisson

binomial distribution (Wang, 1993) with an expected value
∑pn

j=1(1− 1/(2n))δ(j−1) ≈ n for

δ = 2, ≈ 2n/3 for δ = 3 and so on, for sufficiently large n.

The approach of generating multiple realizations compensates the loss due to random-

ization without greatly increasing the computational time. Consider for example a simple

setup where 2n predictors have |rj| = 0.5 and the rest have rj = 0 (except possibly one

with |rj| = 1). While it is important to consider all 2n predictors, RIS randomly selects

about pγ = n/2δ−1 predictors. Even after M repetitions, the computational time can still

be less than considering 2n predictors if δ > (log2M + 1)/2.

Below we provide a brief overview of performance of RIS screening. We consider 4 meth-

ods, viz., RIS-LASSO, RIS-Ridge, RIS-SCAD and RIS-MCP, and compare these methods

in 2 simulation schemes, viz., Schemes I and II, provided in Section 4.1. In Section 4.1,

we provide the best result for SCAD and MCP among the results obtained using various

packages including SIS, which applies ISIS screening. Similarly, for LASSO and ridge we

provide the best result obtained from glmnet and biglasso package, where the later uses

sequential strong rule (SSR) screening. The results for RIS-LASSO and RIS-Ridge are
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obtained using glmnet package, and RIS-SCAD and RIS-MCP using ncvreg package. For

methods based on penalization, we do not include the search for optimal λ under the ag-

gregation step. We choose the best λ for a fixed choice of screened regressors. The results

are summarized in Table A.

Observe that there is no visible improvement of SCAD and MCP of under RIS in Scheme

I. The gain due to RIS screening becomes visible in Scheme II. Here all the 4 methods show

much lower MSPE, higher average ECP and lower width under RIS screening. In particular,

for Ridge the averages MSPEs are more than ∼ 33 under SSR screening (see Table 1), which

are reduced to ∼ 13 under RIS. Width of 50% prediction interval (PI) also decrease for all

the methods under RIS.

We compare the computational time of RIS-LASSO, RIS-Ridge and RIS-SCAD with

that of LASSO, Ridge tuned by SSR screening (from Biglasso package), and SCAD tuned

by ISIS screening (from SIS package). The results are summarized in Figure A. In terms

of computational time, RIS based methods require marginally higher time for lower values

of pn due to the aggregation step. However, RIS becomes much more efficient than SSR

for higher values of pn.

C An Addition to Section 2 of the Paper

C.1 Choice of marginal utility measure for TARP in GLM:

There are many suggestions of suitable choices of marginal utility functions for screening

in GLMs (see, e.g., Zheng and Agresti (2000), Fan et al. (2009), Fan and Song (2010),

Kurosawa and Suzuki (2018)). These include the maximum marginal likelihood estimator
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Figure A: Computational time of SCAD, MCP, LASSO and Ridge under different screening
algorithms

Table A: Mean and standard deviation (sd) of mean square prediction error, empirical
coverage probabilities and width of 50% prediction intervals of four RIS screened methods.

Schemes → I II

(n, pn) (200, 2× 103) (200, 104)

Methods ↓ MSPE ECP Width MSPE ECP Width

RIS-SCAD 11.19 (2.17) 49.8 (6.4) 4.62 (0.40) 6.95 (1.44) 56.2 (6.0) 4.21 (0.29)

RIS-MCP 10.53 (1.83) 49.2 (5.7) 4.49 (0.33) 7.09 (1.38) 57.3 (6.4) 4.44 (0.42)

RIS-LASSO 12.79 (1.90) 49.9 (6.2) 4.82 (0.37) 7.82 (2.30) 49.5 (6.6) 3.72 (0.49)

RIS-Ridge 10.22 (1.71) 57.8 (10.3) 5.21 (1.01) 13.33 (4.48) 55.8 (6.5) 5.82 (0.39)

(MMLE), maximized marginal likelihood (MML), regression correlation coefficient (RCC),

defined as the correlation between marginal estimates and observed response, etc. Theo-

retically, any marginal utility measure which satisfies assumptions (A1) and (A2) serves

our purpose.

TARP is not sensitive to the choice of marginal utility function as long as it provides
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a measure of marginal association between predictors and response. For example, for a

binary response, the marginal correlation coefficient of y and a standardized predictor, xj,

is proportional to the t-test statistic for testing difference of means, and can be used as the

marginal screening measure for TARP.

Usage of MMLE, MML, RCC or equivalent criteria have relatively slow computational

speed due to maximization of the likelihood. Therefore, we favor the correlation coefficient,

as there are no significant differences in variable selection performance compared with using

the MMLE, MML or RCC (see also Saldana and Feng (2016)).

To emphasize this point we perform two simulation exercises: We consider a scheme

similar to Scheme I of the paper with pn = 103 and n = 100. The response variables are

chosen to be binomial and Poisson, respectively, and are generated using the logit and log

link. Arranging the predictors with respect to the marginal utility measure, we observe

exactly the same order when using MMLE and absolute correlation. Here the MMLE is

calculated via iteratively reweighted least squares (IWLS) available in the glm package of

R.

Complexity for non-Gaussian Likelihood: In Step 4 (see Section 2.4), we calculate

the posterior mean of the compressed regression coefficient. For non-Gaussian likelihoods,

the posterior mean is not available in analytic form. We can either rely on analytic ap-

proximations like Laplace method, or use MCMC here. However, as we are dealing with

mn compressed regressors only, the computational cost is quite modest.

For example, consider the situation where the response is binary. Let y follow a Probit

regression model with P (yi = 1) = Φ(z′iθ), where zi is the ith row of Zn = XnR
′
n. Let

y∗i be an auxiliary random variable such that y∗i ∼ N(z′iθ, 1) and y∗i > 0 iff yi = 1,

i = 1, . . . , n. Using Gibbs sampling, we sample from the full conditional distributions. The
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full conditional of θ given y∗ and Dn is mn-variate normal with mean (Z ′nZn + I)−1Z ′ny
∗

and dispersion (Z ′nZn + I)−1. Given θ and y, y∗ is updated using a truncated normal

density with mean Znθ and dispersion I. The computational cost in each iteration due

to matrix multiplication and inversion is at most order O(m2
nn). In M MCMC iterations,

total complexity of step 4 is O(Mm2
nn).

C.2 Sensitivity of TARP to the tuning parameters

TARP has two tuning parameters mn and δ, and RIS-RP has an additional parameter ψ.

To show the effect of aggregation we take different values of these tuning parameters, and

present the results without aggregation. Although we do not take different values of δ while

aggregating, here we will show the effect of different choices of δ as well.

The results presented here correspond to Scheme I of the paper with pn = 2× 103. We

consider 100 samples and computed the mean square prediction error (MSPE), empirical

coverage probability (ECP) and width of 50% prediction intervals (PI). For each of the

samples, we predicted ynew without using the aggregation step. Four choices of each of the

tuning parameters are taken. When one tuning parameter varies, the others are kept fixed

at mn = 100, ψ = 0.25 and δ = 2. Table B shows the results.

From Table B the following statements can be made:

(i) mn is the number of linear combinations (principal components) of screened regres-

sors considered for prediction in RIS-RP (RIS-PCR). TARP tends to perform better for

lower values of mn. This behavior is theoretically supported, as the conditions for predic-

tive accuracy include mn log pn < nε2
n/4 for all sufficiently large n (see Theorems 1, 2). So

smaller values of mn imply higher rate of convergence.

(ii) ψ controls the density of zeros in the random projection matrix in RIS-RP. Variation
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Table B: Mean and sd of MSPE, ECP and width of 50% PIs over 100 simulations for
different choices of tuning parameters of RIS-RP and RIS-PCR.

RIS-RP

mn MSPE ECP Width ψ MSPE ECP Width δ MSPE ECP Width

40 16.132.23 37.75.6 3.950.26 0.1 17.743.00 29.35.0 3.160.24 0.5 23.353.94 34.05.3 4.190.20

80 17.222.73 31.35.3 3.370.29 0.2 17.532.78 30.55.2 3.220.28 1.5 20.053.16 30.24.9 3.470.22

120 19.484.00 27.05.4 3.030.28 0.3 18.232.80 29.65.0 3.180.25 2.5 15.622.45 31.05.1 3.130.26

160 21.274.34 25.45.5 2.930.33 0.4 18.192.88 29.45.1 3.210.22 3.5 14.232.19 35.85.6 3.450.30

RIS-PCR

mn MSPE ECP Width δ MSPE ECP Width

40 13.201.91 30.75.7 2.900.24 0.5 12.321.77 23.64.6 2.110.16

80 13.852.18 28.15.0 2.700.28 1.5 13.361.75 24.34.9 2.280.20

120 15.602.79 26.95.7 2.670.40 2.5 15.562.29 30.55.2 3.070.32

180 17.672.82 26.75.8 2.850.36 3.5 14.232.09 36.76.0 3.490.30

of ψ does not seem to affect RIS-RP much. In fact we could take much sparser choices of

the random matrix as described in Remark 1 of the paper.

(iii) δ controls the number of screened predictors in the RIS step. While RIS-RP tends

to improve performance for higher values of δ, RIS-PCR tends to deteriorate as δ increases.

The methods BCR and PCR correspond to cases with δ = 0 of RIS-RP and RIS-PCR,

respectively. The differences in MSPEs of BCR and PCR in Scheme I also support this

observation.

(iv) RIS-RP seems to gain more advantage due to the aggregation step than RIS-PCR,

which is again intuitive, as RIS-RP relies on the random projection matrix unlike RIS-PCR.

8



C.3 Comparison of simple aggregation over other ensemble learn-

ing approaches

We compare three approaches of aggregation, viz., simple averaging, cross-validation and

model averaging, with respect to computational complexity and performance on simulated

datasets.

Complexity of RIS-RP. Recall the steps of RIS-RP in Section 2.4: (i) Screening with

complexity O(pn), (ii) random matrix generation and matrix post-multiplication with total

complexity O(npγmn) where pγ is number of selected regressors in the RIS step, and (iii)

calculation of Bayes estimate with complexity O(m2
nn) as mn < n.

Complexity of RIS-PCR. The second step of RIS-RP is replaced by SVD of Xγ in RIS-

PCR, which involves the complexity of O (npγ min{n, pγ}), followed by a multiplication

step of complexity O(npγmn).

Aggregating over different choices of tuning parameters. Note that the first step

of screening is not repeated over the steps of aggregation.

Model Averaging: Suppose we consider N different choices of {mn, ψ,γ, Rγ}. For each

of the l choices we have a model Ml : y ∼ f
(
y|x,mn,l, ψl,γ l, Rγl,l

)
and a corresponding

estimate of ynew given Xnew, say ŷnew,l, where l ∈ {1, 2, . . . , N}. The method of model

averaging puts forward the expected value of ŷnew,l as an estimate of ynew as

ŷnew =
∑N

l=1 ŷnew,lP (Ml|Dn)

where P (Ml|Dn) is the posterior probability of Ml. For normal linear models, as well

as for non-Gaussian GLMs, the posterior probability, P (Ml|Dn), requires calculation of

|Z ′nZn + I| in addition to the components required to calculate ŷnew,l, which is of order

O(m3
n). Therefore, for model averaging the complexity of step (ii) is increased by a term
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of O(m3
n), and the steps (ii) and (iii) are multiplied N times each.

K-fold Cross Validation (CV): Like model averaging, for K-fold CV we consider N

different choices of {mn, ψ,γ, Rγ}. For each of these choices, we split the training dataset

into K equal parts and obtain an estimate of ynew, ŷnew,l, using K−1 parts. This estimate

is then validated based on the remaining unused part, and a MSPE is obtained. The

combined MSPE for the lth model is obtained by aggregating the K MSPEs. Finally

that model is considered which yields minimum MSPE. Clearly K-fold CV requires N

repetitions of step (ii) and KN repetitions of step (iii), although the last step now has

complexity m2
n(n/K +mn).

Simple aggregation: This method adds the least computational complexity to the method.

If we consider N different models Ml, then the steps (ii) and (iii) are repeated N times.

Performance of different methods of aggregation in simulated datasets. We

compare different methods of aggregation under Scheme II (see Section 4.1 of the paper).

We consider n = 100 and 3 choices of pn, viz., pn = 103, 5 × 103 and 104 to see the effect

of increments of dimension. From Figures B(a)-C(b), observe that simple averaging has

better and more stable performance than model averaging and cross validation. Difference

in performance increases as pn increases. Model averaging tends to be more affected by

increment of dimension. Simple aggregation also requires less time to compute, and the

difference is significant for RIS-PCR.

10



(a) (n, pn) = (100, 103). (b) (n, pn) = (100, 5× 103).

Figure B: Box-plot of MSPEs in Scheme II

D An Addition to Section 3 of the Paper

D.1 Implications of the assumptions and conditions required to

prove the theorems

The following two remarks discuss implications of Assumptions (A3) and (A3′), and that

of the conditions (i)-(iii) in Theorems 1 and 2, respectively.

Remark 1. If the matrix X ′γXγ has rank less than mn, then αn = 1 by Perseval’s identity.

Suppose rank of X ′γXγ, say rn(≤ n), is bigger than mn. Then the row space of Xγ, or that

of X ′γXγ, is spanned by a set of rn basis vectors v1,v2, . . . ,vrn. Therefore, any data point x

can be written as a linear combination of these rn vectors as x = a1v1 +a2v2 + · · ·+arnvrn,

where a1, . . . , arn are constants not all equal to zero. As the vectors vj are orthonormal,

v′jx = aj for all j = 1, . . . , rn, which in turn implies that x′x =
∑rn

j=1 a
2
j . Also, note that
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(a) (n, pn) = (100, 104). (b) Time in sec., pn = 104

Figure C: Box-plot of MSPEs and multiple bar-chart of computational time in Scheme II.

the first mn among these rn vectors constitute V ′γ, which implies ‖V ′γx‖2 =
∑mn

j=1 a
2
j . Thus

‖Vγx‖2/‖x‖2 =
∑mn

j=1 a
2
j/
∑rn

j=1 a
2
j , and magnitude of the ratio depends on the part of x

explained by the last few principal component directions. The lower bounds αn ∼ (nε2
n)−1

(in (A3)) or αn ∼ (nε2
n)−1+b for some b > 0 (in (A3′)) are reasonable in view of many real

data scenarios where most of the variation is explained by the first few principal components.

Remark 2. The conditions (i)-(iii) in Theorems 1 and 2 are related to the sizes of pn,

mn and kn in comparison with nε2
n. A sufficient condition for (i) is mn log n < nε2

n/4,

providing an upper bound on the dimension of the subspace, mn. Condition (ii) restricts the

permissible number of regressors, pn, and the number of possible models of each dimension.

If there is a strict ordering in the marginal utilities |rxj ,y|, so that kn ≤ κ for some large

number κ, then the condition reduces to log pn < nε2
n/4. To illustrate that the condition

(iii) tends to be weak, consider distributions of y corresponding to Bernoulli, Poisson and
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normal. For these cases, the quantity D(h∗) is at most of order O(h∗). Therefore, condition

(iii) does not impose much additional restriction over (i)-(ii), except mn log pn < nε2
n/4,

which induces a stronger upper-bound to mn.

D.1.1 Explanation of the Assumption (A2)

We choose predictors based on marginal utility. Suppose the absolute marginal utilities,

qj, are normalized to range [0, 1]. Then the “inclusion probability” of a model γ is q(γ) =∏pn
j=1 q

γj
j (1− qj)(1−γj).

Assumption (A2) effectively limits inclusion of models with small q(γ), without adding

any restriction to the model size. The class of models considered in (A2), An = ∪lMl, con-

tains the top pknn models (ordered w.r.t. marginal inclusion probabilities) of all dimension.

Assumption (A2) makes An the effective model space.

Note that all models of dimension l < kn and l > (pn − kn) belong to An. Further

models considered in SIS, i.e., the models (of any dimension) containing predictors with

highest marginal utility, are included in An. However, as SIS based methods consider only

one selected model for further analysis, sparsity is necessary condition for SIS. But sparsity

is not a necessary condition for (A2). Below we illustrate this with some simple examples.

Example 1: Strong Sparsity. Consider the situation where there exists a few active

regressors. Under high signal-to-noise ratio and partial orthogonality condition, Fan and

Song (2010) show that the marginal regression parameter of inactive regressors will be

zero, and those for the active regressors will exceed a threshold in such situations. They

also show that the marginal maximum likelihood estimates (MMLE) will be close to their

population counterparts almost surely. Therefore, it is likely that most of the regressors
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have qj close to zero, and a few regressors have qj bigger than a threshold.

We consider a simple scenario with kn = 1, pn = exp{ns} with 0 < s < 1. Thus, pn

highest probability models of each dimension are included in Ml.

Case 1: Suppose pn−mn covariates have normalized utility qj ≤ c1n
s1p
−(1+ν)
n , and the

remaining mn have higher utility qj > (1−c2n
s2p−νn ), for some constants c1, c2, s1, s2, ν > 0,

and mn = O(n). In such cases the probability of the mn-dimensional model with mn

important predictors (i.e., predictors having strong marginal association with y) is bigger

than (
1− c2n

s2

pνn

)mn
(

1− c1n
s1

p1+ν
n

)pn−mn

→ 1, as n→∞.

Further, the rate of convergence is approximately 1 − exp{−νns}. This probability is

greater than 1− exp{−nε2
n/4} if ν = 1 (see conditions (i)-(iii) of Theorems 1, 2). However,

this is only one among p2
n + 1 models we consider in (A2). Therefore, we expect (A2) to

hold for some smaller choices of ν in this scenario.

Case 2. Next we slightly generalize the situation, where mn regressors have qj at

least 1 − c1n
s1p−νn , pn − 2mn regressors have qj at most c2n

s2p
−(1+ν)
n , and mn regressors

having intermediate utilities. Let mn = O(nr) where r < s. In such cases let us consider

the probability, P , of all the models having mn important regressors (i.e., regressors with

qj > (1 − c1n
s1p−νn )) included, and pn − 2mn unimportant regressors (i.e., regressors with

qj < c2n
s2p
−(1+ν)
n ) excluded. Note that there can be at most 2mn such models, and as(

mn

l

)
< pn for all l = 1, . . . ,mn, all these models are included in An. Here also we get

P ≥
(

1− c1n
s1

pνn

)mn
(

1− c2n
s2

p1+ν
n

)pn−2mn

≈ 1− exp{−νns},

which implies (A2) holds at least for ν = 1.
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Example 2: Dense cases. Now we consider some dense cases. Keeping the choices of

(kn, pn) as before, we consider the case where pn/2−mn covariates have qj ≤ c1n
s1p
−(1+ν)
n

and pn/2−mn covariates have qj ≥ (1−c2n
s2p
−(1+ν)
n ) for some constants s1, s2, c1, c2, ν > 0.

The remaining 2mn covariates have intermediate marginal utilities. Here we also consider

mn = O(nr) with r < s. As before, it is easy to see that the probability, P , of 22mn models

including all the important covariates and excluding all the unimportant covariates is at

least 1− exp{−νns}.

Further, observe that in each of the situations in Example 1, if we replace the marginal

utility, qj, of each regressor by 1− qj, then (A2) holds. For e.g., if pn−mn covariates have

qj ≥ 1 − c1n
s1p
−(1+ν)
n and the remaining mn have qj ≤ c2n

s2p−νn , a situation opposite to

Case 1 arises. In this case if we calculate the probability, P , of the model with pn −mn

important covariates, it can similarly be shown that P > 1− exp{−νns}.

Discussion. It is difficult to check (A2) in situations other than extremely dense and

sparse cases, as calculation of the probability P ({γ : γ ∈ An}) is not trivial. However,

(A2) holds if some of the covariates have sufficiently large marginal utility relative to the

others. Situations where (A2) does not hold include the case where all the regressors have

qjs uniformly spread in the interval [0, 1]. A convenient way of informally checking (A2)

is to draw a histogram of the normalized utility measures. If it sufficiently deviates from

uniform on [0, 1], then (A2) holds.

Further recall that, if rj is the marginal utility measure (e.g., correlation coefficient) of

the jth covariate, then we define qj as the normalized value of |rj|δ. As δ becomes larger,

the distribution of qjs deviates more from Uniform(0, 1). Choosing a suitable δ, we can

control qjs as well to satisfy (A2).
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D.1.2 Interpretation of the theorems

In Theorems 1 and 2 we provide a rate of closeness of the true density f0 and the estimated

density f of y under the posterior distribution. These convergence results describe “often

closeness” between f and f0 (see Jiang (2007)). These results imply existence of point

estimates of f0 that have the convergence rate εn in a frequentist sense. Such a point

estimate can be obtained by finding the center of an εn-ball with high posterior probability,

or by posterior expectation (see Ghosal et al. (2000)).

In Theorems 1 and 2, we have shown that the predictive density f(y|θ, Rγ ,xi), with θ

drawn from π(θ|Dn, Rγ) and γ ∈ An (An = ∪lMl, as in Assumption (A2)), concentrates

around the true predictive density under f0 in the above sense. In order to find a point esti-

mate for prediction, we consider the posterior mean of θ, and simply average over multiple

realizations of γ. To argue that the proposed point estimate is a “good” estimate (i.e., it

lies inside εn-Hellinger balls containing f0), it is enough to show that each realization of γ

considered with inclusion probability q(γ) is in An, which is evident under the assumption

(A2).

D.1.3 Proof of Lemma 1

Proof of Lemma 1(a). By Serfling (1980, Theorem 1.8.E), ‖x‖2/pn =
∑

i x
2
i /pn →

∑
j E
(
x2
j

)
/pn

almost surely if cov
(
x2
i , x

2
j

)
≤ ρ∗|i−j|

√
var (x2

i ) var
(
x2
j

)
with

∑
j var

(
x2
j

)
(log j)2/j2 < ∞,

and
∑

j ρ
∗
j <∞. Here E(x2

j) = 1, var(x2
j) = 2 for all j, and cov(x2

i , x
2
j) = 2σ2

i,j. Therefore

by (B1), ‖x‖2/pn → 1 almost surely.

Proof of Lemma 1(b) Let Yn = ‖x‖2/pn. This part is proved noticing that for each

An = {ω : Yn(ω)→ 1} implies
{
ω : Yn(ω)/(nε2

n)b → 0
}

for any b > 0 as nε2
n →∞.
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D.2 Proof of Theorem 2

Proof. The outline of the proof of Theorem 2 closely follows the arguments given in the

proof of Theorem 1. Therefore we only present those parts of the proof which are different.

As in Theorem 1, we show that P (Bcn|An) > 1− 2e−nε
2
n/4 by checking the three conditions

of Lemma 2.

The proof of Condition (a) is the same as for Theorem 1, except for the places involving

the projection matrix Rγ . Observe that given a dataset Dn and other tuning parameters we

fix a particular projection matrix Rγ . The only property of Rγ needed to prove condition

(a) is ‖Rγx‖2 ≤ mnpn for sufficiently large n. To show this we use that fact that Rγ is a

matrix with orthonormal row vectors, and RγR
′
γ has only one eigenvalue 1 with algebraic

and geometric multiplicity mn. Therefore, 1 must be an eigenvalue of R′γRγ with algebraic

multiplicity at least mn. As the later matrix has only mn non-zero eigenvalues, this implies

that highest eigenvalue of R′γRγ is 1. Thus, ‖Rγx‖ ≤ ‖xγ‖ ≤
√
pn.

Therefore the choice of ε required to ensure d(fu, fv) ≤ εn is

ε = ε2
n/
{√

mnpn sup|h|≤cn√mnpn |a′(h)| sup|h|≤cn√mnpn (|b′(h)|/|a′(h)|)
}

,

and as before we can show that

N(εn,Pn) ≤ cpkn+1
n

(
1

ε2
n

D(cn
√
mnpn) + 1

)mn

,

where D(R) is as defined in Theorem 1. By using the assumptions in Theorem 2 condition

(a) follows.

The proof of Condition (b) depends only on the prior assigned on θ, and therefore

remains the same under the settings of Theorem 2.

The proof of Condition (c) differs from that of Theorem 1 in showing P (|(Rγx)′θ −

x′β0| < ∆n) > exp{−nε2/4} for some constant ∆n. To see this consider a positive constant
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∆n. As before, from Lemma 4 we have

P (|(Rγx)′θ − x′β0| < ∆n) ≥ Eγ

[
exp

{
−(x′β0)2 + ∆2

n

σ2
θ‖Rγx‖2

}
24∆4

σ2
θ‖Rγx‖2

]
≥ Eγ

[
exp

{
−(x′β0)2 + ∆2

n

σ2
θαn‖xγ‖2

}
24∆4

σ2
θ‖xγ‖2

]
=

24∆4
n

(x′β0)2 + ∆2
n

Eγ

{
Zγ

pn
exp

(
− Zγ

αnpn

)}
, (D.1)

where Zγ = {(x′β0)2 + ∆2
n} / {σ2

θ‖xγ‖2/pn}, and αn is as in (A3). From part (b) of Lemma

3, and continuous mapping theorem Zγ−zn
p−→ 0 in γ where zn = {(x′β0)2 + ∆2

n} / (σ2
θcαδ)

> ∆2
n/ (σ2

θcαδ). For some positive random variable Z and non-random positive numbers p,

a and b, as before we can show that

E

(
Z

p
exp

{
− Z

αp

})
≥ aP

(ap
b
< Z < −αp log(ab)

)
. (D.2)

Replacing Z by Zγ , p by pn, α by αn and taking a = ∆2
n exp{−nε2

n/3}/(σ2
θcαδ), and

b = pn exp{−nε2
n/3} we get −αnpn log(ab) = −αnpn log [∆2

npn exp{−2nε2
n/3}/(σ2

θcαδ)] ∼

2pn log (∆2
npn/(σ

2
θcαδ)) /3 > pn/2 for sufficiently large n and ap/b = ∆2

n/ (σ2
θcαδ) . There-

fore the expression in (D.2) is greater than

∆2
n

σ2
θcαδ

e−nε
2
n/3P

(
∆2
n

σ2
θcαδ

≤ Zγ ≤
pn
2

)
.

Note that (x′β0)2 <
∑pn

j=1 |β0,j| < K, and the probability involved in the above expression

can be shown to be bigger than some positive constant p for sufficiently large n. Using

these facts along with equation (D.1), we have P (|(Rγx)′θ−x′β0| < ∆n) > exp{−nε2
n/4}.

Choosing ∆n = ε2
n/(4M) condition (c) follows.
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D.3 Proof of Theorem 4

Proof. As in the proof of Theorem 3, we will only prove the condition (c) of Lemma

2. The proof of condition (c) closely follows that of Theorem 3. Here also we write

dt=1(f, f0) = Ex [{(Rγx)′θ − x′β0} g (u∗)], split it into 2 parts as in equation (8) of the

paper, and argue that in order to prove (c) it is sufficient to show equation (9) of the

paper.

The first part of equation (9) is essentially same as the proof of part (c) in Theorem 2.

The only place require attention is the proof of claim that the following expression is no

less than exp {−nε2
n/4 + 2 log 2},

∆2
n

σ2
θcαδ

e−nε
2
n/3P

(
∆2
n

σ2
θcαδ

≤ Zγ ≤ −αnpn log

(
∆2
npn

σ2
θcαδ

e−2nε2n/3

))
. (D.3)

where Zγ−zn → 0 where zn = {(x′β0)2 + ∆2
n} / (σ2

θcαδ) in probability in γ. The right hand

side within the above probability is bigger than αnpnnε
2
n/2 ≥ pn (nε2

n)
b
/2 for some b > 0 by

assumption (A3′). Note further that (x′β0)2/
{
pn(nε2

n)b
}
< ‖x‖2‖β0‖2/

{
pn(nε2

n)b
}
→ 0

almost surely in x by Lemma 1(b). Therefore ∆2
n/(σ

2
θcαδ) < zn < pn (nε2

n)
b
/2, almost

surely in x, and the probability involved in (D.3) is bigger than some positive constant

p for sufficiently large n. Using these facts and choosing ∆n as in the proof of Theorem

2, we can show that the expression in (D.3) is bigger than exp {−nε2
n/4 + 2 log 2}. This

completes the first part of (9).

We prove the second part of (9) in the same manner as in Theorem 3. Consider the

same set Dn, such that π ((θ,γ) ∈ Dn| An) ≥ exp{−nε2
n/4 + 2 log 2}, i.e., we consider any

γ ∈ ∪lMl (see assumption (A2)) and any θ : ‖θ‖ ≤ σθ
√

3nεn/
√

2.

Next note that, the quantity {(Rγx)′θ − x′β0} ≤ ‖Rγx‖ ‖θ‖+ |x′β0| ≤ (‖θ‖+K) ‖x‖,
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as Rγ is row-orthogonal. Therefore, we consider

max {‖Rγx‖‖θ‖, |x′β0| , |(Rγx)′θ − x′β0|} ≤ c
√
nε2

n‖x‖,

for a suitable constant c > 0. Further by assumption (B3), |g(u)| ≤ exp{c0u} for some

fixed c0 > 0. Thus,

Ex

[
{(Rγx)′θ − x′β0} g (u∗)| ‖x‖ >

√
3pn
]
≤ Ex

[
exp

{
c
√
nε2

n‖x‖
}∣∣∣ ‖x‖ > √3pn

]
,

for a suitable constant c > 0. Finally as in Theorem 3 we observe that

Ex

[
exp

{
c
√
nε2

n‖x‖
}∣∣∣ ‖x‖ > √3pn

]
≤ exp

−3c1p
2
n

c0ln


(

1−
c ln
√
nε2

n√
3pn

)2

+
c l2nnε

2
n

p2
n

+
cln
pn

log

(
c0ln
c2

)
+

c

pn
log(pn)




×P
(
‖x‖ >

√
3pn|x ∼ N(0, c0c

−1
2 ln

)
.

Noting that max
{
ln log(ln), ln

√
nε2

nmn

}
= o(pn) we have

Ex

[
{(Rγx)′θ − x′β0} g (u∗) |Acpn

]
P
(
Acpn
)
≤ exp{−cpn} ≤ ε2

n/20.

This proves the second part of (9), and the following the same procedure as in Theorem 3

the proof is completed.

E An Addition to Section 4.1 of the Paper

E.1 Details of specifications of the tuning parameters of the com-

petitors

SCAD and MCP are calculated using three packages, viz., SIS, ncvreg and ncpen (Kim

et al., 2018). For one-step SCAD (1-SCAD) we use a R-code provided by the authors of

Fan et al. (2014). LASSO, ridge and elastic net (EN) are calculated using two packages,
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glmnet and biglasso (Zeng and Breheny, 2017). In each case, the best among all the results

is provided. As we are interested in prediction problem, AIC tuning parameter selector

is chosen (see Zhang et al. (2010)). For EN the parameter α is set to 0.5. The tuning

parameter λ should converge to 0 at a certain rate. Fan et al. (2014) has chosen λ =
√
pn/n

for practical purpose. We consider 200 equidistant points in the range [0.0005, 2] for λ.

Additionally, we have considered the default data-adaptive range of λ provided in the

respective packages for all the penalization methods. The best result (calibrated in terms

of average MSPE) among these two is provided.

SPCR and RPCR are performed using PMA and rsvd packages in R, respectively. To

estimate PC scores, we rely on approximate SVD using fast.svd in the corpcor package.

For BCR, we average over 100 different random projection matrices with varying mn values

within the range [2 log pn, 3n/4]. We use the qr function in R to apply QR factorization in

place of Gram-Schmidt orthogonalization of the random matrix, which is computationally

prohibitive for large pn. For BASAD we use basad R-package with the default settings which

includes choosing the initial estimate for number of active covariates by Gibbs sampling, and

number of burn-in and estimation iterations as 1000 each. For SSLASSO we use SSLASSO

R-package with λ1 = 1 and λ0 chosen from the interval [1, 100] with grid increments of 1.

Methods used to find prediction intervals (PIs) of the competing methods For

TARP and BCR, PIs are obtained from quantiles of the posterior predictive distribution

of ynew given Dn, Xnew. For normal-linear model the 100(1 − α)% PI of the frequentist

methods can be obtained as

ŷnew ± tα/2,n−k−1

√
σ̂2
(

1 + x′new(X ′[k]X[k])−1xnew

)
,
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where σ̂2 =
∑n

i=1(yi − ŷi)2/(n − k − 1), k is the number of predictors used to predict y,

X[k] is the design matrix with k selected predictors. We used this formula for all other

methods except the penalized likelihood methods. The penalization methods are subject

to over-fitting, and consequently the resulting σ̂ can be very close to zero. Some possible

solutions to this problem are provided in Lei et al. (2018), Steinberger and Leeb (2016). The

former takes an approach of conformal prediction, while the later takes a simple approach of

estimating PI based on leave-one-out residuals. It considers the inter-quartile range of the

leave-one-out residuals as the 50% PI. We consider the later approach as calculation of the

conformal prediction interval (provided in conformalInference R-package) takes prohibitive

time for higher values of pn.

E.2 Additional simulation results for higher values of pn

Here we present the performance of the different methods with respect to mean square

prediction error (MSPE), and empirical coverage probability (ECP) and the width of 50%

prediction interval (PI) for larger choices of pn in each scheme considered in Section 4.1

of the paper. The relative performance of the methods in terms of MSPE for different

simulation schemes are shown in Figures D(a)-F(b), and that in terms of ECP and width

of 50% PI are presented in Table C.

E.2.1 Summary of comparative performance of the competing methods in

schemes I-IV.

All the methods except SSLASSO yield reasonable performance in terms of MSPE in

Scheme I (see Figures 1(a) and D(a)). Further SSLASSO has the lowest coverage among all

the methods in Scheme I. Among the other methods, the best overall performance in terms
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(a) Scheme I, pn = 3× 103. (b) Scheme II, pn = 2× 104.

Figure D: Box-plot of MSPEs for the competing methods in Schemes I and II.

of MSPE are by EN, RIS-PCR and RIS-RP. However, TARP has lower empirical coverage

than most of the methods. All the other methods have nearly comparable performance in

terms of MSPE and ECP. Finally PCR has average ECP and width comparable to RIS-RP.

However, it has the highest variance of both ECP and width reflecting lack of stability.

1-SCAD also have high variance of ECP and width in Scheme I.

In Scheme II the best overall performance is by PCR and RIS-PCR (see Figures 1(b)

and D(b)). However, RIS-PCR has lower average ECP than most of the methods, and PCR

also has low coverage and highest variance of ECP compared to all the methods. RIS-RP

closely follows the former two methods in terms of MSPE, and also yield higher coverage

probability. SSLASSO and BCR have somewhat better results than others in terms of

MSPE. However, like in Scheme I, here also SSLASSO has the lowest ECP among all the

competing methods. BCR has the highest coverage among all the competing methods.

Average MSPE of all the penalization methods, SPCR and RPCR are on the higher side,
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(a) MSPE of all the methods. (b) MSPE of selected methods.

Figure E: Box-plot of MSPEs for pn = 104 in Scheme III.

(a) MSPE of all the methods. (b) MSPE of selected methods.

Figure F: Box-plot of MSPEs for pn = 2× 104 in Scheme IV.
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Table C: Mean and standard deviation (in bracket) of empirical coverage probabilities (ECP)
and width of 50% prediction intervals for 13 competing methods.

Schemes → I II III IV

(n, pn) (200, 2× 103) (200, 104) (200, 5× 103) (200, 104)

Methods ↓ ECP Width ECP Width ECP Width ECP Width

SCAD 49.8 (6.0) 4.58 (0.42) 50.2 (8.3) 6.51 (0.88) 11.3 (10.1) 1.37 (0.08) 48.1 (6.8) 11.74 (2.30)

1-SCAD 49.4 (11.0) 4.77 (1.07) 46.3 (9.6) 6.29 (1.36) 10.8 (10.6) 1.42 (0.21) 49.2 (9.6) 2.23 (0.42)

MCP 51.7 (6.7) 4.92 (0.62) 49.1 (9.9) 6.84 (1.22) 11.7 (10.8) 1.39 (0.19) 50.9 (6.7) 9.2 (1.24)

LASSO 47.9 (6.9) 4.80 (0.50) 47.4 (8.5) 6.36 (1.05) 10.6 (11.0) 1.38 (0.12) 47.3 (6.7) 5.09 (0.60)

EN 48.9 (6.5) 4.47 (0.39) 48.0 (9.0) 6.31 (0.95) 10.4 (11.0) 1.38 (0.12) 58.2 (7.8) 2.40 (0.33)

Ridge 47.2 (6.2) 4.65 (0.42) 48.6 (7.3) 7.55 (0.92) 10.3 (9.9) 1.38 (0.12) 52.8 (7.5) 4.89 (0.66)

PCR 41.3 (28.1) 4.45 (3.70) 37.8 (24.5) 3.34 (2.41) 11.0 (9.5) 1.37 (0.08) 51.7 (32.1) 4.45 (3.59)

SPCR 50.4 (5.3) 5.03 (0.24) 49.5 (5.4) 6.58 (0.50) 9.4 (7.5) 1.38 (0.08) 49.8 (5.5) 49.05 (13.68)

RPCR 50.2 (5.5) 4.91 (0.22) 47.2 (5.2) 5.98 (0.41) ** ** 49.0 (5.3) 2.67 (0.28)

BCR 52.3 (5.5) 5.45 (0.26) 54.6 (6.1) 6.25 (0.41) 26.5 (13.2) 2.42 (0.69) 44.8 (5.4) 2.16 (0.14)

BASAD 50.3 (5.4) 4.95 (0.22) * * * * * *

SSLASSO 18.7 (3.9) 2.15 (0.12) 22.0 (4.4) 2.28 (0.13) 11.1 (9.3) 1.38 (0.09) 33.3 (4.0) 1.64 (0.10)

RIS-RP 39.3 (4.9) 3.53 (0.15) 47.0 (5.4) 4.03 (0.12) 67.6 (18.6) 8.16 (4.60) 64.5 (5.1) 2.84 (0.18)

RIS-PCR 28.4 (5.0) 2.50 (0.22) 29.4 (4.8) 2.26 (0.16) 21.9 (8.7) 2.22 (0.85) 39.6 (4.5) 1.55 (0.12)

* BASAD requires prohibitive computational time for pn = 104, and hence removed from comparison
** RPCR produces extremely high MSPE and width of PI for Scheme III, and hence removed from comparison

and among these methods Ridge and MCP have the worst performance in terms of MSPE.

MCP and Ridge fail to perform well in terms of MSPE in Scheme II. Finally, we skip

BASAD as it requires prohibitive computational time for pn ∼ 104.

In Scheme III (see Figures 2(a)-2(b) and E(a)-E(b)), RPCR has unrealistically high

MSPE, therefore we skip it from comparison. BASAD shows the worst performance in

terms of MSPE among the other methods. SPCR also has larger, occasionally extremely

high, MSPE values compared to other methods. Among the other methods the box-plot

of MSPE is most stable for 3 methods, viz., RIS-RP, RIS-PCR and BCR. All the other

methods show similar performance in terms of MSPE. All of them have some large outlying

MSPE values indicating lack of robustness in the presence of outliers. In terms of ECP as

well, all the methods except RIS-RP have low coverage probabilities. BCR and RIS-PCR
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also have better ECP and width than others. All other methods have comparable average

ECP and width, although BASAD has the highest width of PI among all.

In Scheme IV (see Figures 3(a)-3(b) and F(a)-F(b)), SPCR has the worst overall per-

formance. SCAD and MCP also show poor performance in terms of MSPE compared to

others. Among the other methods LASSO has the worst performance in terms of MSPE,

followed by Ridge and PCR. MSPE of PCR frequently becomes extremely large indicating

instability. The other methods have comparable performance in terms of MSPE, although

TARP and EN have the best MSPE results. In terms of ECP, all the methods except SS-

LASSO has comparable ECP. However, RIS-RP has highest average ECP, and RIS-PCR

has average ECP nearly 40%. As in Scheme I, PCR has highest variance of ECP in Scheme

IV as well, followed by 1-SCAD. Except SPCR, SCAD and MCP, all the other methods

have reasonable average width of 50% PI.

E.3 Summary of performance of the methods with respect to

computational time

When pn is below 104 all the methods except BASAD require comparable computational

time (see Figures 4 and G). BASAD takes more than an hour for pn = 104 and the

code crashes pn ≥ 5 × 104. Computation of SSLASSO also takes prohibitive time when

pn = 5×105, and it is much higher than all other methods (except BASAD) for pn ≥ 5×104.

1-SCAD takes much longer time among the other methods. The computational time is more

than 15 minutes for pn = 105, and more than an hour for pn = 5× 105 for 1-SCAD. SCAD,

BCR, RIS-PCR and EN require comparable computational time up to pn = 105. For

pn = 5 × 105, EN requires highest time, followed by RIS-PCR. SPCR, LASSO and RIS-
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Figure G: Time required by different methods to predict y as pn grows.

RP require comparable time throughout, RIS-RP requiring maximum time and LASSO

requiring minimum time to compute among these three. The remaining 4 methods, MCP,

Ridge, PCR and RPCR have best overall performance. Among these methods, Ridge takes

highest time to compute, less than 1.5 minutes for 5× 105.

The increment of computational time of RIS-PCR is due to the computation of exact

SVD of the screened design matrix Xγ . However, this can be reduced if one uses some

approximation of the SVD.
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Table D: Mean and standard deviation (in braces) of percentage of misclassification and
area under the ROC curve for GTEx dataset.

Methods
SCAD

1-
SCAD MCP LASSO EN Ridge PCR SPCR RPCR BCR

RIS-
RP

RIS-
PCR

Misclassification
Rate (in %)

0.00
(0.00)

34.83
(0.00)

0.00
(0.00)

58.81
(22.39)

00.42
(0.10)

0.32
(0.19)

0.07
(0.14)

3.26
(3.03)

0.16
(0.19)

13.59
(2.00)

0.42
(0.18)

0.50
(0.32)

Area under
ROC curve

1.000
(.000)

0.500
(.000)

1.000
(.000)

0.570
(.168)

0.999
(.001)

0.998
(.001)

0.999
(.001)

0.966
(.033)

0.999
(.001)

0.877
(.041)

1.000
(.000)

0.996
(.002)

F An Addition to the Section 4.3 of the Paper

F.1 Analysis of GTEx and Eye datasets

GTex Dataset To understand the functional consequences of genetic variation, Consor-

tium et al. (2015) presented an analysis of RNA sequencing data from 1641 samples across

43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue

Expression (GTEx) project. We selected RNA-seq data on two normal tissues, viz., Artery-

Aorta and Artery-Tibial. The dataset contains RNA-seq expressions on 36115 (= pn) genes

and 556 (= n) samples, among which 224 are from Artery-Aorta, and 332 are from Artery-

Tibial. A training set of 100 samples from each of the tissue types is considered, and the

remaining 446 samples are used as test set. Table D provides the average and standard

deviation (sd) of percentages of misclassification, and those for the area under the ROC

curve over 100 random subsets of the same size for the competing methods.

Eye Dataset The Eye dataset consists of gene expressions for 200 (= pn) gene probes

from the microarray experiments of mammalian-eye tissue samples of 120 (= n) rats (see

Scheetz et al. (2006)). The response variable is the expression level of the TRIM32 gene.

We consider 100 sample points as the training set, and the remaining 20 samples as the
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test set. The eye dataset has continuous response, and therefore we evaluate the methods

by MSPE and empirical coverage probabilities (ECP) of 50% prediction intervals (PI) as

in Section 4.1. As variation in the expression levels of the TRIM32 gene is very small (the

range is 1.37), we multiply the MSPEs of different methods by 10 to increase the variability.

Table E provides the mean and sd of MSPEs, ECPs of 50% PIs, and widths of the PIs over

100 different training and test sets selected from the dataset, for the competing methods.

Results: For the Golub data set, both the lowest misclassification rate and the highest

area under ROC curve are achieved by RIS-RP, which is closely followed by RIS-PCR.

TARP based methods attain lower sd than other methods as well. PCR and Ridge also

yield reasonable performance with average misclassification rate lower than 9% and area

under ROC more than 0.9. RPCR, LASSO, EN, SCAD and MCP produce average misclas-

sification rates of at least 10%, with area under the ROC about 0.9. BCR possesses high

misclassification rate (about 19%), although area under ROC is more than 0.8. Finally,

either the MSPE, nor the area under ROC curve, is satisfactory for SPCR and 1-SCAD.

For the GTEx dataset, perfect classification is achieved by SCAD and MCP. These

methods along with RIS-RP also have the highest area under the ROC curve. PCR,

RPCR, EN, Ridge, RIS-RP and RIS-PCR also yield satisfactory results, having less than

0.5% average misclassification rate and more than 99% area under the ROC curve. SPCR

yield reasonable performance with an average MSPE of less than 4%. BCR attains 13.3%

average misclassification rate, with the area under the ROC curve almost 0.9. Finally

LASSO and 1-SCAD fail to show any discriminatory power with average MSPE more than

34%.

RPCR, RIS-PCR, RIS-RP, SPCR, LASSO and EN yield excellent performance in terms
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Table E: Mean and standard deviation (in braces) of mean square prediction errors, empir-
ical coverage probabilities and widths of 50% prediction interval of 13 competing methods
in Eye dataset.

Methods
SCAD

1-
SCAD MCP LASSO EN Ridge PCR SPCR RPCR BCR BASAD

SS-
LASSO

RIS-
RP

RIS-
PCR

MSPE 11.66
(4.07)

18.76
(17.15)

11.66
(4.06)

8.89
(3.37)

8.90
(3.12)

10.21
(2.70)

13.84
(3.94)

8.65
(3.08)

7.67
(3.30)

10.01
(4.04)

68.09
(26.42)

11.52
(7.81)

8.54
(3.09)

8.29
(2.99)

ECP 0.502
(.138)

0.459
(.132)

0.502
(.138)

0.574
(.144)

0.573
(.122)

0.537
(.115)

0.423
(.325)

0.508
(.123)

0.522
(.114)

0.564
(.117)

0.541
(.148)

0.467
(.143)

0.598
(.101)

0.507
(.107)

Width 1.208
(.057)

1.340
(0.018)

1.208
(.057)

3.05
(11.524)

1.41
(.189)

1.489
(.184)

1.884
(1.61)

1.202
(.079)

1.055
(.049)

1.249
(.056)

1.600
(.288)

1.069
(.042)

1.341
(.038)

1.056
(.036)

of MSPE in the eye data with an average MSPE of less than 1 (see Table E). All of these

methods show stable performance in terms of ECP. However, LASSO has much higher

width than all other methods, with exceptionally large variance. BCR, Ridge, SSLASSO,

SCAD and MCP have similar overall performance. In terms of MSPE, BCR outperforms

the other three methods. PCR and 1-SCAD are not quite as good in terms of either

measures. 1-SCAD also show high variability in MSPE results. Finally, performance of

BASAD is worst in terms of MSPE, although it yields comparable results with respect to

the other measures.

F.2 Predictive calibration in binary response datasets

Apart from measuring the misclassification rates and the area under ROC curve, we val-

idate TARP in terms of it’s ability to quantify uncertainly in real datasets with binary

responses. To this end, we partition the interval [0, 1] into ten equal sub-intervals, viz.,

[0, 0.1), [0.1, 0.2) and so on, and classify the test data points (x, y)i,new to the kth class

if predictive probability of yi,new falls in that class. Next, we consider the squared differ-

ence of the empirical proportion of yi,new = 1 among the data points classified in a given
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interval with the middle point of the interval, and consider the mean of these squared dif-

ferences (MSD) of all the intervals. If a method is well calibrated, then the MSD would

be small. The following table (Table F) shows means and standard deviations of MSDs of

the competing methods for Golub and GTEx datasets.

Table F indicates that TARP based methods, PCR, RPCR and BCR perform relatively

well compared to the others in both the datasets. Among these methods, RIS-PCR and

RIS-RP have lowest MSD for Golub and GTEx data, respectively. SCAD and MCP has

lower MSD in GTEx dataset, but they fail to perform well in Golub dataset. SPCR is

deficient in terms of MSD for both the datasets. Finally LASSO, Ridge, EN and 1-SCAD

have worst performance in terms of MSD among all the methods.

F.3 The GEUVADIS cis-eQTL dataset

We conclude this section by illustrating the TARP approach on a massive dataset. The

GEUVADIS cis-eQTL dataset (Lappalainen et al., 2013) is publicly available at http:

//www.ebi.ac.uk/Tools/geuvadis-das/. This dataset consists of messenger RNA and

microRNA on lymphoblastoid cell line (LCL) samples from 462 individuals provided by the

1000 Genomes Project along with roughly 38 million SNPs. E2F2 plays a key role in the

control of the cell cycle. Hence, as in Chen and Dunson (2017), we choose the gene E2F2

(Ensemble ID: ENSG00000000003) as the response. A total of 8.2 million (= pn) SNPs are

preselected as candidate predictors on the basis of having at least 30 non-zero expressions.

The total number of subjects included in the dataset is about 450 (= n). The genotype of

each SNP is coded as 0, 1 or 2 corresponding to the number of copies of the minor allele.

TARP is applied on this dataset. We consider four different training sample sizes, viz.,

nt = 200, 250, 300 and 350, and test sample size 100 in each case. As pn is huge, we

31

http://www.ebi.ac.uk/Tools/geuvadis-das/
http://www.ebi.ac.uk/Tools/geuvadis-das/


Table F: Mean and standard deviation (in braces) of mean square differences (MSD) of
empirical and predictive probabilities.

Methods→
Dataset ↓ SACD

1-
SCAD MCP LASSO EN Ridge PCR SPCR RPCR BCR

RIS-
RP

RIS-
PCR

Golub 4.454
(.000)

4.454
(.000)

4.469
(.032)

4.454
(.000)

4.454
(.000)

4.454
(.000)

2.589
(.012)

3.429
(.073)

2.587
(.017)

2.886
(.032)

2.611
(.045)

2.555
(.044)

GTEx 2.784
(.000)

5.000
(.000)

2.784
(.000)

4.652
(.000)

4.652
(.000)

4.652
(.000)

2.784
(.000)

3.216
(.102)

2.784
(.000)

2.873
(.007)

2.782
(.001)

2.783
(.001)

Table G: MSPE, ECP and width of PI (in order) obtained by RIS-RP and RIS-PCR for
three values of δ and different training sample sizes (nt).

RIS-RP

δ = 2 δ = 5 δ = 8

nt MSPE ECP Width MSPE ECP Width MSPE ECP Width

200 0.800 0.39 1.059 0.872 0.42 0.983 0.855 0.34 0.928

250 0.852 0.39 1.102 0.920 0.42 1.023 0.921 0.35 1.013

300 0.860 0.36 1.126 0.855 0.44 1.075 0.866 0.36 1.069

350 0.778 0.45 1.210 0.779 0.48 1.221 0.829 0.46 1.219

RIS-PCR

δ = 2 δ = 5 δ = 8

nt MSPE ECP Width MSPE ECP Width MSPE ECP Width

200 0.834 0.06 0.177 0.838 0.12 0.192 0.831 0.10 0.252

250 0.858 0.14 0.355 0.882 0.12 0.289 0.896 0.19 0.420

300 0.845 0.14 0.399 0.867 0.20 0.511 0.865 0.20 0.487

350 0.757 0.35 0.893 0.786 0.36 0.886 0.826 0.41 0.984

applied three different values of δ, namely, 2, 5 and 8, to analyze the effect of a conservative

screening. The recommended choice of δ lies within (5, 6) when pn = 8.2 × 106 and n ∈

[200, 400]. To perform SVD for RIS-PCR, we use fast.svd instead of the usual svd to cope

with the massive number of regressors. Table G provides the MSPE, the ECP of 50% PI

and width of the PI, obtained by two different variants of TARP.

Results: The MSPEs of RIS-RP and RIS-PCR are comparable for all the choices on

n. However, RIS-RP yields much better empirical coverage probabilities than RIS-PCR,
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especially when n ≤ 300. The three choices of δ yield comparable results in terms of all

the measures in general. For RIS-RP, δ = 5 results in higher ECP and for RIS-PCR higher

ECP is obtained using δ = 8. Moreover, the choice δ = 8 makes both the procedures

much faster compared to other choices of δ. When the training sample is 350, δ = 2, 5

and 8 select about 290800, 12600 and 7960 variables, respectively, on an average in the

screening stage out of 8.2×106 variables. In view of the results in this massive dimensional

dataset, it seems reasonable to use a higher value of δ for filtering out noisy regressors, and

computational convenience.

G Mathematical Details

Proof of Lemma 3

Proof of part a. Consider the conditional expectation and variance of ‖Rγx‖2 given (γ,x)

as follows: E (‖Rγx‖2|γ) = mn‖xγ‖2

var
(
‖Rγx‖2|γ

)
= mn‖xγ‖4

[
1 +

{
(2ψ)−1 − 2

} pγ∑
j=1

x4
γ,j/‖xγ‖4

]
,

where xγ includes the regressors j for which γj = 1. The details is given in the proof of

Result 1 below. Next consider the conditional expectation of ‖Rγx‖2 given x is given by

EγE
(
‖Rγx‖2|γ

)
= mnEγ

(∑
j

x2
jI(γj = 1)

)
= c mn

∑
j

x2
j |rxj ,yn|δ, (G.1)

where c > 0 is the proportionality constant. Also the conditional variance of ‖Rγx‖2 given

x is given by varγ {E (‖Rγx‖2|γ)}+Eγ {var (‖Rγx‖2|γ)} . Considering both the terms of
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the above expression separately we get

varγ
{
E
(
‖Rγx‖2|γ

)}
= varγ

(
mn

∑
j

x2
jI(γj = 1)

)
= c m2

n

∑
j

x4
j |rxj ,yn|δ

(
1− c|rxj ,yn|δ

)
≤ c m2

npn, (G.2)

as given x, γjs are independent, each |xj| ≤ 1, and qj = c|rj|δ < 1. Again

Eγ

{
var

(
‖Rγx‖2|γ

)}
= Eγ

[
mn‖xγ‖4

{
1 +

(
1

2ψ
− 2

)∑pγ
j=1 x

4
γ,j

‖xγ‖4

}]
≤ c mnEγ [‖xγ‖4] ≤ c mnEγ [‖x‖4] ≤ c mn p

2
n (G.3)

for some constant c, as
∑pγ

j=1 x
4
γ,j < ‖xγ‖4.

Therefore, from (G.1), (G.2) and (G.3) it can be shown that the expectation of ‖Rγx‖2/(mnpn)

converges to cαδ, and variance of the same converges to 0, as pn →∞ and mn →∞.

Proof of part b. Observing that Eγ (‖xγ‖2) = c
∑

j x
2
j |rxj ,yn|δ and

varγ
(
‖xγ‖2

)
= c

∑
j

x4
j |rxj ,yn|δ

(
1− c|rxj ,yn|δ

)
≤ pn.

Therefore it can be shown that the expectation of ‖xγ‖2/pn converges to the limit cαδ, and

variance of the same converges to 0.

Proof of Lemma 5

Proof of the statement of Lemma 3 (a). Recall Result 1. Under assumption (A1) we have

1

mnpn
EγE (‖Rγx‖)→ αδ,
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given x for αδ as in (A1). To see that the variance var (‖Rγx‖) = o(m2
np

2
n), observe that

varγ
{
E
(
‖Rγx‖2|γ

)}
= c m2

n

∑
j

x4
j |rxj ,yn|δ

(
1− c|rxj ,yn|δ

)
= o

(
m2
np

2
n

)
, (G.4)

almost surely. To verify the last statement note that by Serfling (1980, Theorem 1.8.E),∑
i x

4
i /pn →

∑
j E
(
x4
j

)
/pn almost surely if cov

(
x4
i , x

4
j

)
≤ ρ∗|i−j|

√
var (x4

i ) var
(
x4
j

)
with∑

j ρ
∗
j < ∞, and

∑
j var

(
x4
j

)
(log j)2/j2 < ∞. Here E

(
x4
j

)
= 3, var

(
x4
j

)
= 96 for all j,

and cov
(
x4
i , x

4
j

)
= 24σ2

i,j

(
σ2
i,j + 3

)
. Thus it is easy to see that strong law of large numbers

(SLLN) holds for
∑

j x
4
j/pn by assumption (B1), and therefore (G.4) holds almost surely.

Similarly, Eγ {var (‖Rγx‖2|γ)} ≤ c mnEγ [‖xγ‖4] ≤ c mn‖x‖4 ≤ o (m2
np

2
n) almost

surely. To prove the last statement, we argue as before that ‖x‖2/pn → 1 almost surely.

Here E(x2
j) = 1, var(x2

j) = 2 for all j, and cov(x2
i , x

2
j) = 2σ2

i,j. Therefore by (B1) SLLN

holds for ‖x‖2/pn, and therefore ‖x‖4/p2
n is bounded almost surely. As mn →∞ the above

statement holds. Therefore the statement of Lemma 3(a) holds.

Proof of the statement of Lemma 3 b. Observe that Eγ (‖xγ‖2) = c
∑

j x
2
j |rxj ,yn|δ and

varγ
(
‖xγ‖2

)
= c

∑
j

x4
j |rxj ,yn|δ

(
1− c|rxj ,yn|δ

)
≤ c

∑
j

x4
j .

Thus the expectation of ‖xγ‖2/pn converges to the limit cαδ, and variance of the same

converges to 0 almost surely as pn →∞. This completes the proof.

Result 1. Consider a random matrix Rγ which depends on another random vector γ

distributed as in (2). Then the conditional distribution of Rγ satisfies the following:

a. E (‖Rγx‖2|γ) = mn‖xγ‖2, and
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b. var (‖Rγx‖2|γ) = mn‖xγ‖4
[
1 + {(2ψ)−1 − 2}

∑pγ
j=1 x

4
γ,j/‖xγ‖4

]
.

Proof of part a. Observe that

‖Rγx‖2 =

∥∥∥∥∥
(∑

j

r1,jγjxj,
∑
j

r2,jγjxj, . . . ,
∑
j

rmn,jγjxj

)′∥∥∥∥∥
2

=

(∑
j

r1,jγjxj

)2

+

(∑
j

r2,jγjxj

)2

+ . . .+

(∑
j

rmn,jγjxj

)2

. (G.5)

Now E
(∑

j ri,jγjxj

)2

= E
{∑

j r
2
i,jγjx

2
j +

∑
j 6=j′ ri,jri,j′γjγj′xjxj′

}
=
∑

j γjx
2
j = ‖xγ‖2, as

E(r2
i,j) = 1 and E(ri,jri,j′) = 0 as i = 1, 2, . . . ,mn, j, j′ = 1, 2, . . . , pn, and j 6= j′.

Proof of part b. From (G.5) we have

var
(
‖Rγx‖2|γ

)
= var

∑
i

(∑
j

ri,jγjxj

)2
 =

∑
i

var

(∑
j

ri,jγjxj

)2

+
∑
i 6=i′

cov


(∑

j

ri,jγjxj

)2

,

(∑
j

ri′,jγjxj

)2
 . (G.6)

We will consider each term of (G.6) one by one. Consider the first term. Note that

var

(∑
j

ri,jγjxj

)2

= var

{∑
j

r2
i,jγjx

2
j +

∑
j 6=k

ri,jri,j′γjγkxjxj′

}

= var

{∑
j

r2
i,jγjx

2
j

}
+ var

{∑
j 6=j′

ri,jri,j′γjγkxjxj′

}

+cov

{∑
j

r2
i,jγjx

2
j ,
∑
j 6=j′

ri,jri,j′γjγj′xjxj′

}
.
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Consider the first term in (G.6).

var

{∑
j

r2
i,jγjx

2
j

}
=

∑
j

var
(
r2
i,jγjx

2
j

)
+
∑
j 6=j′

cov
(
r2
i,jγjx

2
j , r

2
i,j′γj′x

2
j′

)
=

∑
j

γjx
4
jvar

(
r2
i,j

)
+
∑
j 6=j′

γjx
2
jγj′x

2
j′cov

(
r2
i,j, r

2
i,j′

)
=

∑
j

γjx
4
j

{
E
(
r4
i,j

)
− E2

(
r2
i,j

)}
=

(
1

2ψ
− 1

)∑
j

γjx
4
j ,

as E
(
r4
i,j

)
= (2ψ)−1. Again,

var

{∑
j 6=j′

ri,jri,j′γjγkxjxj′

}
= E

(∑
j 6=j′

ri,jri,j′γjγkxjxj′

)2

=
∑
j 6=j′

γjγkx
2
jx

2
j′E
(
r2
i,jr

2
i,j′

)
+

∑
(j, j′) 6= (k, k′)
j 6= j′, k 6= k′

γjγkγj′γk′x
2
jx

2
j′x

2
kx

2
k′E (ri,jri,j′ri,kri,k′) =

∑
j 6=j′

γjγkx
2
jx

2
j′

as the other term will be zero. Next

cov

{∑
j

r2
i,jγjx

2
j ,
∑
j 6=j′

ri,jri,j′γjγj′xjxj′

}
=
∑
j

∑
k 6=k′

γjx
2
j , γkγk′xkxk′cov

(
r2
i,j, ri,kri,k′

)
= 0.

Therefore the first term in (G.6) is

∑
i

var

(∑
j

ri,jγjxj

)2

=

(
1

2ψ
− 2

)∑
j

γjx
4
j +

(∑
j

γjx
2
j

)2

. (G.7)

The last term in (G.6), cov

{(∑
j ri,jγjxj

)2

,
(∑

j ri′,jγjxj

)2
}

= 0. This is because

the
(∑

j ri,jγjxj

)2

depends on the ith row of the random matrix R for a fixed i, and(∑
j ri′,jγjxj

)2

depends on a fixed i′ 6= i. Therefore these two terms are independent,
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hence uncorrelated. Combining the above result and (G.7) the proof follows.
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