
1 Methods

1.1 Weighted log-rank statistics

Suppose there are n subjects in the the study, each of which has an event time Ti and a censoring time
Ci. We assume that the event time has a survival function Sk with density fk and hazard function λk
and the censoring time follows a survival function Hk, provided that the subject was assigned to group k
(i.e. the group indicator Zi = k), where k = 1 denotes the treatment group and k = 0 the control group.
As usual, we assume that Ti and Ci are independent given Zi, i = 1, . . . , n. Statistical inference will be
based on the observed data {Yi = min(Ti, Ci), δi = I(Yi = Ti), Zi, i = 1, . . . , n}.

We often want to test the null hypothesis H0(τ) : λ1(s) = λ0(s) for all s ≤ τ , which is equivalent to
test S1(s) = S0(s) for all s ≤ τ .

To test the null hypothesis, weighted log-rank statistic is often used, which takes the form

LW (τ) = n−1
n∑
i=1

∫ τ

0
W (s)

{
Zi −

Γ1(s)

Γ(s)

}
dNi(s), (1)

where, for any s, Γk(s) = n−1
∑n

i=1 I(Yi ≥ s, Zi = k), k = 0, 1, Γ(s) = Γ1(s) + Γ0(s), Ni(s) = I(Ti ≤
s, δi = 1), i = 1, . . . , n. Different types of weighted log-rank statistics can be specified based on the
choice of the possibly data-dependent weight function W (s).

LR. If W (s) = 1, LW (τ) is the (un-weighted) log-rank test statistic.

Gehan. If W (s) = Γ(s), LW (τ) is the Gehan test statistic.

TW. If W (s) = Γ1/2(s), LW (τ) is the Tarone-Ware test statistic.

FH. Let Ŝ be the Kaplan-Meier estimator of the survival function in the pooled sample, i.e.

Ŝ(t) =
∏
s≤t

{
1− dN(s)

Γ(s)

}
,

where N(s) = n−1
∑n

i=1Ni(s). If W (s) = [Ŝ(s−)]ρ[1 − Ŝ(s−)]γ (Note, Ŝ(t−) is Ŝ evaluated at the
time point right before t.) for ρ ≥ 0, γ ≥ 0, then LW (τ) is the Fleming-Harrington FH(ρ, γ) test
statistic (Fleming and Harrington, 1981).

PP. A slightly modified version of the Kaplan-Meier estimator S̃ is defined as

S̃(t) =
∏
s≤t

{
1− dN(s)

Γ(s) + 1/n

}
.

If W (s) = S̃(s), then LW (τ) is the Peto-Peto test statistic, and a modified version of Peto-Peto test
statistic is with W (s) = S̃(s)Γ(s)/{Γ(s) + 1/n}.

BFY. To handle rare event, Buyske, Fagerstrom and Ying (2000) proposed to modify the Fleming-
Harrington Gρ,0 test statistic by using a weight W (s) = [Ŝ(s−)− Ŝ(τ−)]ρ.

YP. Yang and Prentice (2005) proposed a two-parameter model for the hazard ratio

λ1(s)

λ0(s)
=

θ1θ2

θ1 + (θ2 − θ1)S0(s)
, s ≤ τ,
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where θ1 and θ2 are the so-called short-term and long-term hazard ratios respectively. With this
model, Yang and Prentice (2010) further proposed to use weighted functions W1 and W2, where
W1 = 1/W2 and W2(s) is the estimated hazard ratios with θ1,θ2 and S0(t) being consistently esti-
mated. Even though Yang and Prentice (2010) showed that the resulting weighted log-rank tests
are valid (asymptotically), some simulation shows that it may have inflated type-1 error (Chauvel
and O’Quigley, 2014).

Under H0(τ) and suitable regularity conditions,
√
nLW (τ) converges weakly to a normal distribution

with mean zero and variance VW (τ). The variance can be consistently estimated by

VW (τ) =

∫ τ

0
W 2(s)

Γ1(s)Γ0(s)

Γ2(s)
dN(s).

The weighted log-rank test can be generalized to perform parameter estimation for the overall average
effect size. In this regard, we may write the score function as

LW (β, τ) = n−1
n∑
i=1

∫ τ

0
W (s)

{
Zi −

Γ1(β, s)

Γ(β, s)

}
dNi(s), (2)

where, for any s, Γk(β, s) = n−1
∑n

i=1 exp{βZi}I(Yi ≥ s, Zi = k), k = 0, 1, Γ(β, s) = Γ1(β, s) + Γ0(β, s).
Apparently, LW (0, τ) = LW (τ). Let β̂W (τ) be the solution of LW (β, τ) = 0. Under suitable regularity con-
ditions,

√
n{β̂W (τ)− βW (τ)} converges weakly to a normal distribution with mean zero and a sandwich-

form variance U−1
W {βW (τ), τ}VW {βW (τ), τ}U−1

W {βW (τ), τ}. Here βW (τ) is the solution of LW (β, τ) = 0,
where

LW (β, τ) = n−1
n∑
i=1

∫ τ

0
w(s)

[
E{ZidNi(s)} −

E{Γ1(β, s)}
E{Γ(β, s)}

dE{Ni(s)}
]
,

w(s) is the limit of W (s). For any fixed β, the variance UW (β, τ) can be consistently estimated by

UW (β, τ) =

∫ τ

0
W (s)

Γ1(β, s)Γ0(β, s)

Γ2(β, s)
dN(s),

and the variance VW (β, τ) = var{
√
nLW (β, τ)} can be consistently estimated by the Cox-model-based

estimator (Sasieni, 1993a)

UW 2(β, τ) =

∫ τ

0
W 2(s)

Γ1(β, s)Γ0(β, s)

Γ2(β, s)
dN(s).

Alternatively, VW (β, τ) can be estimated using a robust approach (Lin and Wei, 1989; Sasieni, 1993b) as

VW (β, τ) = n−1
n∑
i=1

{
A1i(β, τ)−A2i(β, τ)

}2
,

where

A1i(β, τ) =

∫ τ

0
W (s)

[
Zi −

Γ1(β, s)

Γ(β, s)

]
dNi(s), (3)

A2i(β, τ) =

∫ τ

0
W (s)

[
Zi −

Γ1(β, s)

Γ(β, s)

]
I(Yi ≥ s) exp{βZi}

dN(s)

Γ(β, s)
. (4)
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Recently, in order to quantify the non-constant hazard ratio across time, Lin and Leon (2017) pro-
posed to use the following model for testing and estimation

λ1(s) = exp{βΦ(s)}λ0(s), s ≤ τ, (5)

where Φ(s) is a known or pre-specified function such that it is bounded in [0, τ ] and the maximum point
corresponds to where the maximum treatment effect can be obtained and anywhere else denotes the
places with reduced treatment effects. This is essentially a time-dependent Cox model with the time-
dependent covariate at time s equal to ZΦ(s). Based on the model, a testing and estimating procedure
can be developed. Specifically, let β̃Φ(τ) be the solution of QΦ(β, τ) = 0, where

QΦ(β, τ) = n−1
n∑
i=1

∫ τ

0

{
ZiΦ(s)− Γ̃1(Φ, β, s)

Γ̃0(Φ, β, s)

}
dNi(s), (6)

and, for any Φ, β and s, Γ̃q(Φ, β, s) = n−1
∑n

i=1{ZiΦ(s)}q exp{βΦ(s)Zi}I(Yi ≥ s), q = 0, 1, 2. Lin and
Leon (2017) showed that

QΦ(0, τ) = n−1
n∑
i=1

∫ τ

0
Φ(s)

{
Zi −

Γ1(s)

Γ(s)

}
dNi(s),

which is a weighted log-rank statistic with weight W (s) = Φ(s). Note that this weight is not data-
dependent. Under suitable regularity conditions,

√
n{β̃Φ(τ) − βΦ(τ)} converges weakly to a normal

distribution with mean zero and a sandwich-form variance

Ũ−1
Φ {βΦ(τ), τ}ṼΦ{βΦ(τ), τ}Ũ−1

Φ {βΦ(τ), τ}.

Here βΦ(τ) is the solution of QΦ(β, τ) = 0, where

QΦ(β, τ) = n−1
n∑
i=1

∫ τ

0

[
E{ZiΦ(s)dNi(s)} −

E{Γ̃1(Φ, β, s)}
E{Γ̃0(Φ, β, s)}

dE{Ni(s)}
]
.

For any fixed β, the variance ŨΦ(β, τ) can be consistently estimated by

ŨΦ(β, τ) =

∫ τ

0

[ Γ̃2(Φ, β, s)

Γ̃0(Φ, β, s)
− Γ̃2

1(Φ, β, s)

Γ̃2
0(Φ, β, s)

]
dN(s)

and the variance ṼΦ(β, τ) = var{
√
nQΦ(β, τ)}, which, based on the model (5), can be consistently

estimated by ŨΦ(β, τ). Alternatively, a robust estimator of ṼΦ(β, τ) is

ṼΦ(β, τ) = n−1
n∑
i=1

{
B1i(β, τ)− B2i(β, τ)

}2
,

where

B1i(β, τ) =

∫ τ

0

[
ZiΦ(s)− Γ̃1(Φ, β, s)

Γ̃0(Φ, β, s)

]
dNi(s), (7)

B2i(β, τ) =

∫ τ

0

[
ZiΦ(s)− Γ̃1(Φ, β, s)

Γ̃0(Φ, β, s)

]
I(Yi ≥ s) exp{βΦ(s)Zi}

dN(s)

Γ̃0(Φ, β, s)
. (8)

We have a few remarks on the above methods.
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R1. The differences A1i{β̂W (τ), τ} − A2i{β̂W (τ), τ} and B1i{β̃Φ(τ), τ} − B2i{β̃Φ(τ), τ}, i = 1, . . . , n, are
the score residuals in the corresponding models, which are in the standard outputs of many existing
software. We can therefore use them to provide an easy estimation of the asymptotic variances.

R2. The cut-point τ can be∞, which is the case for the log-rank, Gehan and Tarone-Ware statistics. We
use a cut-point τ in the general case to avoid a lengthy discussion of the tails. In the general case,
a usual requirement for τ is to have E{Γ(τ)} > 0.

1.2 Kaplan-Meier based statistics

Let Ŝk be the Kaplan-Meier estimator of the survival function in group k = 0, 1. Another class of non-
parametric tests, called the weighted Kaplan-Meier tests (Pepe and Fleming, 1989, 1991), can be ex-
pressed as

KΨ(τ) =

∫ τ

0
{Ŝ1(s)− Ŝ0(s)}dΨ(s), (9)

where Ψ is a known but possibly data-dependent function of bounded variation in [0, τ ]. If Ψ(t) = t, then
the test statistic is the difference of the restricted mean survival times (RMSTs). If Ψ(t) = I(t ≥ τ) then
the test statistic reduces to Ŝ1(τ)− Ŝ0(τ). If Ψ(t) =

∫ t
0 W (s)ds, the test statistic is the weighted difference

of Kaplan-Meier curves. Pepe and Fleming (1989) used the weight

W (s) =
Ĥ1(s−)Ĥ0(s−)

p1Ĥ1(s−) + p0Ĥ0(s−)

where Ĥk is the Kaplan-Meier estimate of the survival function Hk for the censoring time, pk = nk/n
and nk is the sample size in group k, k = 0, 1. This test is based on a linear combination of weighted
differences of the two Kaplan-Meier curves over time and is a natural tool to assess the difference of the
two survival functions directly by using an inverse probability censoring function to improve stability in the
tails. Uno et al. (2015) proposed to use a data-adaptive weight function W (s) that is proportional to the
difference Ŝ1(s) − Ŝ0(s). Because the weight is data-driven, the improvement in power over Pepe and
Flemings weight function is universal and robust.

Let Ψ0(t) be the limit of Ψ(t) and

KΨ0(τ) =

∫ τ

0
{S1(s)− S0(s)}dΨ0(s),

then under H0(τ) and some regularity conditions,
√
n{KΨ(τ) − KΨ0(τ)} converges in distribution to a

mean-zero normal distribution with the variance σ2
1(τ) + σ2

0(τ). For k = 0, 1, σ2
k(τ) can be consistently

estimated by

σ̂2
k(τ) =

∫ τ

0

{∫ τ

s
Ŝk(u)dΨ(u)

}2
dNk(s)

Γk(s){Γk(s)−∆Nk(s)}
,

where Nk(s) = n−1
∑n

i=1 I(Ti ≤ s, δi = 1, Zi = k).
The RMST has attracted a lot of interests in recent years due to its simple and intuitive interpretation

as the treatment effect measure. This effect measure does not reply on the assumptions such as the
proportional hazards assumption. Specifically, let Rk(τ) =

∫ τ
0 Ŝk(s)ds be the estimator of the RMST

4



Rk(τ) = E{min(T, τ) | Z = k} =
∫ τ

0 Sk(s)ds in group k = 0, 1. Similar to the Kaplan-Meier curves, one
can visually examine the difference between the two RMST curves Rk(τ) at each cut-points τ (Zhao
et al. 2016). If any particular cut-point τ is of interest, one may consider the difference of the RMSTs
RD(τ) = R1(τ) − R0(τ), the ratio of the RMSTs RR(τ) = R1(τ)/R0(τ), and the ratio of time losses
RL(τ) = {τ − R1(τ)}/{τ − R0(τ)}. The asymptotic variances of the ratios can be derived using the
δ-method.

1.3 Combination tests

We have discussed two classes of test statistics: weighted log-rank tests and weighted Kaplan-Meier
tests. A new set of test statistics may be derived by combining some members within a class and/or
across the classes. This is potentially useful in the presence of non-proportional hazards. For example,
the Harrington-Fleming G0,1 will put more weight for the later time point, leading to a more powerful test
when there is a late separation in the hazards. In the meanwhile, the log-rank test G0,0 is also useful
in case that the proportional hazards assumption holds. It is therefore desired to combine the two tests
together. A way to do so is the so-called maximum combination tests which takes the form

Zmax = max
1≤j≤J

{ZWj}

where Wj is a weight function and the ZWj is the corresponding standardized weighted log-rank statistic,
j = 1, . . . , J . Note that we have reverse the sign of the test statistics so that a larger value means a
bigger treatment effect. A one-sided size α test can be constructed as Pr(Zmax > cα) = α.

For example, Lee (2007) proposed a combination that can be sensitive to PH (FH(0, 0)), late-separation
(FH(0, 2)), early-separation (FH(2, 0)) and middle-separation (FH(2, 2)).

We consider the combination of FH(0, 0), FH(0, 1), FH(1, 1), FH(1, 0) as suggested by Karrison
(2016).

To conduct inference on Zmax, i.e. compute the critical value cα, there are two methods that can be
used. The first method is based on the computation of the correlation coefficients of the components of
the combination. In fact, for any two weighted log-rank statistics LW1(τ) and LW2(τ), under H0(τ) and
suitable regularity conditions, the covariance of

√
nLW1(τ) and

√
nLW2(τ) is CW1,W2(τ), which can be

consistently estimated by

CW1,W2(τ) =

∫ τ

0
W1(s)W2(s)

Γ1(s)Γ0(s)

Γ2(s)
dN(s).

As a result, the correlation coefficient between the two normalized random variables ZW1 and ZW2 is
consistently estimated as

CW1,W2(τ)√
VW1(τ)VW2(τ)

.

Then the distribution of Zmax can be derived as the maximum of multivariate normal distribution with
means zero, variances 1 and the correlation matrix defined above.

The other method is to use the “synthetic martingale” resampling technique proposed by Korosak
and Lin (1999). To do so, suppose we want to conduct nr times of resampling. For each r = 1, . . . , nr,
generate a sequence of iid N(0, 1) random variables (ξ1, . . . , ξn) such that they are independent of the
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observed data. Then, for each of the J weighted log-rank test statistics, we calculate

L(r)
Wj

(τ) = n−1
n∑
i=1

∫ τ

0
W (s)

{
Zi −

Γ1(s)

Γ(s)

}
ξidNi(s),

Z
(r)
Wj

=
−
√
nL(r)

Wj
(τ)√

VWj (τ)
, Z(r)

max = max
1≤j≤J

{Z(r)
Wj
}.

Then the distribution of Zmax can be approximated by the sample distribution of {Z(r)
max : r = 1, . . . , nr}.

When the combination of weighted log-rank tests is used, the treatment effect estimate is taken as the
estimated hazard ratio obtained from the weighted Cox model corresponding to the weighted log-rank
test with the smallest p-value.

Another type of combination tests can combine the tests within the weighted Kaplan-Meier class, for
example, one may combine the difference of restricted mean survival times

∫ τ
0 {Ŝ1(s)− Ŝ0(s)}ds with the

landmark analysis Ŝ1(τ−)− Ŝ0(τ−).
Combination tests can be constructed by combining tests from different classes. For example, one

may want to combine the log-rank statistic with the difference of the restricted mean survival times.
The distribution of these combination tests can be derived using large sample theory. In practice, to

account for small to moderate sample sizes, resampling methods such as bootstrapping are often used
to approximate the distribution of the combination test statistics.
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