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Appendix A: Proofs of Theorems 3.1, 3.2 and 4.1

A.1 Proof of Theorem 3.1

The constrained estimator is defined by

β̂T1 = arg min
β∈Λ

(β − β̂OLS)′(X ′X/T1)(β − β̂OLS). (A.1)

Thus, β̂T1 is the projection of β̂OLS onto Λ with respect to the norm ‖a‖ =
√
a′(X ′X/T1)a which

is random, rendering the theory in Fang and Santos (2018) not directly applicable. However,

since X ′X/T1
p→ E(XtX

′
t), we show that one can replace X ′X/T1 by E(XtX

′
t) without affecting

the asymptotic results. Define the following “infeasible estimator” (it is infeasible because

E(X ′tXt) is unknown in practice):

β̃T1 = arg min
β∈Λ

(β − β̂OLS)′E(XtX
′
t)(β − β̂OLS) = ΠΛβ̂OLS, (A.2)
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where ΠΛ is the projection onto Λ with respect to the norm ‖a‖ =
√
a′E(XtX ′t)a, i.e., ΠΛβ =

arg minλ∈Λ(β − λ)′E(XtX
′
t)(β − λ). By Lemma 4.6 of Zarantonello (1971) and Proposition 4.1

of Fang and Santos (2018), we know that

√
T1(β̃T1 − β0) =

√
T1(ΠΛβ̂OLS − ΠΛβ0)

=
√
T1ΠTΛ,β0

(β̂OLS − β0) + op(1)

= ΠTΛ,β0

√
T1(β̂OLS − β0) + op(1)

d→ ΠTΛ,β0
Z1, (A.3)

where the first equality follows from β̃T1 = ΠΛβ̂OLS and β0 ∈ Λ so that β0 = ΠΛβ0.

We give some explanations of the above derivations. Hilbert Space projection onto convex

sets was studied by Zarantonello (1971) and extended to general econometric model settings by

Fang and Santos (2018). The projection operator ΠΛ: RN → Λ (Λ is a convex subset in RN)

can be viewed as a functional mapping. Zarantonello (1971) showed that ΠΛ is (Hadamard) di-

rectional differentiable, and its directional derivative at β0 ∈ Λ is ΠTΛ,β0
, which is the projection

onto the tangent cone of Λ at β0. Hence, the second equality of (A.3) follows from a functional

Taylor expansion, the third equality follows from the fact that TΛ,β0 is positive homogenous of

degree one, i.e., for α ≥ 0, αTΛ,β0 θ = TΛ,β0 α θ for all θ ∈ RN , and the last line follows from
√
T1(β̂OLS −β0)

d→ Z1 and the continuous mapping theorem because projection is a continuous

mapping.

We can see that the term ‘tangent cone’ is analogous to referring to the derivative of a

function at a given point as a ‘tangent line’ of the function (at the given point). Now, the

functional derivative of the mapping ΠΛ is a projection onto the cone ΠTΛ,β0
(rather than a

line). Therefore, it is called the ‘tangent cone’ of Λ at β0 and is denoted as TΛ,β0 . For readers’

convenience, we give the formal definition of tangent cone of Λ at θ ∈ RN below:

TΛ,θ = ∪α≥0α{Λ− ΠΛθ}, (A.4)

where for any set A ∈ RN , A is the closure of A (A is the smallest closed set that contains A).

Using the above definition one can easily check that for our synthetic control estimation

problem, the tangent cone of Λ at β0 is the same as the asymptotic range of
√
T1(β̂T1 − β0).

2



In Lemma C.1 of Appendix C, we show that

β̂T1 = β̃T1 + op(T
−1/2
1 ) = ΠΛβ̂OLS + op(T

−1/2
1 ). (A.5)

Theorem 3.1 follows from (A.3) and (A.5).

A.2 Proof of Theorem 3.2

First, we write Â =
√
T2(∆̂1 −∆1) defined in (4.2) as Â = Â1 + Â2, where

Â1 = −

 1

T2

T∑
t=T1+1

x′t

√T2

T1

√
T1(β̂T1 − β0), Â2 =

1√
T2

T∑
t=T1+1

v1t. (A.6)

We know that Â2
d→ Z2 by assumption 2, where Z2 is distributed as N(0,Σv). By Theorem

3.1 and assumption 1, we have Â1
d→ A1 = −φE(x′t)ΠTΛ,β0

Z1, where φ = limT1,T2→∞

√
T2/T1

and Z1 is the weak limit of
√
T1(β̂OLS − β0), i.e.,

√
T1(β̂OLS − β0)

d→ Z1. Also, by Lemma A.1

and Theorem 3.2 of Li and Bell (2017), we know that Z1 and Z2 are asymptotically independent

with each other. This implies that A1 = −φE(xt)ΠTΛ,β0
Z1 is asymptotically independent of Z2.

Hence, we have Â
d→ −φE(x′t)ΠTΛ,β0

Z1 + Z2.

A.3 Proof of Theorem 4.1

The proof that Â∗ can be used to approximate the distribution of Â consists of the following

arguments. First, we show that one can consistently estimate Σv by Σ̂v = T−1
2

∑T
t=T1+1 v̂

2
1t

(when v1t is serially uncorrelated), where v̂1t = ∆̂1t− ∆̂1. From ∆̂1t = y1t− ŷ0
1t = x′t(β0− β̂T1) +

∆1t + u1t = ∆1t + u1t +Op(T
−1/2
1 ) and ∆̂1 = x̄′(β0 − β̂T1) + ∆̄1 + ū1 = ∆1 +Op(T

−1/2
1 + T

−1/2
2 ),

we have Σ̂v = 1
T2

∑T
t=T1+1(∆1t + u1t −∆1)2 +Op(T

−1/2
1 + T

−1/2
2 ) = Σv +Op(T

−1/2
1 + T

−1/2
2 ).

Next, it follows that T
−1/2
2

∑T
t=T1+1 v

∗
1t

d∼ T
−1/2
2

∑T
t=T1+1 v1t

d→ Z2, where A
d∼ B means that

A and B have the same asymptotic distribution. By the conditions that m → ∞, m/T1 → 0

as T1 → ∞ and the weak convergence result of Theorem 3.1, we know that
√
m(β̂∗m − β̂T1)

d∼
√
T1(β̂T1−β0) by Theorem 2.2.1 of Politis, Romano, and Wolf (1999). It follows that Â∗ defined

in (4.3) and Â defined in (4.2) have the same asymptotic distribution.
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Appendix B: Uniqueness of the SC (MSC) estimator

B.1 A projection of the unconstrained estimator

We write the regression model in matrix form: Y = Xβ0 + u, where Y and u are both T1 × 1

vectors, X is of dimension T1 × N and has a full column rank, and β0 is of dimension N × 1.

We assume that the true parameter β0 ∈ Λ, where Λ is a closed and convex set (Λ = ΛSC or

ΛMSC in our applications). We denote the constrained least squares estimator as β̂T1 , i.e.,

β̂T1 = arg min
β∈Λ

(Y −Xβ)
′
(Y −Xβ) ≡ arg min

β∈Λ
‖Y −Xβ‖2,

where ||A||2 = A
′
A for a vector A.

We denote the unconstrained least squares estimator as β̂OLS = argminβ∈RN (Y −Xβ)
′
(Y −

Xβ), i.e., β̂OLS = (X ′X)−1X ′Y . By the definition of β̂OLS, we may write Y = Xβ̂OLS + û,

where û = Y −Xβ̂OLS. It follows that

f(β)
def
= ‖Y −Xβ‖2

= ‖X(β̂OLS − β) + û‖2

= ‖X(β̂OLS − β)‖2 + ‖û‖2

≡ (β̂OLS − β)
′
X

′
X(β̂OLS − β) + ‖û‖2, (B.1)

where we dropped a cross term in the third equality because û
′
X = 0 (least squares residual

û is orthogonal to X). Since ‖û‖2 is unrelated to β, the minimizer of f(β) is identical to the

minimizer of (β̂OLS − β)
′
X

′
X(β̂OLS − β). Thus, we have

β̂T1 = arg min
β∈Λ

(β̂OLS − β)
′
X

′
X(β̂OLS − β)

= arg min
β∈Λ

(β̂OLS − β)
′
(X

′
X/T1)(β̂OLS − β)

= arg min
β∈Λ
||β̂OLS − β||2X ,

where the second equality follows since T1 > 0.
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B.2 The uniqueness of the (modified) synthetic control estimator

We first give the definition of a strictly convex function. A function f is said to be strictly

convex if f(αx+ (1−α)y)) < αf(x) + (1−α)f(y) for all 0 < α < 1 and for all x 6= y, x, y ∈ D,

where D is the domain of f .

Under the assumption that the data matrix XT1×N has a full column rank, we show below

that f(β)
def
=

∑T1
t=1(y1t − x′tβ)2 is a strictly convex function. Since the objective function is

a convex function and the constrained domains for β, ΛSC and ΛMSC , are convex sets, then

the constrained minimization problem has a unique (global) minimizer. To see this, we argue

by contradiction. Suppose that we have two local minimizers z1 6= z2. Then for any convex

combination z3 = αz1 + (1 − α)z2, we have f(z3) < αf(z1) + (1 − α)f(z2) for all α ∈ (0, 1).

This contradicts the fact that z1 and z2 are two minimizers. Hence, we must have z1 = z2 and

the minimizer is unique.

It remains to show that f(β) = (β̂OLS − β)′X ′X(β̂OLS − β) is a strictly convex function

(we ignore the irrelevant constant term ‖û‖2 in f(β) defined in (B.1)). We first establish an

intermediate result. For β, γ ∈ RN with β 6= γ, because A ≡ X
′
X is positive definite, we have

0 < (β − γ)
′
A(β − γ)

= ((β − β̂OLS)− (γ − β̂OLS))
′
A((β − β̂OLS)− (γ − β̂OLS))

= (β − β̂OLS)′A(β − β̂OLS) + (γ − β̂OLS)′A(γ − β̂OLS)− 2(β − β̂OLS)′A(γ − β̂OLS)

= f(β) + f(γ)− 2(β̂OLS − β)
′
A(β̂OLS − γ). (B.2)

Then for all α ∈ (0, 1), we have

f(αβ + (1− α)γ) = (β̂OLS − (αβ + (1− α)γ))
′
A(β̂OLS − (αβ + (1− α)γ))

= (α(β̂OLS − β) + (1− α)(β̂OLS − γ))
′
A(α(β̂OLS − β) + (1− α)(β̂OLS − γ))

= α2(β̂OLS − β)
′
A(β̂OLS − β) + (1− α)2(β̂OLS − γ)

′
A(β̂OLS − γ)

+2α(1− α)(β̂OLS − β)
′
A(β̂OLS − γ)

= α2f(β) + (1− α)2f(γ) + 2α(1− α)(β̂OLS − β)
′
A(β̂OLS − γ)

< α2f(β) + (1− α)2f(γ) + α(1− α)[f(β) + f(γ)]

= αf(β) + (1− α)f(γ), (B.3)
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where the inequality follows from (B.2). Eq. (B.3) shows that f(·) is a strictly convex function.

Appendix C: Three useful lemmas

In this supplementary appendix, we prove two lemmas that are used to prove Theorem 3.1.

Lemma C.1 Under the same conditions as in Theorem 3.1, we have

β̂T1 = β̃T1 + op(T
−1/2
1 ) = ΠΛβ̂OLS + op(T

−1/2
1 ).

Proof: For any fixed ε > 0, suppose that
√
T1‖β̂T1 − β̃T1‖ > ε. Then we have

√
T1(β̂T1 − β̂OLS)′(X ′X/T1)

√
T1(β̂T1 − β̂OLS) <

√
T1(β̃T1 − β̂OLS)′(X ′X/T1)

√
T1(β̃T1 − β̂OLS),

(C.1)

where the strict inequality is due to uniqueness of the projection and the assumption that ε > 0

which implies that β̂T1 6= β̃T1 . By simple algebra (adding/subtracting terms), we have:

√
T1(β̂T1 − β̂OLS)′(X ′X/T1)

√
T1(β̂T1 − β̂OLS)

=
√
T1(β̂T1 − β̃T1 + β̃T1 − β̂OLS)′(X ′X/T1)

√
T1(β̂T1 − β̃T1 + β̃T1 − β̂OLS)

=
√
T1(β̃T1 − β̂OLS)′(X ′X/T1)

√
T1(β̃T1 − β̂OLS)

+
√
T1(β̃T1 − β̂T1)′(X ′X/T1)

√
T1(β̃T1 − β̂T1)

+2
√
T1(β̃T1 − β̂OLS)′(X ′X/T1)

√
T1(β̂T1 − β̃T1). (C.2)

By (C.1) and (C.2), we know that the sum of the last two terms in (C.2) is negative, i.e.,

DT1

def
=

√
T1(β̃T1 − β̂T1)′

(
1

T1
X ′X

)√
T1(β̃T1 − β̂T1) + 2

√
T1(β̃T1 − β̂OLS)′

(
1

T1
X ′X

)√
T1(β̂T1 − β̃T1)

≡ D1,T1 +D2,T1 < 0. (C.3)

Let SN = {a ∈ RN : ‖a‖ = 1} denote the unit sphere in RN . We have

D1,T1 =
√
T1(β̃T1 − β̂T1)′

(
1

T1
X ′X

)√
T1(β̃T1 − β̂T1)

= ‖
√
T1(β̃T1 − β̂T1)‖2

[ √
T1(β̃T1 − β̂T1)′

‖
√
T1(β̃T1 − β̂T1)‖

(
1

T1
X ′X

) √
T1(β̃T1 − β̂T1)

‖
√
T1(β̃T1 − β̂T1)‖

]
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≥ T1‖β̃T1 − β̂T1‖2 inf
a∈SN

a′
(

1

T1
X ′X

)
a

= T1‖β̃T1 − β̂T1‖2λmin

(
1

T1
X ′X

)
≥ ε2λmin

(
1

T1
X ′X

)
p→ ε2λmin[E(XtX

′
t)] > 0, (C.4)

because
√
T1‖β̃T1− β̂T1‖ ≥ ε and E(XtX

′
t) is nonsingular. The minimum eigenvalue of a square

matrix A is denoted by λmin(A). The third equality uses Lemma C.2 which is proved at the

end of this appendix.

By writing (X ′X/T1) = E(XtX
′
t) + (X ′X/T1)− E(XtX

′
t), the second term in (C.3) can be

rewritten as

D2,T1 = 2
√
T1(β̃T1 − β̂OLS)′(X ′X/T1)

√
T1(β̂T1 − β̃T1)

= 2
√
T1(β̃T1 − β̂OLS)′[E(XtX

′
t)]
√
T1(β̂T1 − β̃T1)

+2
√
T1(β̃T1 − β̂OLS)′(X ′X/T1 − E[XtX

′
t])
√
T1(β̂T1 − β̃T1)

= D2,1,T1 +D2,2,T1 . (C.5)

By the definition of β̃T1 and Lemma 1.1 in Zarantonello (1971)

D2,1,T1 =
√
T1(β̃T1 − β̂OLS)′[E(XtX

′
t)]
√
T1(β̂T1 − β̃T1) ≥ 0. (C.6)

By a law of large numbers, X ′X/T1 − E(XtX
′
t) = op(1). Also,

√
T1(β̃T1 − β̂OLS) = Op(1)

and
√
T1(β̂T1 − β̃T1) = Op(1) because

‖
√
T1(β̂T1 − β̃T1)‖ ≤ ‖

√
T1(β̂T1 − β0)‖+ ‖

√
T1(β̃T1 − β0)‖

= ‖
√
T1(ΠΛ,T1 β̂OLS − β0)‖+ ‖

√
T1(ΠΛβ̂OLS − β0)‖

≤
√
T1‖β̂OLS − β0‖T1 +

√
T1‖β̂OLS − β0‖ = Op(1),

where we used the Lipschitz continuity of projection operators, and ΠΛ,T1 is the projection

onto Λ with respect to the aforementioned random norm ‖a‖T1 =
√
a′(X ′X/T1)a (Zarantonello,

7



1971). Hence, we have D2,2,T1 = op(1). Combining D2,2,T1 = op(1) and (C.6), we obtain

D2,T1 ≥ op(1). (C.7)

Thus, we have shown that if
√
T1‖β̂T1 − β̃T1‖ > ε, then DT1 < 0. This implies that (if A

implies B, then P (A) ≤ P (B), this argument is used twice in (C.8) below)

P (
√
T1‖β̂T1 − β̃T1‖ > ε) ≤ P (DT1 < 0)

≤ P (op(1) + ε2λmin

(
1

T1

X ′X
)
< 0)

→ P (ε2λmin (E(XtX
′
t)) ≤ 0)

= 0, (C.8)

where the second inequality above follows from DT1 = D1,T1 +D2,T1 ≥ ε2λmin(X ′X/T1) + op(1)

by (C.4) and (C.7). Hence, DT1 < 0 implies ε2λmin(X ′X/T1) + op(1) < 0.

Equation (C.8) is equivalent to β̂T1 − β̃T1 = op(T
−1/2
1 ) or

β̂T1 = ΠΛβ̂OLS + op(T
−1/2
1 ) . (C.9)

This concludes the proof of Lemma C.1.

Lemma C.2 Let A be an N × N positive definite matrix, and SN = {a ∈ RN : ‖a‖ = 1}

denotes the unit sphere in RN . Then we have infa∈SN a
′Aa = λmin(A) .

Proof: Let v1, ..., vN be N eigen-vectors of A with corresponding eigen-values λ1, ..., λN so that

Avj = λjvj for j = 1, ..., N . Then since v1, ..., vN form an orthonormal basis for SN , we have

for any a ∈ SN , a =
∑N
i=1 civi with

∑N
i=1 c

2
i = 1 since a′a = 1 and v′ivj = δij (the Kronecker

delta). Then we have

a′Aa =
N∑
i=1

N∑
j=1

civ
′
iAcjvj =

N∑
i=1

N∑
j=1

civ
′
icjAvj =

N∑
i=1

N∑
j=1

cicjλjv
′
ivj

=
N∑
i=1

λjc
2
j ≥ λmin

N∑
j=1

c2
j = λmin, (C.10)

which implies (i) infa∈SN a
′Aa ≥ λmin.
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On the other hand, pre-multiplying Avj = λjvj by v′j, we get λj = v′jAvj ≥ infa∈SN a
′Aa for

all j = 1, ..., N , which implies (ii) λmin ≥ infa∈SN a
′Aa. Combining (i) and (ii), we finish the

proof of Lemma C.2.

Lemma C.3 (stability property) Theorem 4.1 holds uniformly locally at β0,T1 as β0,T1 ap-

proaches the boundary of the set Λ (as T1 →∞).

The theoretical result presented in Theorem 4.1 is pointwise. That is, Theorem 4.1 holds

true for a fixed vector β0 ∈ Λ. However, one may be concerned whether Theorem 4.1 also

holds uniformly locally at β0,T1 as β0,T1 approaches the boundary of the set Λ (as T1 →∞). If

the limiting distribution of Â depends discontinuously on β0 when β0 is at the boundary of Λ,

then the test may fail to adequately control for size when β0 is close to the boundary of Λ. In

the case of the MSC method, β0 is at the boundary of Λ if β0,j = 0 for some 2 ≤ j ≤ N . To

examine this issue we consider a sequence of distributions in the form of β0,T1 = β0+c/
√
T1 ∈ Λ,

where β0,j ≥ 0 for all j ∈ {2, ..., N}, β0,i = 0 for at least one i ∈ {2, ..., N}, and cj ≥ 0 for

all j ∈ {2, ..., N}. By Proposition 4.2 of Fang and Santos (2018), we know that the projection

mapping (on to Λ) is convex. Then by Corollary 3.2 or Corollary S.1.1 of the supplementary

appendix (for general dependent data case) of Fang and Santos (2018), we know that under the

above null hypothesis H0,

lim sup
T1→∞

Pβ0+c/
√
T1

(
Â > ĉ1−α

)
≤ α, (C.11)

where Â is defined in (4.2), and Pβ0+c/
√
T1

indicates the distribution of the data associated with

β = β0 + c/
√
T1 ∈ Λ and that β0 is at the boundary of Λ. Equation (C.11) proves Lemma C.3

and it implies that our analysis delivers inference procedures with reliable size control.

Appendix D: Asymptotic theory with non-stationary data

D.1 The trend stationary data

The trend-stationary data generating process can also be motivated using a factor model frame-

work. Let {y0
it}, for i = 1, ..., N and t = 1, ..., T , be generated by some common factors with one

of the factors being a time trend and the remaining factors being weakly dependent stationary
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variables. Following Hsiao, Ching, and Wan (2012), we assume that y0
t = (y0

1t, y
0
2t, ..., y

0
Nt)
′ is

generated via a factor model

y0
t = δ0 +Bft + εt, (D.1)

where δ0 = (δ01, ..., δ0N)′ is an N × 1 vector of intercepts, B is an N ×K factor loading matrix,

ft = (f1t, ..., fKt)
′ is a K× 1 vector of common factors, and εt = (ε1t, ..., εNt)

′ is an N × 1 vector

of idiosyncratic errors. We assume that f1t = t and all other factors are stationary variables.

Also, εt is a zero mean, weakly dependent stationary process with finite fourth moment. Hence,

y0
t follows a trend-stationary process.

Hsiao, Ching, and Wan (2012) and Li and Bell (2017) show that, under the condition that

rank(B) = K, one can replace the unobservable factor ft by xt = (1, y2t, ..., yNt)
′ to estimate

the counterfactual outcome y0
1t. Specifically, one can estimate the following regression model

y1t = x′tδ + u1t, (t = 1, ..., T1), (D.2)

where xt = (1, y2t, ..., yNt)
′ and δ = (δ1, ..., δN)′.

To facilitate the asymptotic analysis, we consider the time trend component explicitly. We

write yjt = c0,j + c1,jt + ηjt, where ηjt is a weakly dependent stationary process (de-trended

from yjt) for j = 2, ..., N . Let ỹt = (y2t, ..., yNt)
′ and δ̃ = (δ2, ..., δN)′. Then in vector notation,

we have ỹt = c̃0 + c̃1t + η̃t, c̃0 = (c0,2, ..., c0,N)′, c̃1 = (c1,2, ..., c1,N)′ and η̃ = (η2t, ..., ηNt)
′. Then

we can write ỹ′tδ̃ = (c̃0 + c̃1t+ η̃t)
′δ̃. Hence, we can re-write (D.2) as

y1t = δ1 + ỹ′tδ̃ + u1t

= α0t+ β1 + δ̃′η̃t + u1t

= α0t+ z′tβ0 + u1t t = 1, ..., T1, (D.3)

where α0 = c̃′1δ̃, β1 = δ1 + c̃′0δ̃, β0 = (β1, δ̃
′)′ and zt = (1, η̃

′
)′ ≡ (1, η2t, ..., ηNt)

′.

Below we derive the asymptotic distribution of the ATE estimator ∆̂1 defined in (3.7). For

the post-treatment period, we have y1
1t = y0

1t + ∆1t. Hence, we have for t = 1, ..., T ,

y1t = αt+ z′tβ + dt∆1t + v1t, (D.4)
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where dt = 0 for t ≤ T1 and dt = 1 for t ≥ T1 + 1.

Let α̂T1 and β̂T1 be the SC/MSC estimators of α0 and β0 based on (D.3). Then it is to show

that α̂T1 − α = Op(T
−3/2
1 ) and β̂T1 − β = Op(T

−1/2
1 ). Thus, using (3.7) and (D.4), we have

∆̂1 −∆1 =
1

T2

T∑
t=T1+1

[
y1t − ŷ0

1t

]
−∆1

= − 1

T2

T∑
t=T1+1

[
(α̂T1 − α0)t− z′t(β̂T1 − β0) + ∆1t −∆1 + v1t

]

= −
[
2T1 + T2 + 1

2

]
(α̂T1 − α)− [E(z′t) + op(1)](β̂T1 − β) +

1

T2

T∑
t=T1+1

v1t, (D.5)

where we used
∑T
t=T1+1 t = (T1 + 1 + T )T2/2 = (2T1 + T2 + 1)T2/2 and v1t = ∆1t −∆1 + u1t.

Hence,

√
T2(∆̂1 −∆1) = −

√
T2/T1

[
2 + T2/T1

2

]√
T 3

1 (α̂T1 − α0)−
√
T2/T1E(z′t)

√
T1(β̂T1 − β0)

+
1√
T2

T∑
t=T1+1

v1t + op (1)

= −
(√

T2/T1(2 + T2/T1)/2 ,
√
T2/T1E(z′t)

)(√T 3
1 (α̂T1 − α0)

√
T1(β̂T1 − β0)

)

+
1√
T2

T∑
t=T1+1

v1t + op(1)

= −c′MT1(γ̂T1 − γ0) +
1√
T2

T∑
t=T1+1

v1t + op(1), (D.6)

where c = (
√
φ(2 + φ)/2,

√
φE(z′t))

′, φ = limT1,T2→∞ T2/T1, γ̂T1 = (α̂T1 , β̂
′
T1

)′, γ0 = (α0, β
′
0)′,

MT1 =
√
T1diag(T1, 1, ..., 1) which is a (N +1)× (N +1) diagonal matrix with the first diagonal

element equal to T
3/2
1 and all other diagonal elements equal to

√
T1.

To establish the asymptotic distribution of
√
T2(∆̂1 −∆1), we make the following assump-

tions.

Assumption D1. Let zt = (1, η2t, ..., ηNt)
′. We assume that (i) {zt}Tt=1 is a weakly dependent

and weakly stationary process, T−1
1

∑T1
t=1 ztz

′
t

p→ E(ztz
′
t) as T1 →∞, and [E(ztz

′
t)] is invertible;

(ii) MT1(γ̂OLS − γ)
d→ N(0,Ω), where Ω is a positive definite matrix.

Assumption D2. Let v1t = ∆1t −∆1 + v1t. Then T
−1/2
2

∑T
t=T1+1 v1t

d→ N(0,Σv) as T2 →∞,

where Σv = limT2→∞ T−1
2

∑T
t=T1+1

∑T
s=T1+1E(v1tv1s).

11



Assumption D3. Let wt = (v1t, η2t, ..., ηNt)
′. We assume that wt is a ρ-mixing process where

the mixing coefficient ρ(τ) satisfies the condition: ρ(τ) ≤ C λτ for some finite positive constants

C > 0 and 0 < λ < 1, where ρ(τ) = max1≤i,j≤N |Cov(wit, wj,t+τ )|/
√
V ar(wit)V ar(wj,t+τ ), and

wit is the ith component of wt for i = 1, ..., N .

Assumptions D1 and D2 are not restrictive. They require that (zt, v1t) be a weakly dependent

stationary process so that law of large numbers and central limit theorem hold for their (partial)

sums. If E(ztz
′
t) is not invertible, we can remove the linearly dependent regressors and redefine

zt as a subset of (1, η2t, ..., ηNt)
′ such that assumption 1 holds. Assumption D3 further imposes

an exponential decay rate for the ρ-mixing processes. Many ARMA processes are known to be

ρ-mixing with exponential decay rate.

By Appendix B.1 of this supplementary Appendix, we know that (Λ = ΛSC or Λ = ΛMSC)

γ̂T1 = arg min
γ∈Λ

(γ − γ̂OLS,T1)′X ′X(γ − γ̂OLS,T1) ≡ arg min
γ∈Λ

A(γ), (D.7)

where A(γ) = (γ − γ̂OLS,T1)′X ′X(γ − γ̂OLS,T1), X is the T1 × (N + 1) matrix with its tth-row

given by (t, z′t), and zt = (η2t, ..., ηNt)
′.

Our derivation below is based on Andrews (1999). By adding/subtracting γ0 and inserting

identity matrix IN+1 = MT1M
−1
T1

, we can write A(γ) as:

A(γ) = (γ − γ̂OLS,T1)′X ′X(γ − γ̂OLS,T1)

= [(γ − γ0)− (γ̂OLS,T1 − γ0)]′X ′X[(γ − γ0)− (γ̂OLS,T1 − γ0)]

= [(γ − γ0)− (γ̂OLS,T1 − γ0)]′MT1M
−1
T1
X ′XM−1

T1
MT1 [(γ − γ0)− (γ̂OLS,T1 − γ0)]

= {MT1 [(γ − γ0)− (γ̂OLS,T1 − γ0)]}′[M−1
T1
X ′XM−1

T1
]{MT1 [(γ − γ0)− (γ̂OLS,T1 − γ0)]}

= [MT1(γ − γ0)− ZT1 ]′ JT1 [MT1(γ − γ0)− ZT1 ]

= [λT1 − ZT1 ]′ JT1 [λT1 − ZT1 ], (D.8)

where the fourth equality follows from (AB)′ = B′A′, ZT1 = MT1(γ̂OLS,T1 − γ0), λT1 = MT1(γ −

γ0), JT1 = M−1
T1
X ′XM−1

T1
.

We know that (Hamilton, 1994) that ZT1

d→ Z3, where Z3 is a zero mean, finite variance,

(N + 1)× 1 vector of normal random variable. It is easy to show that JT1

p→ Jtr, where Jtr is

12



an (N + 1)× (N + 1) positive definite matrix defined by

Jtr =

(
1/3 (1/2)E(z′t)

(1/2)E(zt) E(ztz
′
t)

)
. (D.9)

From (D.8) we can see that choosing γ ∈ Λ to minimize A(γ) is equivalent to choosing

λT1 = MT1(γ − γ0) ∈MT1(Λ− γ0)→ TΛ,γ0 as T1 →∞ (TΛ,γ0 is the tangent cone of Λ at γ0) to

minimize A(γ).

Since γ̂T1 minimizes A(γ) subject to γ ∈ Λ, we know that λ̂T1

def
= MT1(γ̂T1−γ0) also minimizes

A(γ) subject to λ̂T1 ∈ MT1(Λ − γ0). Hence, if we take the limit of T1 → ∞ and let λ̂ denote

the limiting distribution of λ̂T1 , because ZT1

d→ Z3 and JT1

d→ Jtr, we see that λ̂ satisfies that

λ̂ = arg min
λ∈TΛ,γ0

(λ− Z3)′Jtr(λ− Z3)
def
= Πtr

TΛ,γ0
Z3, (D.10)

where Z3 is the limiting distribution of λ̂T1 = MT1(γ̂OLS,T1 − γ0). Note that the last equal sign

in (D.10) defines a projection. That is, for the time trend model, the projection of θ ∈ RN+1

onto a convex set Λ is defined as

Πtr
Λ θ = arg min

λ∈Λ
(λ− θ)′Jtr(λ− θ). (D.11)

Thus, we just showed that

λ̂T1

def
= MT1(γ̂T1 − γ0)

d→ λ̂ = Πtr
TΛ,γ0

Z3. (D.12)

By Assumption D3 and the proof of Theorem 3.2 and Lemma 1 in Li and Bell (2017), we

know that γ̂ − γ is asymptotic independent with T
−1/2
2

∑T
t=T1+1 v1t. Therefore, applying the

projection theory to (D.6) we immediately have the following result.

Under assumptions D1 to D3 and noting that γ0 ∈ Λ, we have

√
T2(∆̂1 −∆1) = −c′MT1(γ̂T1 − γ0) +

1√
T2

T∑
t=T1+1

v1t

d→ −c′Πtr
TΛ,γ0

Z3 + Z2, (D.13)

by (D.12), where Z3 is the weak limit of MT1(γ̂OLS − γ0) as described in Assumption C1, and

Z2 is independent with Z3 and is normally distributed with a zero mean and variance Σv.
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D.2 The unit-root non-stationary data

Here we only consider unit-root processes without drifts because the asymptotic theory for a

unit-root process a drift is the same as the trend-stationary data case due to the fact that the

drift term leads to a time trend component which dominates other components. Therefore,

we assume that, in the absence of treatment, the outcome variables follow unit-root processes

without drifts:

y0
jt = y0

j,t−1 + ηjt, j = 1, ..., N ; t = 1, ...T,

where ηjt is a zero mean, weakly dependent stationary process that satisfies Assumption D4

below.

Define x̃t = (y2t, ..., yNt)
′. Then we have xt = (1, y2t, ..., yNt)

′ = (1, x̃′t)
′. We assume that

Assumption D4.

(i) T−2∑T
t=1 x̃tx̃

′
t
d→
∫ 1

0 Wη(r)Wη(r)
′dr ≡ Wη,2, where Wη(r) = VηBη(r), Bη is a (N − 1)× 1

vector of standard Brownian motion, Vη = Σ1/2
η and Ση = limT1→∞ T

−1
1

∑T1
t=1

∑T1
s=1E(ηitη

′
js).

(ii) T−3/2∑T
t=1 x̃t

d→
∫ 1

0 Wη(r)dr ≡ Wη,1.

(iii) T−1∑T
t=1 x̃tu1t

d→
∫ 1

0 Wη(r)dWu(r) ≡ Wη,u, where Wu(r) = VuBu(r), Bu is a (scalar)

standard Brownian motion generated by partial sum of u1t’s (Bu is independent of Bη), Vu =

Σ1/2
u with Σu = limT1→∞ T

−1
1

∑T1
t=1

∑T1
s=1E(u1tu1s).

(iv) T
−1/2
1

∑T1
t=1 u1t

d→ Wu(1).

(v) T
−1/2
2

∑T
t=T1+1 v1t

d→ N(0,Σv), where Σ2
v = limT2→∞ T

−1
2

∑T
t=T1+1

∑T
s=T1+1E(v1tv1s).

Assumption D5. (i) The convergence results presented at Assumption D4 hold jointly, then

by the continuous mapping theorem we have

DT1(β̂OLS − β0)
d→

(
1 W ′

η,1

Wη,1 Wη,2

)−1 (Wu(1)

Wη,u

)
≡ Z4, (D.14)

where DT1 = T1Diag(T
−1/2
1 , 1, ..., 1) is the N ×N diagonal matrix defined in Section 3.4.

(ii) Let wt = (v1t, η1t, ..., ηNt)
′. We assume that wt is a ρ-mixing process with the mixing

coefficient ρ(τ) satisfies the condition: ρ(τ) ≤ C λτ for some finite positive constants C > 0

and 0 < λ < 1, where ρ(τ) = max1≤i,j≤N |Cov(wit, wj,t+τ )|/
√
V ar(wit)V ar(wj,t+τ ), and wit is

the ith component of wt for i = 1, ..., N .
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Remark D.1 Co-integration theory is well developed in the literature. Primitive conditions

that ensure that Assumption D4 and D5 (i) hold can be found in many published papers, e.g.,

Stock and Watson (1993).

Recall that φ = limT1,T2→∞ T2/T1. It can be shown that when φ = 0, Â1 = op(1). Therefore,

we only need to consider the case that φ > 0. By Assumption D4 (ii) and noting that (T1 +

1)/T ≈ T1/T = (T/T1)−1 → (1 + φ)−1, we get

1

T 3/2

T∑
t=T1+1

x̃t
d→

∫ 1

1/(1+φ)
Wη(r)dr. (D.15)

For the unit-root data process, define JI,T1 = D−1
T1

(X ′X)D−1
T1

, then we have

JI,T1

d→ JI ≡
(

1
∫ 1
0 Wη(r)

′dr∫ 1
0 Wη(r)dr

∫ 1
0 Wη(r)Wη(r)

′dr

)
, (D.16)

because

JI,T1 = D−1
T1

(X ′X)D−1
T1

= D−1
T1

( ∑T1
t=1 1

∑T1
t=1 x̃

′
t∑T1

t=1 x̃t
∑T1
t=1 x̃tx̃

′
t

)
D−1
T1

=

(
T−1

1

∑T1
t=1 1 T

−3/2
1

∑T1
t=1 x̃

′
t

T
−3/2
1

∑T1
t=1 x̃t T−2

1

∑T1
t=1 x̃tx̃

′
t

)

=

(
1 T−1

1

∑T1
t=1(x̃t/

√
T1)′

T−1
1

∑T1
t=1(x̃t/

√
T1) T−1

1

∑T1
t=1(x̃t/

√
T1)(x̃t/

√
T1)′

)
d→

(
1

∫ 1
0 Wη(r)

′dr∫ 1
0 Wη(r)dr

∫ 1
0 Wη(r)Wη(r)

′dr

)
= JI . (D.17)

Similar to the derivation to (D.11), we can show that, for the unit-root process, the projec-

tion of θ ∈ RN onto a convex set Λ is defined as

ΠI
Λθ = arg min

λ∈Λ
(λ− θ)′JI(λ− θ). (D.18)

Similar to the derivations of (D.9) and (D.12), we can show that

DT1(β̂T1 − β0)
d→ ΠI

TΛ,β0
Z4. (D.19)
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By noting that T/T1 = 1 + T2/T1 → 1 + φ, we have

Â1 = −T−1/2
2

T∑
t=T1+1

x′t(β̂T1 − β0)

= −T−1/2
2

T∑
t=T1+1

x′tD
−1
T1
DT1(β̂T1 − β0)

= −

(T2/T1)1/2, (T1/T2)1/2(T/T1)3/2T−3/2
T∑

t=T1+1

x̃′t

DT1(β̂T1 − β0)

d→ −
(√

φ, φ−1/2(1 + φ)3/2
∫ 1

1/(1+φ)
Wη(r)

′dr

)
ΠI
TΛ,β0

Z4

≡ Z5ΠI
TΛ,β0

Z4, (D.20)

by (D.19), where Z5 = −(
√
φ, φ−1/2(1 + φ)3/2

∫ 1
1/(1+φ) Wη(r)

′dr).

By Assumption D5 (v), we have Â2 = T
−1/2
2

∑T
t=T1+1 v1t

d→ Z2. It can be shown that Â1 and

Â2 are asymptotically independent with each other. This completes the proof of Theorem 3.5.

Appendix E: Additional simulation results

In this supplementary appendix, we report some additional simulation results. In Section 5.4, we

compute MSE(∆̂1) for four different methods. We also compute squared biases and variances

of these estimators. The results show that variances dominate biases in the sense that more

than 96% of the MSEs come from variances. We show the results for the modified synthetic

control (MSC) and HCW methods in Table 8. The results for the original synthetic control

(OSC) and the synthetic control (SC) are similar and will not be presented here.

E.1 Estimation and inference for large N

In Section 5.4, we report MSE(∆̂1) = M−1∑M
j=1(∆̂1,j − ∆1)2. We also computed squared

bias and variance of ∆̂1, where Bias(∆̂1) =
¯̂
∆1 − ∆1, V ar(∆̂1) = M−1∑M

j=1(∆̂1,j − ¯̂
∆1)2,

¯̂
∆1 = M−1∑M

j=1 ∆̂1,j, M = 10, 000 is the number of simulations. It is easy to check that

the identity MSE(∆̂1) = (Bias(∆̂1))2 + V ar(∆̂1) holds. To save space, we report the ratios of

V ar(·)/MSE(·) for the modified synthetic control (MSC) and HCW methods as they dominate

the original synthetic control (OSC) and the synthetic control (SC) methods in most cases.

16



Table 8 reports the variance to MSE ratios for the case that uit (defined in (5.1)) is uniformly

distributed. We see from Table 8 that ratios of V ar(·)/MSE(·) are greater than 99% for all

cases. Therefore, the squared biases are negligible compared to variances.

The negligible squared biases may be partly due to symmetric distribution of uit. Thus,

next we replace uit by an asymmetric χ2
1 distribution (normalized to have zero mean and unit

variance). The variance to MSE ratios for chi-square distributed uit case are given in Table 9

where we see that variance to MSE ratios indeed drop but still the ratios are greater than 96%

for all cases considered. The results show that variance is the main component of MSE.

Table 8: Ratio V ar(∆̂1)/MSE(∆̂1), uit ∼ Uniform[−
√

3,
√

3]
N 11 21 31 51 81 11 21 31 51 81

DGP5 DGP6
MSC 1.0000 1.0000 0.9999 1.0000 0.9996 1.0000 1.0000 0.9999 1.0000 0.9992
HCW 1.0000 1.0000 0.9999 1.0000 0.9999 0.9999 1.0000 1.0000 0.9999 0.9998

DGP7 DGP8
MSC 1.0000 1.0000 1.0000 0.9996 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000
HCW 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000 0.9997 0.9999

Table 9: Ratio V ar(∆̂1)/MSE(∆̂1), uit ∼ (χ2
1 − 1)/

√
2

N 11 21 31 51 81 11 21 31 51 81
DGP5 DGP6

MSC 0.9980 0.9940 0.9970 0.9899 0.9818 0.9788 0.9717 0.9723 0.9772 0.9658
HCW 0.9994 0.9975 0.9997 0.9994 0.9998 0.9996 0.9984 0.9979 0.9989 1.0000

DGP7 DGP8
MSC 0.9743 0.9693 0.9657 0.9762 0.9861 0.9997 0.9996 0.9999 1.0000 0.9989
HCW 0.9732 0.9649 0.9596 0.9705 0.9905 0.9991 0.9983 0.9991 0.9997 0.9999

We also computed MSE(ŷ0
1) = M−1∑N

j=1 T
−1
2

∑T
t=T1+1(ŷ0

1t − y0
1t)

2, where y0
1t,j and ŷ0

1t are

the generated outcome data and its estimator at the jth replication. The results are given in

Table 10. We see the same ranking as in the case of MSE(∆̂1) reported in Table 3 that only for

DGP6 with for N = 11 and N = 21, the HCW has smaller MSE than the modified synthetic

control (MSC). For all other cases, the modified synthetic control (MSC) has smaller MSE than

HCW.

We report estimated coverage probabilities of the modified synthetic control (MSC) and

HCW methods for DGP7 and DGP8 discussed in Section 5.5. The results are given in Table
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Table 10: MSE of ŷ0
1

N 11 21 31 51 81 11 21 31 51 81
DGP5 DGP6

MSC 1.142 1.179 1.225 1.358 1.641 1.834 1.555 1.459 1.441 1.674
HCW 1.196 1.343 1.560 2.360 11.23 1.193 1.344 1.566 2.351 11.31

DGP7 DGP8
MSC 3.925 2.864 2.513 2.264 2.167 1.057 1.062 1.055 1.061 1.075
HCW 3.974 3.033 2.896 3.620 14.85 1.153 1.321 1.533 2.345 11.17

11. They are similar to the cases of DGP5 and DGP6. While HCW CIs significantly over-cover

∆1 for large N , the modified synthetic control (MSC) method has more accurate coverage

probabilities than the HCW method.

Table 11: Coverage probabilities for large N
DGP7

Modified SC control HCW
N N=31 N=51 N=81 N=31 N=51 N=81
m 40 60 90 70 80 90 90 90 90 90

50% .481 .477 .521 .504 .498 .509 .447 .591 859 791
80% .798 .802 .802 .797 .796 .793 .772 .865 .997 .998
90% .883 .898 .896 .900 .883 .891 .881 .940 .998 1.00
95% .935 .950 .941 .938 .937 .948 .935 .979 1.00 1.00

DGP8
Modified SC control HCW

N N=31 N=51 N=81 N=31 N=51 N=81
m 40 60 90 70 80 90 90 90 90 90

50% .498 .437 .487 .477 .510 .491 .487 .585 .820 .731
80% .781 .773 .793 .786 .797 .783 .798 .864 .996 .985
90% .881 .867 .897 .879 .919 .880 .892 .948 1.00 1.00
95% .937 .933 .937 .935 .961 .924 .931 .983 1.00 1.00

E.2 Inferences when T2 is small

In this section, we consider the case of large T1 (100, 200) and small T2 (3, 5). We use Andrews’

(2003) end-of-sample instability to test the null hypothesis H0: ∆1t = 0 (∆1,0 = 0) against the

one-sided alterative H1: ∆1t > 0 for all t = T1 + 1, ..., T . The data is generated by the three

factor model (DGP1) as discussed in section 5.1, and the treatment effects are generated via

(5.2) with α0 = 0 under H0, and α0 = 0.5, 1 under H1. The number of simulations is 10, 000.
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The simulation results are reported in Table 12.

Table 12: Coverage probabilities for DGP1 (Andrews’ (2003) instability test)
H0: α0 = 0

T2 = 3 T2 = 5
T1 5% 10% 20% 5% 10% 20%
100 0.0849 0.1362 0.2366 0.0935 0.1497 0.2440
200 0.0652 0.1161 0.2191 0.0711 0.1250 0.2273

H1: α0 = 0.5
T2 = 3 T2 = 5

T1 5% 10% 20% 5% 10% 20%
100 0.2892 0.4076 0.6656 0.3492 0.4753 0.6985

H1: α0 = 1
T2 = 3 T2 = 5

T1 5% 10% 20% 5% 10% 20%
100 0.5416 0.6573 0.7937 0.6994 0.7939 0.8853

Andrews’ (2003) test is expected to give good estimated sizes when T1 is large. As expected,

we see from Table 12 that the test is oversized for T1 = 100. Its estimated sizes improve as

T1 increases to 200. Another result from Table 12 is that, if we fix T1, the estimated sizes

deteriorate as T2 increases. That is understandable because this test is designed for large T1

and small T2.

Recall that a test is said to be a consistent test if, when the null hypothesis is false, the

probability of rejecting the (false) null hypothesis converges to one as sample size goes to infinity

(T2 →∞). As Andrews (2003) points out, this statistic is not a consistent test for small values

of T2. While a large T1 helps to give better estimated sizes, it does not increase the power of

the test. Therefore, we only consider T1 = 100 for power calculations because for T1 = 200

or even larger T1, the powers of the test are similar. When T1 is large, the power of the test

increases with T2 and also depends on the magnitude of
∑T
t=T1+1(∆1t −∆1,0) under H1. From

Table 12, we see that the estimated power increases with T2 as well as with α0 (the magnitude

of ∆1t). However, a large T2 adversely affects the estimated sizes of Andrews’ (2003) test.

We also conducted simulations of Andrews’ (2003) test under DGP1 using T1 = 90 and

T2 = 20 (the same T1 and T2 as in our empirical data). Based on 10,000 simulations with α0 = 0,

the estimated sizes are 0.1660 and 0.1964 for nominal levels 5% and 10%, respectively. We see

that for the T2 = 20 and T1 = 90 case is not large enough for the test to have good estimated
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sizes because an error term of order
√
T2/T1 is not negligible, which causes Andrews’ (2003)

test invalid in our context. Therefore, the end-of-sample stability testing and the subsampling

testing procedures are complements to each other. The former can be used when T2 is small

while the later is preferred when T2 is not small.

Remark E.1 For our (modified) synthetic control ATE estimator with panel data, large T2

invalidates Andrews’ (2003) test due an error term of order
√
T2/T1 becoming non-negligible.

This differs from the time series model considered by Andrews (2003), where when T2 is also

large, testing a possible structural break at T1 becomes a simple and standard problem.

Appendix F: Explanation of subsampling method works

for a wide range of subsample sizes

In this appendix, we explain why the subsampling method works well for our estimated ATE

estimator for a wide range of subsample size m values.

F.1 A simple example from Andrews (2000)

We consider a simple example as considered in Andrews (2000). For i = 1, ..., n, Yi is iid

N(µ0, 1) with µ0 ≥ 0. I.e., Yi = µ0 + ui with ui iid N(0, 1) and µ0 ∈ Λ = R+ def
= {y : y ≥ 0}.

The constrained least squares estimator of µ0 is µ̂n = max{Ȳn, 0}, where Ȳn = n−1∑n
i=1 Yi. It

is easy to show that

Ŝn
def
=
√
n(µ̂n − µ0)

d→

 Z if µ0 > 0

max{Z, 0} if µ0 = 0,
(F.1)

where Z denotes a standard normal random variable. Let Y ∗i be random draws from {Yj}nj=1.

Then a bootstrap analogue of (F.1) is
√
n(µ̃∗n − µ̂n), where µ̂∗n = max{Ȳ ∗n , 0} and Ȳ ∗n =

n−1∑n
i=1 Y

∗
i . Andrews (2000) shows that this standard resampling bootstrap method as well

as several parametric bootstrap methods do not work in the sense that, when µ0 = 0, S̃∗n =
√
n(µ̃∗n − µ̂n) will not converge to max{Z, 0}, the limiting distribution of Ŝn. In fact, Andrews

(2000) shows that Ŝ∗n converges to a distribution that is to the left of max{Z, 0}.
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Andrews (2000) also suggests a few re-sampling methods that overcome the problem. One

particular easy-to-implement method is a parametric subsampling method. Specifically, for

values of m that satisfy m→∞ and m/n→ 0 as n→∞, one can use S̃∗m =
√
m(µ̂∗m − µ̂n) to

approximate the distribution of
√
n(µ̂n − µ0). Here µ̂m = max{Ȳ ∗m, 0} and Ȳ ∗m = m−1∑m

i=1 Y
∗
i

with Y ∗i being iid draws from N(Ȳn, 1). I.e., Y ∗i = Ȳn + u∗i with u∗i iid N(0, 1). To see that the

subsampling method indeed works, we have that, conditional on {Yi}ni=1,

Ŝ∗m
def
=
√
m(µ̂∗m − µ̂n)

= max
{√

mȲ ∗m, 0
}
−
√
mµ̂n

= max
{√

mȲ ∗m, 0
}
−
√
mµ0 −

√
m(µ̂n − µ0)

= max
{√

m(Ȳ ∗m − Ȳn + Ȳn − µ0),−
√
mµ0

}
−
√
m(µ̂n − µ0)

= max
{√

m(Ȳ ∗m − Ȳn) +
√
m/n
√
n(Ȳn − µ0),−

√
mµ0

}
−
√
m/n
√
n(µ̂n − µ0)

= max
{√

m(Ȳ ∗m − Ȳn) + op(1),−
√
mµ0

}
+ op(1)

d→

 Z if µ0 > 0

max {Z, 0} if µ0 = 0,
(F.2)

where the second equality follows from the definition of µ̂∗m, the third equality follows from

adding and subtracting
√
mµ0, the fourth equality follows from max{a, b}−c = max{a−c, b−c},

the sixth equality follows from m/n = o(1),
√
n(Ȳn − µ0) = Op(1) and o(1)Op(1) = op(1). The

last equality follows from the fact that Y ∗i − Ȳn = u∗i is iid N(0, 1). Hence,
√
m(Ŷ ∗m − Ȳn)

d∼

N(0, 1) ≡ Z for any value of m. If {Y ∗i }mi=1 is iid with mean Ȳn and unit variance but is not

normally distributed, then we need m to be large so that
√
m(Ŷ ∗m − Ȳn)

d→ N(0, 1) ≡ Z by

virtue of a central limit theorem argument (as m→∞).

Comparing (F.1) and (F.2), we see that subsampling method works under very mild condi-

tions that m→∞ and m/n→ 0 as n→∞.

F.2 Testing for zero ATE by subsampling method

We conduct simulations to examine the finite sample performances of the subsampling method.

We generate Yi iid N(0, 1) (i.e., µ0 = 0) for i = 1, ..., n and we choose n = 100 and conduct 5000

simulations. Within each simulation, we generate 2000 subsampling samples with subsample

21



sizes m ∈ {5, 10, 20, 30, 50, 100}. Note that we select the largest m = n = 100 because we want

to show numerically that the standard bootstrap method does not work. For each fixed value

m, we sort the 2000 subsampling statistics in ascending order such that Ŝ∗m,(1) ≤ Ŝ∗m,(2) ≤ ... ≤

Ŝ∗m,(2000). Then we get right-tail α-percentile value by Ŝ∗((1−α)(2000)). We record rejection rate

as the percentage that Ŝ is greater or equal to Ŝ∗((1−α)(2000)) for α ∈ {0.01, 0.05, 0.1, 0.2}. We

consider two cases: (i) We generate Yi iid N(0, 1) and Y ∗i = Ȳn + vi with vi iid N(0, 1); and

(ii) We generate Yi uniformly distributed over [−
√

3,
√

3] (so that it has zero mean and unit

variance) and Y ∗i = Ȳn + vi with vi iid uniformly distributed over [−
√

3,
√

3]. The results for

the two cases are almost identical. For brevity, we only report the normally distributed vi case

in Table 13.

Table 13: Estimated sizes (Y ∗i ∼ N(Ȳn, 1))
m=5 m=10 m=20 m=30 m=50 m=100

1% .0132 . 0126 .0124 .0130 .0136 .0248
5% .0516 .0518 .0518 .0532 .0658 .1032
10% .0960 .0968 .1006 .1104 .1346 .2014
20% .1936 .2004 .2278 .2588 .3164 .4020

First, we see that the subsampling method with 5 ≤ m ≤ 20 seem to work well. Second,

we see clearly that using m = n or m close to n (m ≥ 50) do not work. For example, when

m = n, it gives estimated rejection rates double that of the nominal levels. Andrews (2000)

shows that the distribution of
√
n(µ̂∗n − µ̂n) is to the left of that of

√
n(µ̂n − µ0). Hence, the

bootstrap method will lead to over rejection of the null hypothesis. Our simulation results

verifies Andrews’ theoretical analysis.

The simulation results seem contradict to the simulation results reported in Section 5 where

even for m = n, the subsampling method seems to be fine. We explain the seemingly contra-

dictory result in the next subsection.

F.3 Not all parameters are at the boundary

Our simulations reported in Section 5 correspond to the case of β0,j > 0 for j = 2, ..., 7 and

β0,j = 0 for j = 8, ..., 11. The constrained estimators β̂T1,j (β̂∗m,j) for j = 8, 9, 10, 11 can cause

problems for the standard bootstrap method. However, notice that our ATE estimator also
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depends on β̂T1,j (β̂∗m,j) for j = 1, ..., 7, which does not take boundary value 0. This helps to

improve subsampling method for large value of m. More importantly, our ATE estimator also

contains a term not related to β̂T1 (see the second term at the right hand side of (4.5) and the

existence of this term further improves the performance of the subsampling method when m

is close to or equal to n. This is the reason why in our simulations even when m = n, the

subsampling method seems to work fine. To numerically verify this conjecture, we generate a

sequence of iid Z1, Z2 ∼ N(0, σ2
v) random variables and add them to Ŝn and Ŝ∗m, i.e., S̃n =

Ŝn + Z1 and S̃∗m = Ŝ∗m + Z2. We then repeat the simulations to compute the estimated sizes.

The results for σv = 1 and 5 are reported in Table 14. We observe that the performance of the

subsampling statistic S̃∗m has significant improvements over Ŝ∗m for m = 50 and 100. Consider

the case of σv = 1 and m = n. The rejection rates based on S̃∗m is about 20% higher than that

of the nominal levels whereas it was 100% higher than that of nominal levels based on Ŝ∗m.

From Table 14, we see that when σ2
v is large, Z1 and Z2 becomes the dominating components

of S̃n and S̃∗m. Therefore, the subsampling method works well for all values of m including

m = n. The estimated sizes for σ2
v = 1 are only slightly oversized compared to σ2

v = 25. This

shows that the significant improvements in the estimated sizes (over the case of σ2
v = 0) does

not require adding a regular component with large dominating variance.

Table 14: Estimated sizes: Adding a N(0, σ2
v) to Ŝn and Ŝ∗m

m=5 m=10 m=20 m=30 m=50 m=100
σv = 1

1% .0104 .0110 .0112 .0128 .0122 .0114
5% .0550 .0562 .0562 .0590 .0600 .0648
10% .1066 .1098 .1140 .1168 .1198 .1236
20% .2170 .2244 .2320 .2372 .2440 .2520

σv = 5
1% .0112 .0116 .0116 .0110 .0124 .0128
5% .0518 .0521 .0528 .0530 .0542 .0556
10% .1030 .1044 .1046 .1048 .1060 .1074
20% .2070 .2082 .2030 .2102 .2126 .2160
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Appendix G: Additional robustness check results

G.1 Comparison with the unconstrained estimator (OLS)

In this subsection, we consider using the ordinary least squares method (we interchangeably

use ordinary least squares, HCW and unconstrainted estimator) to estimate the counterfactual

outcome. Let β̂OLS denote the least squares estimator of β using the pre-treatment sample.

Then the counterfactual outcome is estimated by ŷ0
t = x′tβ̂OLS (e.g., Hsiao, Ching, and Wan

(2012)). Applying this method to the Columbus data gives an estimated ATE of $645.3 increase

in weekly sales after the opening of a showroom in Columbus. While this number is close to the

ATE estimation result of $673.91 by the modified synthetic control, we would like to compare

the out-of-sample forecasting performances of the two estimation methods in order to judge

which method gives a more accurate ATE estimation result.

The difference between the least squares method and our modified synthetic control method

is that the synthetic control method imposes a non-negativity restriction on the slope coefficients

when estimating the regression model using the pre-treatment data. The rationale for imposing

the non-negativity constraints is that outcome variables from treated and control units are

driven by some common factors and therefore, they are more likely to move up and down

together. Imposing a correct restriction can improve out-of-sample forecast. Therefore, we

compare the out-of-sample forecast performances of the modified synthetic control method and

the least squares method. We choose a value T0 ∈ (1, T1) = (1, 90) to estimate the regression

model. Then we forecast outcome y1t for t = T0 + 1, ..., T1. Since there is no treatment prior

to T1, we can compare the average prediction squared error over the period t = T0 + 1, ..., T1.

Specifically, we estimate the following model

yt = x′tβ + u1t, t = 1, ..., T0 (G.1)

by the modified synthetic control and the least squares method. Let β̂T0 and β̂OLS denote

the resulting estimators using the two methods, respectively. We predict y0
1t by ŷ0

1t,MSC =

x′tβ̂T0 and ŷ0
1t,OLS = x′tβ̂OLS for t = T0 + 1, ..., T1. Then we compute the prediction MSEs by

PMSEMSC = (T1− T0)−1∑T1
t=T0+1(y1t− ŷ0

1t,MSC)2 and PMSEOLS = (T1− T0)−1∑T1
t=T0+1(y1t−

ŷ0
1t,OLS)2. As in Li and Bell (2017), we consider the cases where the ‘pre-treatment’ estimation
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sample is larger than the ‘post-treatment’ evaluation sample. We choose six different values

for T0 = {60, 65, 70, 75, 80, 85}. The corresponding evaluation sample sizes are T1 − T0 =

{30, 25, 20, 15, 10, 5}. We report the ratio of PMSE as PMSEOLS/PMSEMSC . The results are

reported in Table 15.

Table 15: Out-of-sample Prediction MSE ratio
T0 60 65 70 75 80 85

PMSEOLS
PMSEMSC

1.680 1.104 1.020 1.273 1.188 1.143

From Table 15 we observe that the least squares method has larger PMSE than the modified

synthetic control method for all cases. The PMSE for the former ranges from 2% to 68% larger

than the later. Thus, the empirical example shows that, in order to more accurately predict the

counterfactual outcomes for the treated unit, it is helpful to impose non-negativity restriction

on the slope coefficients when estimating model (G.1).

G.2 Adding Covariates

We collect monthly data on unemployment rate (Unemp), labor force (LF) and average weekly

earnings (Inc) for Columbus and linearly extrapolate them to weekly data. The data is down-

loaded from the Bureau of Labor Statistics website (bls.gov). The estimation model is

y1t = x′tβ0 + z′1tγ0 + u1t, t = 1, ..., T1 (G.2)

where xt = (1, y2t, ..., yNt)
′, we consider three cases of adding covariates: (i) z1t = (Unempt, LFt, Inct)

′,

i.e., add the three covariates linearly to the regression model; (ii) add both the three covariates

and their square terms, i.e., add a total of six additional regressors; (iii) add three more cross

product terms of the three covariates, i.e., add a total of nine additional regressors (3 linear, 6

quadratic terms), γ0 is a k × 1 vector of parameters, where k is the dimensional of z1t. Since

opening a showroom has no (or negligible) effect on z1t, we can use the above model to predict

post-treatment counterfactual sales for the treated city. Specifically, we estimate model (G.2)

under the restriction βj ≥ 0 for j ≥ 2 using the pre-treatment data t = 1, ..., T1 (there are no

restrictions for the other parameters). Let β̂T1 and γ̂T1 denote the corresponding estimators.
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We estimate the counterfactual outcome y0
1t by

ŷ0
1t = x′tβ̂T1 + z′1tγ̂T1 (G.3)

for t = T1 + 1, ..., T and estimate ATE by T−1
2

∑T
t=T1+1(y1t − ŷ0

1t). Note that in (G.3) we use

the treated unit’s covariates z1t in estimating the counterfactual outcome y0
1t. We do not need

to use control units’ covariates to form a synthetic path for z1t because z1t is exogenous in

the sense that the treatment event will not affect (or its effect on z1t is negligible) covariates’

evolution of the treated unit.

Figure 5: Columbus: Modified synthetic control ATE, add Covariates
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Figure 5 plots the estimation result for Columbus with three covariates added to the regres-

sion model linearly, i.e., z1t is of dimensional three. The ATE becomes 69.7% which is quite

close to the original result of 67%. However, the adjusted R2 decreased slightly from 0.528 to

0.520, indicating that the three covariates do not have additional explanatory power to explain

sales. Obtaining virtually the same ATE estimation result even with added covariates supports

our original ATE estimation result. For cases (ii) and (iii), z1t is of dimensional six and nine, the

resulting adjusted R2 are reduced to .495 and .478, respectively. Therefore, adding quadratic

terms of the three covariates do not give additional prediction power to Columbus’ sales.

G.3 Selecting control units based on covariate matching

In this subsection, we first select cities whose covariates are close to the covariates of the treated

city. Then we select the number of control cities by comparing adjusted R2. Finally we estimate
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ATE using the selected control units. We explain this procedure in more detail below.

For each j = 1, 2, 3 (corresponding to Unemp, LF, Inc), we regress z1,jt on zi,jt using the

pre-treatment data and obtain the goodness-of-fit R2
i,j for i = 2, ..., 11. We obtain a total R-

square for city i by R2
i = R2

i,1 + R2
i,2 + R2

i,3. We sort them in a non-increasing order: R2
(2) ≥

R2
(3) ≥ ... ≥ R2

(11). Their corresponding sales are denoted by y(2),t,...,y(11),t for t = 1, ..., T1.

Next, we regress y1t on y(2),t and obtain an adjusted R̄2
(2). Then, we regress y1t on (y(2),t, y(3),t)

and obtain an adjusted R̄2
(2),(3). We continue this way until we regress y1t on all (y(2),t, ..., y(11),t).

We choose a model with the largest adjusted R̄2. For Columbus, the method that selects seven

cities (Portland, Houston and Atlanta are not selected) gives the largest adjusted R̄2. Using the

seven selected cities as control group, the modified synthetic control method’s estimation result

is plotted in Figure 6. The ATE estimation result is 68.5% which is quite close to the original

result of 67%. The robustness check shows that our ATE estimation result is not sensitive to

the selection of different control units.

Figure 6: Columbus: ATE Estimation Based on Covariates Matching
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G.4 Allowing for v1t to be serially correlated

As discussed in Section 6.2, when testing the null that v1t is serially uncorrelated, we obtain a

p-value of 0.0963. It is not strong evidence supporting the null hypothesis. In this section, we

allow for vit to follow an AR(1) process: v1t = ρvv1,t−1 + ξt, where ξt is serially uncorrelated.

Since v1t enters the term Â2, this only changes our calculation of Â∗2. The steps of generating

Â∗2 are as follows: First, one obtains ρ̂v by regressing v̂1t on v̂1,t−1 with t = T1 + 1, ..., T .
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Then one estimates ξt by ξ̂t = v̂1t − ρ̂vv̂1,t−1 and compute σ̂2
ξ = T−1

2

∑T
t=T1+2 ξ̂

2
t . Next, one

generates ξ∗t ∼ iid N(0, σ̂2
ξ ) and v∗1t = ρ̂vv

∗
1,t−1 + ξ∗t for t = T1 + 1, ..., T , where v∗1,T1

∼ iid

N(0, σ̂2
ξ/(1 − ρ̂2

v)). Finally, one obtains Â∗2 = T
−1/2
2

∑T
t=T1+1 v

∗
1t. Note that Â∗1 is generated the

same way as discussed in Section 4.1 and is Â∗ = Â∗1 + Â∗2. The above steps are repeated J

times, and the remaining steps as how to obtain the 1 − α confidence interval for ∆1 are the

same as discussed in Section 4.1.

The estimated confidence intervals are given in Table 16. Comparing Table 16 with Table

5, we observe the results are similar although the estimated confidence intervals reported in

Table 16 are wider than those in Table 5.

Table 16: Confidence intervals (MSC, v1t follows an AR(1) process)
m=20 m=40 m=60 m=80 m=90

80% CI [471.2, 897.6] [465.8, 8906.7] [468.4, 893.7] [470.5, 892.7] [462.1, 888.7]
90% CI [415.5, 959.6] [411.9, 951.2] [408.7, 952.1] [408.2, 957.1] [403.2, 953.9]
95% CI [367.7, 1152.3] [361.3, 1009.3] [359.2, 1006.7] [361.0, 1009.9] [357.4, 1001.3]
99% CI [262.7, 1125.8] [246.7, 1157.4] [254.2, 1105.8] [261.6, 1121.7] [261.7, 1106.5]
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