SUPPLEMENTARY MATERIAL

Sulphated flavones and pregnane-type steroids from Helicteres viscida

Luu Hong Truong^a, Nguyen Hieu Cuong^a, Tran Huu Dang^a, Trinh Thi My Dung^a, Pham Thi Cham^b, Tran Thi Hong Hanh^b, Tran Hong Quang^b, Nguyen Hai Dang^b, Nguyen Xuan Cuong^b, Nguyen Hoai Nam,^{b,*} and Chau Van Minh^b

^aSouthern Institute of Ecology, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam; ^bInstitute of Marine Biochemistry, VAST, Hanoi, Vietnam.

*To whom correspondence should be addressed: Email: namnguyenhoai@imbc.vast.vn (Nguyen Hoai Nam)

ABSTRACT. In our search for anti-inflammatory constituents from Vietnamese plants, the methanolic extract of *Helicteres viscida* was found to exhibit inhibitory effect on LPS-induced NO production in RAW264.7 cells. Phytochemical investigation of this plant led to isolation of four sulphated flavones (1–4), including one new compound 5,3',4'-trihydroxy-7-methoxy-8-*O*-sulphate flavone (1), and two pregnane-type steroids (5 and 6), including one new compound 7-*epi*-heligenin B (5). Their structures were elucidated by 1D and 2D NMR as well as HR-QTOF-MS experiments. Among isolated compounds, heligenin B (6) exhibited potent inhibitory effect on LPS-induced NO production in RAW264.7 cells with IC₅₀ of 1.23 \pm 0.05 μ M. The activity of 6 was comparable to that of the positive control cardamonin.

Keywords: Helicteres viscida, Malvaceae, sulphated flavone, pregnane-type steroid.

CONTENTS

General experimental procedures						
Figure S1. ¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 1	S 3					
Figure S2. ¹³ C NMR spectrum (CD ₃ OD, 125 MHz) of compound 1	S 3					
Figure S3. HSQC spectrum (CD ₃ OD, 500 MHz) of compound 1	S 4					
Figure S4. HMBC spectrum (CD ₃ OD, 500 MHz) of compound 1	S 4					
Figure S5. HR-QTOF mass spectrum of compound 1	S 5					
Figure S6. ¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 5	S 5					
Figure S7. Expaned ¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 5	S 6					
Figure S8. ¹³ C NMR spectrum (CD ₃ OD, 125 MHz) of compound 5	S 7					
Figure S9. Expaned ¹³ C NMR spectrum (CD ₃ OD, 125 MHz) of compound 5						
Figure S10. HSQC spectrum (CD ₃ OD, 500 MHz) of compound 5						
Figure S11. HMBC spectrum (CD ₃ OD, 500 MHz) of compound 5	S 8					
Figure S12. COSY spectrum (CD ₃ OD, 500 MHz) of compound 5	S 9					
Figure S13. NOESY spectrum (CD ₃ OD, 500 MHz) of compound 5	S 9					
Figure S14. Expaned NOESY spectrum (CD ₃ OD, 500 MHz) of compound 5	S10					
Figure S15. HR-QTOF mass spectrum of compound 5						
Figure S16. ¹ H NMR spectrum (CD ₃ OD, 500 MHz) of compound 6						
Figure S17. ¹³ C NMR spectrum (CD ₃ OD, 125 MHz) of compound 6	S11					
Figure S18. HSQC spectrum (CD ₃ OD, 500 MHz) of compound 6	S12					
Figure S19. HMBC spectrum (CD ₃ OD, 500 MHz) of compound 6	S12					
Table S1. ¹³ C NMR (CD ₃ OD, 125 MHz) spectroscopic data of compounds 1, 5 and 6	S13					

General experimental procedures

Optical rotations were determined on a JASCO P-2000 polarimeter (Tokyo, Japan). The HR-QTOF mass spectra were recorded on an Agilent 6530 Accurate-Mass spectrometer (CA, USA). The ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on an AVANCE III HD 500 (Bruker, Germany) FT-NMR spectrometer with tetramethylsilane (TMS) as an internal standard. Medium pressure liquid chromatography (MPLC) was carried out on a Biotage - Isolera One system (SE-751 03 Uppsala, Sweden). Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck, Darmstadt, Germany) and YMC*GEL (ODS-A, 12 nm S-150 mm, YMC Co., Ltd., Japan) resins. TLC used pre-coated silica gel 60 F₂₅₄ (Merck) and RP-18 F_{254S} plates (Merck), and compounds were visualized by spraying with aqueous 10% H₂SO₄ and heating for 3–5 min.

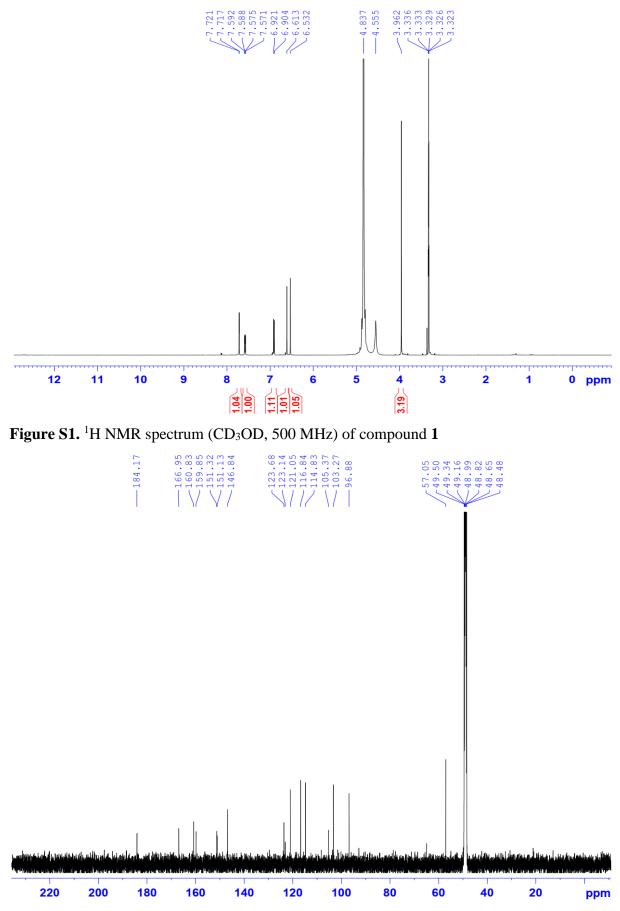


Figure S2. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 1

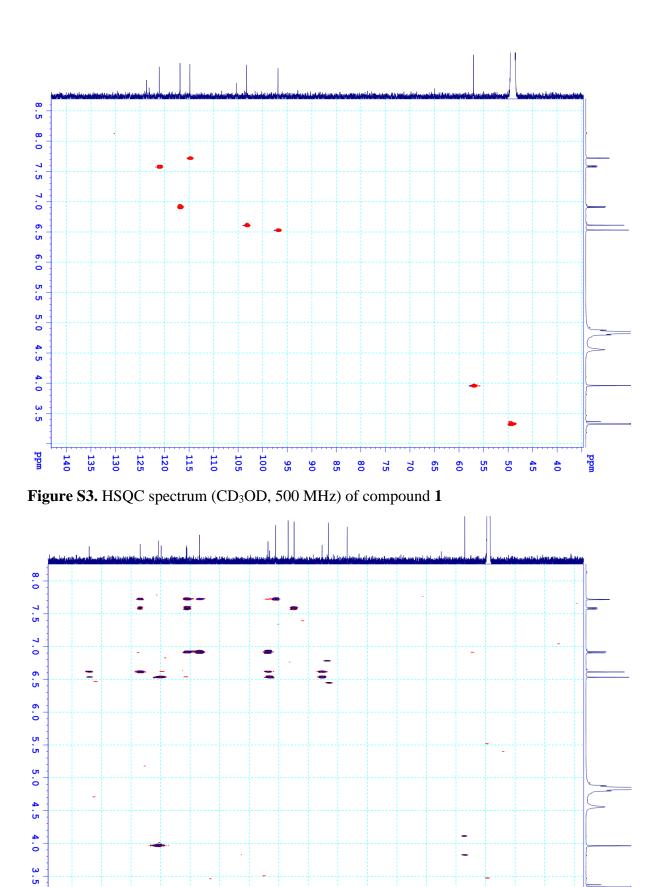


Figure S4. HMBC spectrum (CD₃OD, 500 MHz) of compound 1

- 130

- 120

- 110

100

90

80

70

60

50

40

- 140

3.0 ppm

- 190

170

180

- 160

- 150

թթո 20

<mark>З</mark>0

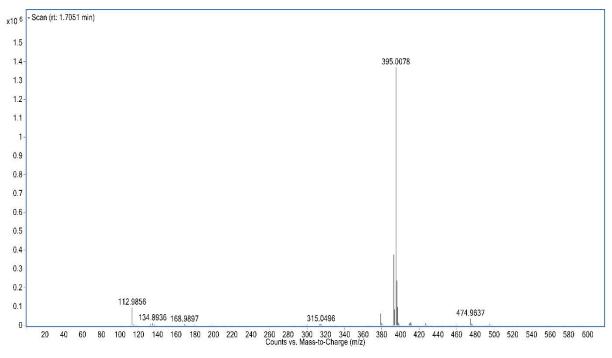


Figure S5. HR-QTOF mass spectrum of compound 1

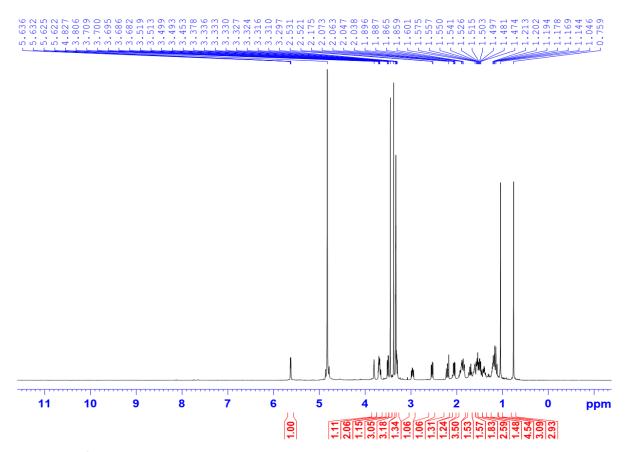


Figure S6. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 5

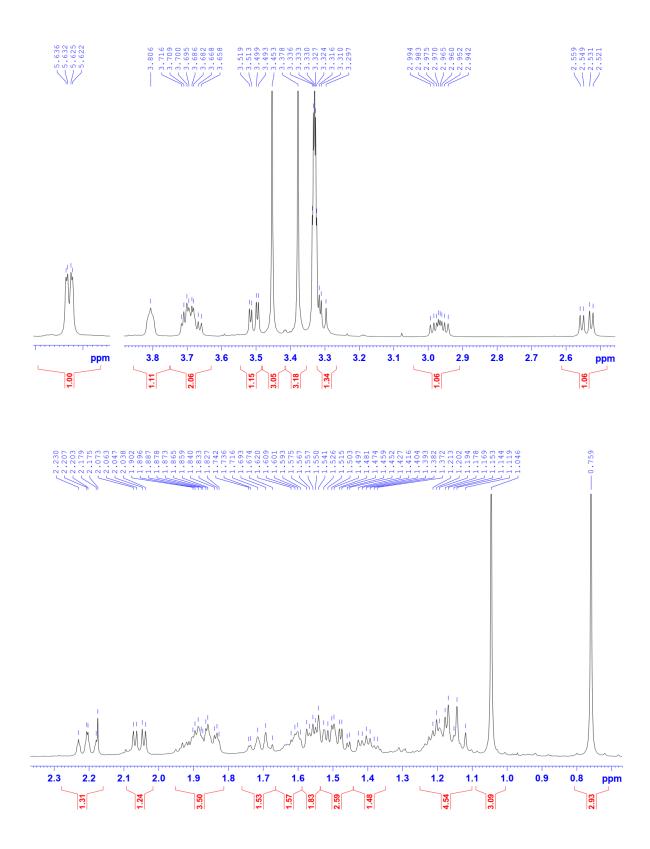
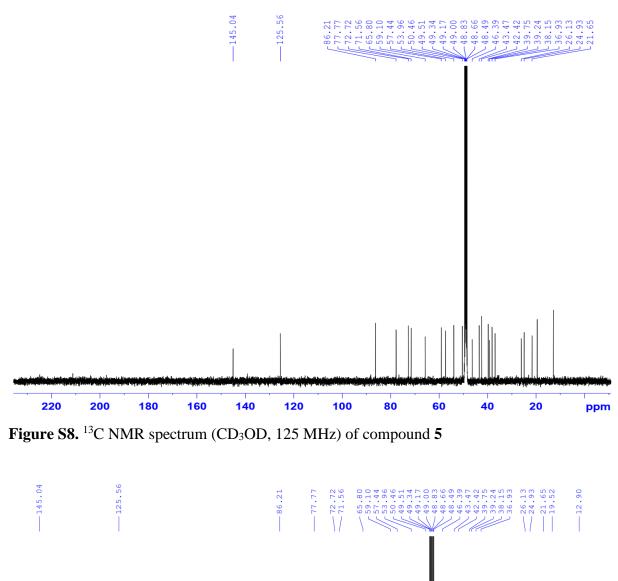



Figure S7. Expaned ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 5

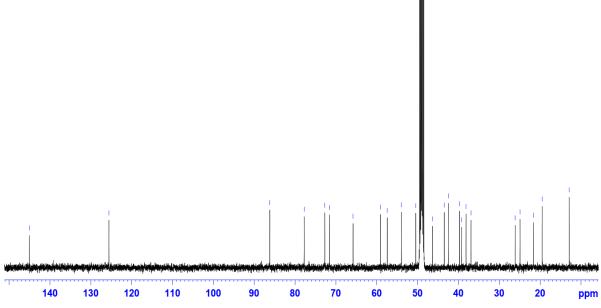


Figure S9. Expaned ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 5

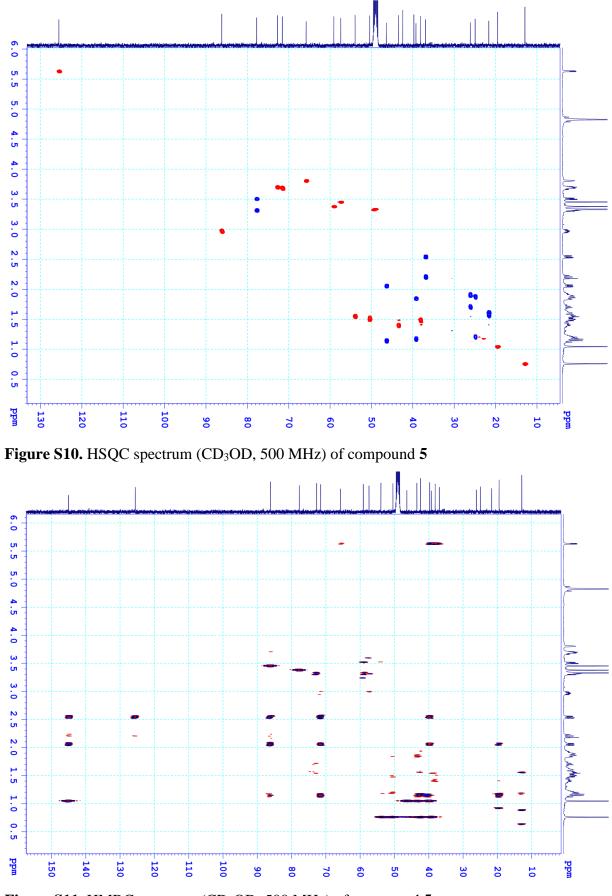


Figure S11. HMBC spectrum (CD₃OD, 500 MHz) of compound $\mathbf{5}$

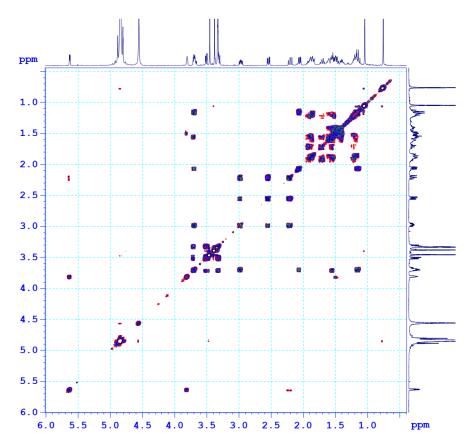


Figure S12. COSY spectrum (CD₃OD, 500 MHz) of compound 5

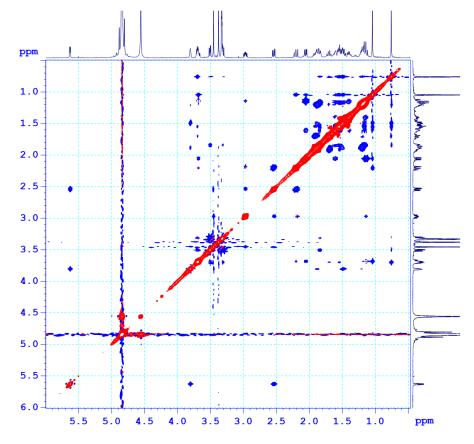


Figure S13. NOESY spectrum (CD₃OD, 500 MHz) of compound $\mathbf{5}$

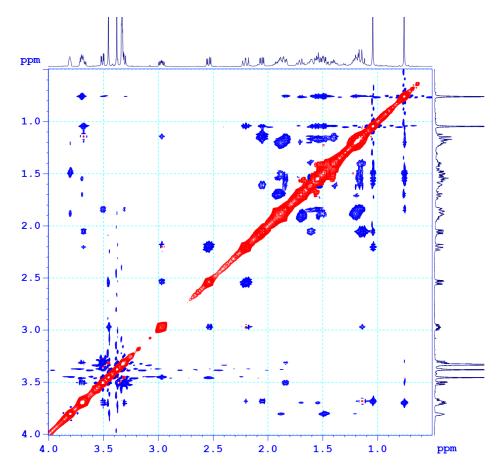


Figure S14. Expaned NOESY spectrum (CD₃OD, 500 MHz) of compound 5

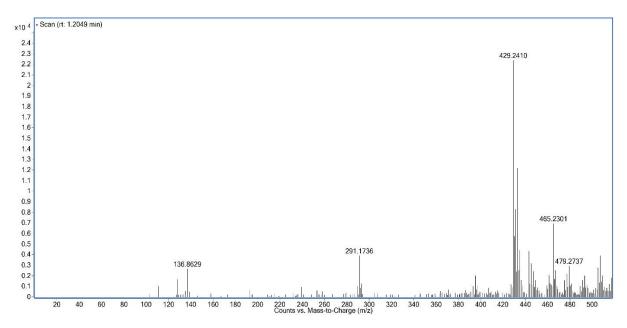


Figure S15. HR-QTOF mass spectrum of compound 5

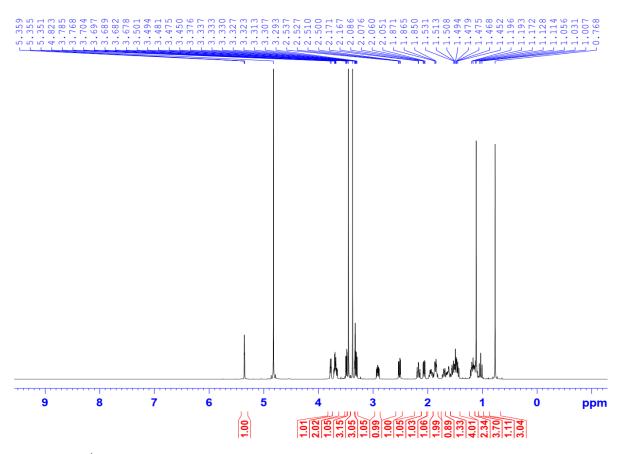


Figure S16. ¹H NMR spectrum (CD₃OD, 500 MHz) of compound 6

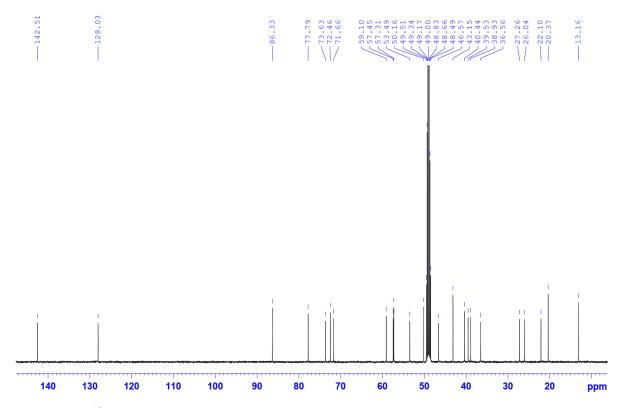


Figure S17. ¹³C NMR spectrum (CD₃OD, 125 MHz) of compound 6

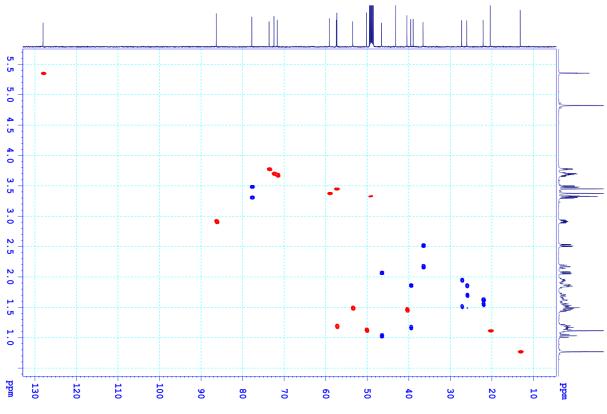


Figure S18. HSQC spectrum (CD₃OD, 500 MHz) of compound 6

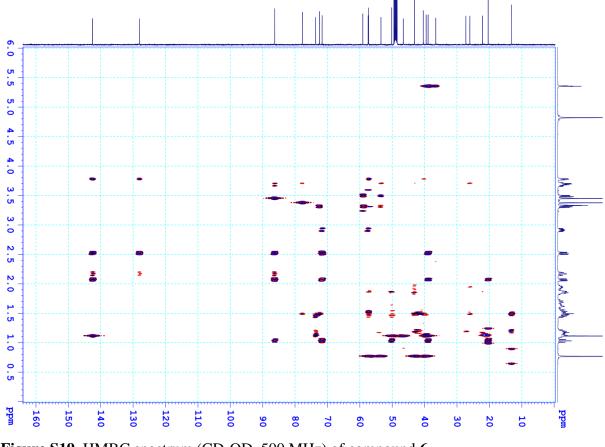


Figure S19. HMBC spectrum (CD₃OD, 500 MHz) of compound 6

С	${}^{a}\delta_{\mathrm{C}}$	${}^{\mathrm{b}}\delta_{\mathrm{C}}$	$\delta_{\! m C}$ of ${f 1}$	С	$^{\circ}\delta_{\mathrm{C}}$	$^{ m d}\delta_{ m C}$	${}^{e}\delta_{\mathrm{C}}$	$\delta_{\rm C}$ of ${f 5}$	$\delta_{ m C}$ of ${f 6}$
2	163.4	164.7	166.9	1	37.6	37.0	46.6	46.4	46.6
3	102.9	102.7	103.3	2	32.4	31.4	71.7	71.6	71.6
4	182.3	182.6	184.2	3	71.1	71.4	86.4	86.2	86.3
5	153.0	-	159.8	4	43.4	41.7	36.6	36.9	36.5
6	95.6	95.8	96.9	5	144.9	143.5	142.5	145.0	142.5
7	154.2	159.1	160.8	6	125.5	125.4	128.0	125.6	128.0
8	126.1	123.2	123.1	7	64.8	73.3	73.7	65.8	73.6
9	144.3	148.8	151.3	8	38.4	40.9	40.5	38.1	40.4
10	103.8	104.7	105.4	9	42.7	48.3	50.2	43.5	50.1
1′	122.9	123.6	123.7	10	37.7	36.9	38.9	39.7	38.9
2'	128.4	113.8	114.8	11	21.2	21.1	26.1	21.6	22.1*
3'	114.4	146.8	146.8	12	39.8	39.5	39.5	39.2	39.5
4′	162.3	151.6	151.1	13	42.3	42.0	43.2	42.4	43.1
5′	114.4	111.8	116.8	14	50.2	55.6	57.3	50.5	57.3
6′	128.4	119.8	121.0	15	24.7	26.4	22.1	24.9	26.0*
7-OMe	56.2	56.4	57.0	16	28.7	28.4	27.3	26.1	27.2
4'-OMe	55.5	55.7		17	56.2	55.9	53.5	53.9	53.5
				18	12.0	11.8	13.2	12.9	13.1
				19	18.8	19.1	20.4	19.5	20.4
				20			72.5	72.7	72.4
				21			77.8	77.8	77.8
				3-OMe			57.4	57.4	57.4
				21-OMe			59.1	59.1	59.1

Table S1. ¹³C NMR (CD₃OD, 125 MHz) spectroscopic data of compounds 1, 5 and 6.

^a δ_{C} of 7,4'-di-*O*-methylisoscutellarein in DMSO- d_6 (Horie et al. 1998), ^b δ_{C} of 5,3'-di-hydroxy-7,4'-dimethoxy-8-*O*-sulphate flavone (condadine) in DMSO- d_6 (Fernandes et al. 2018), ^c δ_{C} of (24*S*)-ergost-5-ene-3 β ,7 α -diol in CDCl₃ (Kobayashi et al. 1993), ^d δ_{C} of (24*S*)-ergost-5-en-3 β ,7 β -diol in CDCl₃ (Muralidhar et al. 2005), ^e δ_{C} of heligenin B in CD₃OD (Wang et al. 2012), *Due to 2D NMR experiments, the reported ¹³C-NMR chemical shifts at C-11 and C-15 of heligenin B (**6**) (Wang et al. 2012) must be reassigned as shown.

References

- Fernandes DA, Souza MSR, Teles YCF, Oliveira LHG, Lima JB, Conceicao AS, Nunes FC, Silva TMS, Souza MFV. 2018. New sulphated flavonoids and larvicidal activity of *Helicteres velutina* K. Schum (Sterculiaceae). Molecules. 23(11):2784.
- Hòrie T, Ohtsuru Y, Shibata K, Yamashita K, Tsukayama M, Kawamura Y. 1998. ¹³C NMR spectral assignment of the A-ring of polyoxygenated flavones. Phytochemistry. 47(5):865-874.
- Kobayashi M, Mrishna MM, Haribabu B, Anjaneyulu V. 1993. Marine sterol. XXV.Isolation of 23-demethylgorgost-7-ene- 3β , 5α , 6β -triol and (24*S*)-ergostane- 3β , 5α , 6β , 7β , 15β -pentol from soft corals of the Andaman and Nicobar coasts. Chem Pharm Bull. 41(1):87-89.
- Muralidhar P, Kumar MM, Krishna N, Rao CB, Rao DV. 2005. New sphingolipids and a sterol from a *Lobophytum* species of the Indian ocean. Chem Pharm Bull. 53(2):168-171.
- Wang GC, Li T, Wei YR, Zhang YB, Li YL, Sze SC, Ye WC. 2012. Two pregnane derivatives and a quinolone alkaloid from *Helicteres angustifolia*. Fitoterapia. 83(8):1643-1647.