SUPPLEMENTARY MATERIAL

## Influence of Dispersive Long Range Interactions on Properties of Vapour-Liquid Equilibria and Interfaces of Binary Lennard-Jones Mixtures

Simon Stephan and Hans Hasse

Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany

simon.stephan@mv.uni-kl.de

November 2, 2019

## Tables

The supplementary material for the publication Influence of Dispersive Long Range Interactions on Properties of Vapour-Liquid Equilibria and Interfaces of Binary Lennard-Jones Mixtures contains

- Plots of the density profiles at the planar vapour-liquid interfaces of the investigated LJ mixtures. The results from both MD and DGT are shown for all investigated mixtures, cf. Figs. 1 4. The topological behaviour of such density profiles has been discussed in detail elsewhere[41].
- The numeric values of the phase equilibria and interfacial properties of the pure LJ fluid from the coexistence MD simulations and the EOS+DGT (Table 1 & 2)
- The numeric values of the Henry's law constants from MD simulations for the mixture D, E, and F obtained from the LJ and LJTS potential (Table 3 & 4)
- The numeric values of the phase equilibria (Table 5 10) and interfacial properties (Table 11 16) results of the LJ potential for the mixtures A F. The results from both the coexistence MD simulations and the EOS+DGT are reported.



Figure 1. Density profiles of the binary LJ mixtures A, B, and C at  $T = 0.92 \varepsilon k_B^{-1}$ . Results from DGT. Dashed lines: heavy boiling component 1; solid lines: light boiling component 2. The color indicates the liquid phase composition.



Figure 2. Density profiles of the binary LJ mixtures D, E, and F at  $T = 0.92 \varepsilon k_B^{-1}$ . Results from DGT. Dashed lines: heavy boiling component 1; solid lines: light boiling component 2. The color indicates the liquid phase composition.



Figure 3. Density profiles of the binary LJ mixtures A, B, and C at  $T = 0.92 \varepsilon k_B^{-1}$ . Results from MD. Dashed lines: heavy boiling component 1; solid lines: light boiling component 2. The color indicates the liquid phase composition.



Figure 4. Density profiles of the binary LJ mixtures D, E, and F at  $T = 0.92 \varepsilon k_B^{-1}$ . Results from MD. Dashed lines: heavy boiling component 1; solid lines: light boiling component 2. The color indicates the liquid phase composition.

Table 1. MD and DGT results for the vapour-liquid equilibrium of the pure Lennard-Jones fluid. The columns are from left to right: the temperature, the vapour pressure, saturated liquid and vapour density. The number in the parentheses indicates the statistical uncertainty in the last decimal digit.

| Т    | $p \ / \ arepsilon \sigma$ | $p \ / \ arepsilon \sigma^{-3}$ |             | -3     | $ ho'$ / $\sigma^{-3}$ |        |  |
|------|----------------------------|---------------------------------|-------------|--------|------------------------|--------|--|
|      | MD                         | EOS                             | MD          | EOS    | MD                     | EOS    |  |
| 0.69 | 0.00110(10)                | 0.0012                          | 0.00164(20) | 0.0018 | 0.847(12)              | 0.8468 |  |
| 0.74 | 0.00230(10)                | 0.0023                          | 0.00320(40) | 0.0032 | 0.826(12)              | 0.8255 |  |
| 0.79 | 0.00395(10)                | 0.0042                          | 0.00522(40) | 0.0055 | 0.804(11)              | 0.8036 |  |
| 0.84 | 0.0069(2)                  | 0.0069                          | 0.0087(6)   | 0.0088 | 0.781(11)              | 0.7811 |  |
| 0.89 | 0.0108(1)                  | 0.0109                          | 0.0133(7)   | 0.0134 | 0.758(10)              | 0.7578 |  |
| 0.94 | 0.0164(1)                  | 0.0162                          | 0.0198(9)   | 0.0195 | 0.7327(90)             | 0.7333 |  |
| 0.99 | 0.0233(3)                  | 0.0233                          | 0.0276(10)  | 0.0276 | 0.7065(80)             | 0.7073 |  |
| 1.04 | 0.0323(2)                  | 0.0323                          | 0.0380(10)  | 0.0380 | 0.6782(70)             | 0.6793 |  |
| 1.09 | 0.0437(1)                  | 0.0434                          | 0.052(1)    | 0.0515 | 0.6478(80)             | 0.6486 |  |
| 1.14 | 0.0572(4)                  | 0.0570                          | 0.070(2)    | 0.0691 | 0.6134(70)             | 0.6142 |  |
| 1.19 | 0.0736(7)                  | 0.0733                          | 0.094(2)    | 0.0925 | 0.5734(60)             | 0.5744 |  |
| 1.24 | 0.0931(5)                  | 0.0925                          | 0.128(3)    | 0.1249 | 0.5240(60)             | 0.5257 |  |
| 1.29 | 0.1164(3)                  | 0.1150                          | 0.189(4)    | 0.1753 | 0.4521(40)             | 0.4595 |  |

**Table 2.** MD and DGT results for the vapour-liquid interfacial properties of the pure Lennard-Jones fluid. The columns are from left to right: the temperature, surface tension, and interfacial thickness. The number in the parentheses indicates the statistical uncertainty in the last decimal digit.

|      |                        |               | - 00 /          |          |  |
|------|------------------------|---------------|-----------------|----------|--|
| T    | $\gamma / \varepsilon$ | $\sigma^{-2}$ | $L_{10}^{90}$ , | $\sigma$ |  |
|      | MD                     | DGT           | MD              | DGT      |  |
| 0.69 | 1.18(2)                | 1.207         | 1.88(2)         | 2.21     |  |
| 0.74 | 1.07(3)                | 1.083         | 2.06(5)         | 2.33     |  |
| 0.79 | 0.95(3)                | 0.961         | 2.24(3)         | 2.47     |  |
| 0.84 | 0.85(2)                | 0.844         | 2.43(3)         | 2.63     |  |
| 0.89 | 0.74(2)                | 0.730         | 2.72(5)         | 2.82     |  |
| 0.94 | 0.62(2)                | 0.620         | 3.04(3)         | 3.05     |  |
| 0.99 | 0.52(2)                | 0.515         | 3.38(5)         | 3.33     |  |
| 1.04 | 0.42(3)                | 0.415         | 3.84(5)         | 3.67     |  |
| 1.09 | 0.32(1)                | 0.320         | 4.43(9)         | 4.13     |  |
| 1.14 | 0.24(1)                | 0.232         | 5.23(8)         | 4.75     |  |
| 1.19 | 0.15(1)                | 0.153         | 6.5(1)          | 5.65     |  |
| 1.24 | 0.08(1)                | 0.083         | 8.4(2)          | 7.21     |  |
| 1.29 | 0.03(1)                | 0.028         | 14.3(9)         | 10.82    |  |

| T    |            | $H_{2,1} / \varepsilon \sigma^{-3}$ |            |
|------|------------|-------------------------------------|------------|
|      | D          | Ε                                   | F          |
| 0.63 | 0.2066(57) | 0.0224(7)                           | 0.9929(90) |
| 0.68 | 0.2382(42) | 0.0331(6)                           | 0.9937(98) |
| 0.73 | 0.2595(32) | 0.0447(6)                           | 0.9326(92) |
| 0.78 | 0.2893(23) | 0.0583(5)                           | 0.8842(68) |
| 0.83 | 0.3030(21) | 0.0747(5)                           | 0.8350(64) |
| 0.88 | 0.3137(20) | 0.0902(5)                           | 0.7704(59) |
| 0.93 | 0.3183(20) | 0.1060(6)                           | 0.7127(43) |
| 0.98 | 0.3156(16) | 0.1208(5)                           | 0.6300(47) |
| 1.03 | 0.3045(17) | 0.1338(5)                           | 0.5429(44) |

 Table 3. MD results for the Henry's law constants of the LJTS potential for the mixture D, E, and F. The number in the parentheses indicates the statistical uncertainty in the last decimal digit.

 Table 4. MD results for the Henry's law constants of the LJ potential for the mixture D, E, and F. The number in the parentheses indicates the statistical uncertainty in the last decimal digit.

| T    |            | $H_{2,1} / \varepsilon \sigma^{-3}$ |            |
|------|------------|-------------------------------------|------------|
|      | D          | Ε                                   | F          |
| 0.74 | 0.2283(47) | 0.0261(6)                           | 1.0999(98) |
| 0.79 | 0.2538(48) | 0.0353(7)                           | 1.0593(90) |
| 0.84 | 0.2796(27) | 0.0468(5)                           | 1.0209(96) |
| 0.89 | 0.3053(28) | 0.0601(5)                           | 0.9902(91) |
| 0.94 | 0.3302(24) | 0.0752(5)                           | 0.9629(73) |
| 0.99 | 0.3464(21) | 0.0903(5)                           | 0.9157(58) |
| 1.04 | 0.3541(20) | 0.1054(5)                           | 0.8538(53) |
| 1.09 | 0.3664(16) | 0.1199(5)                           | 0.8143(48) |
| 1.14 | 0.3663(17) | 0.1357(5)                           | 0.7472(46) |
| 1.19 | 0.3653(17) | 0.1505(5)                           | 0.6912(37) |
| 1.24 | 0.3539(18) | 0.1626(5)                           | 0.6180(39) |
| 1.29 | 0.3290(26) | 0.1703(8)                           | 0.5262(56) |

| $x'_2 / \mod \operatorname{mol}^{-1}$ | p / εc    | r <sup>-3</sup> | $x_2'' \ / \ \mathrm{mol}$ | $mol^{-1}$ | $\rho' / \sigma$ | -3    | $\rho'' / \sigma^{-3}$ |        |
|---------------------------------------|-----------|-----------------|----------------------------|------------|------------------|-------|------------------------|--------|
|                                       | MD        | EOS             | MD                         | EOS        | MD               | EOS   | MD                     | EOS    |
| 0.000                                 | 0.0138(1) | 0.0139          | 0.000                      | 0.000      | 0.743(9)         | 0.743 | 0.0167(8)              | 0.0168 |
| 0.010(1)                              | 0.0141(3) | 0.0140          | 0.021(3)                   | 0.018      | 0.742(4)         | 0.743 | 0.0171(8)              | 0.0170 |
| 0.050(1)                              | 0.0145(4) | 0.0145          | 0.089(6)                   | 0.084      | 0.740(6)         | 0.741 | 0.0177(8)              | 0.0176 |
| 0.104(1)                              | 0.0151(2) | 0.0151          | 0.167(12)                  | 0.168      | 0.738(8)         | 0.738 | 0.0184(8)              | 0.0185 |
| 0.150(2)                              | 0.0157(2) | 0.0157          | 0.239(13)                  | 0.234      | 0.736(9)         | 0.736 | 0.0193(8)              | 0.0192 |
| 0.197(2)                              | 0.0163(2) | 0.0162          | 0.299(10)                  | 0.298      | 0.733(9)         | 0.734 | 0.0201(9)              | 0.0200 |
| 0.245(3)                              | 0.0167(3) | 0.0168          | 0.364(14)                  | 0.358      | 0.731(9)         | 0.732 | 0.0206(9)              | 0.0207 |
| 0.300(1)                              | 0.0175(4) | 0.0175          | 0.428(16)                  | 0.424      | 0.728(11)        | 0.729 | 0.0217(12)             | 0.0216 |
| 0.347(1)                              | 0.0178(3) | 0.0180          | 0.473(14)                  | 0.476      | 0.726(10)        | 0.727 | 0.0221(10)             | 0.0224 |
| 0.398(2)                              | 0.0187(4) | 0.0186          | 0.527(14)                  | 0.530      | 0.723(11)        | 0.724 | 0.0233(10)             | 0.0233 |
| 0.446(2)                              | 0.0195(4) | 0.0192          | 0.581(15)                  | 0.577      | 0.721(11)        | 0.722 | 0.0245(11)             | 0.0240 |
| 0.495(2)                              | 0.0197(4) | 0.0198          | 0.626(12)                  | 0.623      | 0.718(10)        | 0.719 | 0.0248(11)             | 0.0249 |
| 0.550(1)                              | 0.0206(2) | 0.0205          | 0.670(7)                   | 0.672      | 0.715(12)        | 0.716 | 0.0261(11)             | 0.0258 |
| 0.594(2)                              | 0.0210(3) | 0.0210          | 0.711(14)                  | 0.710      | 0.713(11)        | 0.714 | 0.0267(11)             | 0.0266 |
| 0.642(2)                              | 0.0214(3) | 0.0216          | 0.747(9)                   | 0.749      | 0.710(10)        | 0.711 | 0.0273(13)             | 0.0274 |
| 0.699(2)                              | 0.0221(4) | 0.0223          | 0.784(8)                   | 0.794      | 0.706(10)        | 0.708 | 0.0282(11)             | 0.0284 |
| 0.752(2)                              | 0.0230(4) | 0.0229          | 0.831(10)                  | 0.833      | 0.704(10)        | 0.705 | 0.0297(12)             | 0.0294 |
| 0.791(1)                              | 0.0234(5) | 0.0234          | 0.859(12)                  | 0.862      | 0.701(10)        | 0.702 | 0.0302(11)             | 0.0301 |
| 0.848(2)                              | 0.0242(3) | 0.0241          | 0.901(9)                   | 0.901      | 0.698(7)         | 0.699 | 0.0315(11)             | 0.0311 |
| 0.900(1)                              | 0.0247(6) | 0.0247          | 0.934(6)                   | 0.936      | 0.694(7)         | 0.696 | 0.0322(11)             | 0.0321 |
| 0.950(1)                              | 0.0253(2) | 0.0253          | 0.968(2)                   | 0.968      | 0.691(6)         | 0.693 | 0.0331(12)             | 0.0330 |
| 1.000                                 | 0.0259(3) | 0.0259          | 1.000                      | 1.000      | 0.688(3)         | 0.690 | 0.0342(12)             | 0.0340 |

**Table 5.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture A ( $\varepsilon_2/\varepsilon_1 = 0.9$  and  $\xi_{12} = 1$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 / \text{mol mol}^{-1}$ | p / εc    | $\sigma^{-3}$ | $x_2'' \ / \ \mathrm{mol}$ | $x_2'' / \mod \operatorname{mol}^{-1}$ |          | $ ho'$ / $\sigma^{-3}$ |            | $ ho''$ / $\sigma^{-3}$ |  |
|------------------------------|-----------|---------------|----------------------------|----------------------------------------|----------|------------------------|------------|-------------------------|--|
|                              | MD        | EOS           | MD                         | EOS                                    | MD       | EOS                    | MD         | EOS                     |  |
| 0.000                        | 0.0138(1) | 0.0139        | 0.000                      | 0.000                                  | 0.743(9) | 0.743                  | 0.0167(8)  | 0.0168                  |  |
| 0.0111(4)                    | 0.0138(2) | 0.0138        | 0.002(1)                   | 0.002                                  | 0.744(4) | 0.745                  | 0.0167(8)  | 0.0166                  |  |
| 0.0542(8)                    | 0.0132(2) | 0.0132        | 0.015(3)                   | 0.014                                  | 0.749(6) | 0.751                  | 0.0159(6)  | 0.0158                  |  |
| 0.1112(9)                    | 0.0124(3) | 0.0123        | 0.039(2)                   | 0.038                                  | 0.754(7) | 0.757                  | 0.0149(6)  | 0.0148                  |  |
| 0.1575(18)                   | 0.0117(2) | 0.0117        | 0.073(7)                   | 0.067                                  | 0.758(8) | 0.761                  | 0.0139(7)  | 0.0139                  |  |
| 0.2062(14)                   | 0.0112(2) | 0.0110        | 0.107(8)                   | 0.110                                  | 0.761(8) | 0.764                  | 0.0133(7)  | 0.0131                  |  |
| 0.2520(17)                   | 0.0105(2) | 0.0105        | 0.167(13)                  | 0.164                                  | 0.763(8) | 0.767                  | 0.0125(7)  | 0.0124                  |  |
| 0.3094(12)                   | 0.0101(3) | 0.0100        | 0.260(10)                  | 0.252                                  | 0.765(9) | 0.769                  | 0.0120(7)  | 0.0118                  |  |
| 0.3547(12)                   | 0.0100(2) | 0.0098        | 0.330(20)                  | 0.335                                  | 0.765(8) | 0.770                  | 0.0118(7)  | 0.0116                  |  |
| 0.4038(15)                   | 0.0099(3) | 0.0099        | 0.445(14)                  | 0.436                                  | 0.765(9) | 0.770                  | 0.0117(7)  | 0.0116                  |  |
| 0.4528(14)                   | 0.0102(2) | 0.0102        | 0.538(19)                  | 0.540                                  | 0.765(9) | 0.769                  | 0.0121(7)  | 0.0120                  |  |
| 0.4999(9)                    | 0.0108(3) | 0.0107        | 0.632(7)                   | 0.636                                  | 0.763(8) | 0.768                  | 0.0128(7)  | 0.0126                  |  |
| 0.5498(12)                   | 0.0115(2) | 0.0115        | 0.724(7)                   | 0.726                                  | 0.761(8) | 0.765                  | 0.0137(8)  | 0.0137                  |  |
| 0.5943(13)                   | 0.0127(3) | 0.0125        | 0.794(14)                  | 0.793                                  | 0.758(8) | 0.763                  | 0.0152(7)  | 0.0149                  |  |
| 0.6403(15)                   | 0.0140(4) | 0.0137        | 0.844(13)                  | 0.850                                  | 0.754(8) | 0.759                  | 0.0169(8)  | 0.0164                  |  |
| 0.6946(8)                    | 0.0154(3) | 0.0153        | 0.899(7)                   | 0.900                                  | 0.749(7) | 0.753                  | 0.0187(8)  | 0.0186                  |  |
| 0.7479(11)                   | 0.0172(2) | 0.0171        | 0.931(7)                   | 0.935                                  | 0.742(8) | 0.747                  | 0.0211(8)  | 0.0210                  |  |
| 0.7863(18)                   | 0.0184(3) | 0.0185        | 0.953(4)                   | 0.954                                  | 0.737(7) | 0.741                  | 0.0228(9)  | 0.0229                  |  |
| 0.8440(13)                   | 0.0207(4) | 0.0206        | 0.972(3)                   | 0.974                                  | 0.727(7) | 0.731                  | 0.0261(9)  | 0.0259                  |  |
| 0.8938(8)                    | 0.0223(3) | 0.0224        | 0.986(2)                   | 0.986                                  | 0.717(6) | 0.720                  | 0.0284(9)  | 0.0286                  |  |
| 0.9469(10)                   | 0.0244(5) | 0.0243        | 0.995(1)                   | 0.994                                  | 0.704(5) | 0.706                  | 0.0317(10) | 0.0313                  |  |
| 1.0000                       | 0.0259(3) | 0.0259        | 1.000                      | 1.000                                  | 0.688(3) | 0.690                  | 0.0342(12) | 0.0340                  |  |

**Table 6.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture B ( $\varepsilon_2/\varepsilon_1 = 0.9$  and  $\xi_{12} = 1.2$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $\frac{1}{x_2' / \operatorname{mol} \operatorname{mol}^{-1}}$ | p / εc    | <del>,</del> -3 | $x_2'' / \operatorname{mol} z_1''$ | $mol^{-1}$ | $\rho' / \sigma$ | -3    | $\rho'' / \sigma^{-3}$ |        |
|---------------------------------------------------------------|-----------|-----------------|------------------------------------|------------|------------------|-------|------------------------|--------|
|                                                               | MD        | EOS             | MD                                 | EOS        | MD               | EOS   | MD                     | EOS    |
| 0.000                                                         | 0.0138(1) | 0.0139          | 0.000                              | 0.000      | 0.743(9)         | 0.743 | 0.0167(8)              | 0.0168 |
| 0.0090(4)                                                     | 0.0150(2) | 0.0150          | 0.064(8)                           | 0.073      | 0.741(4)         | 0.742 | 0.0183(9)              | 0.0183 |
| 0.0430(10)                                                    | 0.0182(4) | 0.0187          | 0.230(16)                          | 0.257      | 0.736(6)         | 0.735 | 0.0225(9)              | 0.0231 |
| 0.0886(17)                                                    | 0.0220(5) | 0.0224          | 0.374(13)                          | 0.388      | 0.728(9)         | 0.727 | 0.0279(12)             | 0.0284 |
| 0.1333(12)                                                    | 0.0236(3) | 0.0251          | 0.440(8)                           | 0.460      | 0.721(11)        | 0.719 | 0.0302(12)             | 0.0323 |
| 0.1771(18)                                                    | 0.0255(4) | 0.0269          | 0.480(8)                           | 0.505      | 0.714(12)        | 0.712 | 0.0331(15)             | 0.0352 |
| 0.2222(25)                                                    | 0.0269(4) | 0.0283          | 0.520(13)                          | 0.537      | 0.707(13)        | 0.704 | 0.0352(13)             | 0.0375 |
| 0.2797(41)                                                    | 0.0283(4) | 0.0295          | 0.552(11)                          | 0.564      | 0.699(18)        | 0.695 | 0.0375(14)             | 0.0394 |
| 0.3335(46)                                                    | 0.0288(3) | 0.0303          | 0.566(9)                           | 0.582      | 0.692(19)        | 0.687 | 0.0383(15)             | 0.0407 |
| 0.3821(31)                                                    | 0.0294(3) | 0.0307          | 0.595(13)                          | 0.595      | 0.686(15)        | 0.681 | 0.0396(17)             | 0.0415 |
| 0.4390(25)                                                    | 0.0301(3) | 0.0311          | 0.610(10)                          | 0.608      | 0.680(20)        | 0.675 | 0.0411(31)             | 0.0422 |
| 0.4939(51)                                                    | 0.0305(3) | 0.0314          | 0.617(13)                          | 0.620      | 0.676(16)        | 0.670 | 0.0413(16)             | 0.0428 |
| 0.5510(25)                                                    | 0.0306(5) | 0.0317          | 0.635(10)                          | 0.634      | 0.672(20)        | 0.666 | 0.0419(27)             | 0.0432 |
| 0.6481(37)                                                    | 0.0307(5) | 0.0319          | 0.668(8)                           | 0.661      | 0.668(17)        | 0.663 | 0.0417(14)             | 0.0435 |
| 0.7038(9)                                                     | 0.0308(4) | 0.0319          | 0.695(10)                          | 0.681      | 0.668(14)        | 0.664 | 0.0423(27)             | 0.0435 |
| 0.7647(17)                                                    | 0.0310(3) | 0.0316          | 0.716(8)                           | 0.710      | 0.670(12)        | 0.666 | 0.0422(16)             | 0.0431 |
| 0.8007(18)                                                    | 0.0304(5) | 0.0314          | 0.744(10)                          | 0.731      | 0.670(11)        | 0.668 | 0.0412(16)             | 0.0426 |
| 0.8575(23)                                                    | 0.0298(4) | 0.0307          | 0.792(6)                           | 0.775      | 0.675(9)         | 0.673 | 0.0402(14)             | 0.0414 |
| 0.9085(25)                                                    | 0.0293(3) | 0.0296          | 0.834(8)                           | 0.830      | 0.679(10)        | 0.678 | 0.0392(14)             | 0.0396 |
| 0.9548(9)                                                     | 0.0280(5) | 0.0280          | 0.907(7)                           | 0.901      | 0.683(6)         | 0.683 | 0.0373(14)             | 0.0372 |
| 1.0000                                                        | 0.0259(3) | 0.0259          | 1.000                              | 1.000      | 0.688(3)         | 0.690 | 0.0342(12)             | 0.0340 |

**Table 7.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture C ( $\varepsilon_2/\varepsilon_1 = 0.92$  and  $\xi_{12} = 0.85$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

**Table 8.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture D ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 1$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 / \text{mol mol}^{-1}$ | $p \ / \ arepsilon \sigma^{-3}$ |        | $x_2'' / \operatorname{mol} z_2''$ | $x_2'' \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ |           | $ ho'$ / $\sigma^{-3}$ |           | $\rho'' / \sigma^{-3}$ |  |
|------------------------------|---------------------------------|--------|------------------------------------|------------------------------------------------|-----------|------------------------|-----------|------------------------|--|
|                              | MD                              | EOS    | MD                                 | EOS                                            | MD        | EOS                    | MD        | EOS                    |  |
| 0.000                        | 0.0138(1)                       | 0.0139 | 0.000                              | 0.000                                          | 0.743(9)  | 0.743                  | 0.0167(8) | 0.0168                 |  |
| 0.015(1)                     | 0.0193(4)                       | 0.0190 | 0.259(13)                          | 0.247                                          | 0.739(4)  | 0.740                  | 0.024(1)  | 0.0232                 |  |
| 0.051(1)                     | 0.0310(3)                       | 0.0305 | 0.504(10)                          | 0.502                                          | 0.731(6)  | 0.733                  | 0.039(1)  | 0.0383                 |  |
| 0.099(2)                     | 0.0467(6)                       | 0.0452 | 0.646(9)                           | 0.636                                          | 0.719(8)  | 0.722                  | 0.061(2)  | 0.0590                 |  |
| 0.136(3)                     | 0.0573(6)                       | 0.0559 | 0.692(7)                           | 0.687                                          | 0.708(9)  | 0.713                  | 0.078(2)  | 0.0755                 |  |
| 0.176(3)                     | 0.0681(5)                       | 0.0669 | 0.724(7)                           | 0.721                                          | 0.697(9)  | 0.703                  | 0.096(2)  | 0.0941                 |  |
| 0.228(4)                     | 0.0827(8)                       | 0.0803 | 0.744(6)                           | 0.747                                          | 0.681(13) | 0.688                  | 0.125(2)  | 0.1191                 |  |
| 0.253(3)                     | 0.0872(6)                       | 0.0863 | 0.749(7)                           | 0.754                                          | 0.672(10) | 0.680                  | 0.134(3)  | 0.1315                 |  |
| 0.314(9)                     | 0.0988(3)                       | 0.1002 | 0.761(5)                           | 0.765                                          | 0.644(16) | 0.660                  | 0.161(6)  | 0.1638                 |  |
| 0.332(6)                     | 0.1031(9)                       | 0.1040 | 0.760(7)                           | 0.766                                          | 0.642(12) | 0.653                  | 0.173(3)  | 0.1738                 |  |
| 0.391(6)                     | 0.1144(9)                       | 0.1157 | 0.757(10)                          | 0.766                                          | 0.616(13) | 0.629                  | 0.208(4)  | 0.2086                 |  |
| 0.424(3)                     | 0.1193(7)                       | 0.1217 | 0.756(7)                           | 0.763                                          | 0.599(13) | 0.614                  | 0.224(4)  | 0.2299                 |  |
| 0.467(6)                     | 0.1267(7)                       | 0.1288 | 0.749(11)                          | 0.756                                          | 0.576(11) | 0.592                  | 0.255(5)  | 0.2594                 |  |
| 0.498(15)                    | 0.1326(17)                      | 0.1334 | 0.731(43)                          | 0.749                                          | 0.558(12) | 0.574                  | 0.293(15) | 0.2823                 |  |

**Table 9.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture E ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 1.2$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 / \text{mol mol}^{-1}$ | $p \ / \ arepsilon \sigma^{-3}$ |        | $x_2'' / \text{mol}$ | $x_2'' / \mod \operatorname{mol}^{-1}$ |          | $\rho' \ / \ \sigma^{-3}$ |           | $\rho'' / \sigma^{-3}$ |  |
|------------------------------|---------------------------------|--------|----------------------|----------------------------------------|----------|---------------------------|-----------|------------------------|--|
|                              | MD                              | EOS    | MD                   | EOS                                    | MD       | EOS                       | MD        | EOS                    |  |
| 0.000                        | 0.0138(1)                       | 0.0139 | 0.000                | 0.000                                  | 0.743(9) | 0.743                     | 0.0167(8) | 0.0168                 |  |
| 0.032(1)                     | 0.0161(2)                       | 0.0158 | 0.146(8)             | 0.134                                  | 0.738(6) | 0.740                     | 0.020(1)  | 0.0192                 |  |
| 0.071(2)                     | 0.0197(3)                       | 0.0184 | 0.312(11)            | 0.273                                  | 0.733(6) | 0.737                     | 0.024(1)  | 0.0227                 |  |
| 0.127(1)                     | 0.0248(3)                       | 0.0232 | 0.462(9)             | 0.436                                  | 0.724(7) | 0.730                     | 0.031(1)  | 0.0289                 |  |
| 0.175(1)                     | 0.0301(4)                       | 0.0282 | 0.557(7)             | 0.544                                  | 0.715(8) | 0.724                     | 0.038(1)  | 0.0357                 |  |
| 0.225(2)                     | 0.0357(4)                       | 0.0342 | 0.633(7)             | 0.629                                  | 0.705(8) | 0.716                     | 0.046(1)  | 0.0441                 |  |
| 0.271(1)                     | 0.0430(5)                       | 0.0409 | 0.691(7)             | 0.691                                  | 0.695(8) | 0.708                     | 0.057(2)  | 0.0536                 |  |
| 0.326(2)                     | 0.0518(6)                       | 0.0499 | 0.740(7)             | 0.746                                  | 0.682(8) | 0.697                     | 0.071(2)  | 0.0671                 |  |
| 0.373(2)                     | 0.0612(4)                       | 0.0586 | 0.777(9)             | 0.782                                  | 0.669(8) | 0.685                     | 0.086(2)  | 0.0811                 |  |
| 0.428(3)                     | 0.0714(9)                       | 0.0699 | 0.803(5)             | 0.812                                  | 0.651(7) | 0.670                     | 0.105(2)  | 0.1005                 |  |
| 0.489(1)                     | 0.0847(4)                       | 0.0836 | 0.825(5)             | 0.835                                  | 0.628(7) | 0.649                     | 0.131(3)  | 0.1270                 |  |
| 0.544(3)                     | 0.0971(7)                       | 0.0971 | 0.834(8)             | 0.847                                  | 0.603(8) | 0.626                     | 0.160(4)  | 0.1568                 |  |
| 0.610(3)                     | 0.1116(7)                       | 0.1135 | 0.835(6)             | 0.853                                  | 0.565(8) | 0.592                     | 0.204(5)  | 0.2010                 |  |
| 0.681(6)                     | 0.1290(8)                       | 0.1309 | 0.826(8)             | 0.846                                  | 0.512(9) | 0.541                     | 0.275(7)  | 0.2650                 |  |

**Table 10.** MD and LJ-EOS[51] results for the vapour-liquid equilibrium of the binary Lennard-Jones mixture F ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 0.85$ ). The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 / \operatorname{mol} \operatorname{mol}^{-1}$ | $p \ / \ arepsilon \sigma^{-3}$ |        | $x_2'' \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ |       | $ ho'$ / $\sigma^{-3}$ |       | $\rho'' \ / \ \sigma^{-3}$ |        |
|-----------------------------------------------------|---------------------------------|--------|------------------------------------------------|-------|------------------------|-------|----------------------------|--------|
|                                                     | MD                              | EOS    | MD                                             | EOS   | MD                     | EOS   | MD                         | EOS    |
| 0.000                                               | 0.0138(1)                       | 0.0139 | 0.000                                          | 0.000 | 0.743(9)               | 0.743 | 0.0167(8)                  | 0.0168 |
| 0.012(1)                                            | 0.0273(4)                       | 0.0279 | 0.446(8)                                       | 0.454 | 0.740(4)               | 0.741 | 0.033(1)                   | 0.0341 |
| 0.032(1)                                            | 0.0455(5)                       | 0.0502 | 0.629(5)                                       | 0.655 | 0.736(6)               | 0.737 | 0.058(2)                   | 0.0642 |
| 0.048(2)                                            | 0.0591(5)                       | 0.0689 | 0.688(8)                                       | 0.719 | 0.731(7)               | 0.733 | 0.078(2)                   | 0.0924 |
| 0.059(2)                                            | 0.0726(4)                       | 0.0812 | 0.721(6)                                       | 0.743 | 0.729(8)               | 0.731 | 0.099(2)                   | 0.1129 |
| 0.084(4)                                            | 0.0947(7)                       | 0.1104 | 0.758(6)                                       | 0.769 | 0.722(8)               | 0.726 | 0.138(3)                   | 0.1691 |
| 0.101(3)                                            | 0.1084(6)                       | 0.1310 | 0.766(7)                                       | 0.771 | 0.718(9)               | 0.723 | 0.165(3)                   | 0.2159 |
| 0.110(4)                                            | 0.1248(6)                       | 0.1419 | 0.769(6)                                       | 0.769 | 0.717(11)              | 0.721 | 0.202(4)                   | 0.2429 |
| 0.137(3)                                            | 0.1419(8)                       | 0.1817 | 0.762(5)                                       | 0.745 | 0.709(10)              | 0.717 | 0.246(4)                   | 0.3435 |

**Table 11.** Interfacial properties of the binary Lennard-Jones mixture A ( $\varepsilon_2/\varepsilon_1 = 0.9$  and  $\xi_{12} = 1$ ). Results from MD and DGT. The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $arepsilon\sigma^{-2}$ |       | $\Gamma_2^{(1)} / a$ | $\Gamma_2^{(1)} \ / \ \sigma^{-2}$ |         | $E_2$ |         | $L_{10}^{90}$ / $\sigma$ |  |
|-----------------------------------------------|-----------------------------------|-------|----------------------|------------------------------------|---------|-------|---------|--------------------------|--|
|                                               | MD                                | DGT   | MD                   | DGT                                | MD      | DGT   | MD      | DGT                      |  |
| 0.000                                         | 0.665(21)                         | 0.663 | -                    | -                                  | -       | -     | 2.91(5) | 2.95                     |  |
| 0.010(1)                                      | 0.672(30)                         | 0.661 | 0.005(13)            | 0.003                              | 1.2(2)  | 1.0   | 2.90(5) | 2.96                     |  |
| 0.050(1)                                      | 0.660(22)                         | 0.650 | 0.015(15)            | 0.014                              | 1.07(4) | 1.0   | 2.95(4) | 2.98                     |  |
| 0.104(1)                                      | 0.645(23)                         | 0.636 | 0.040(23)            | 0.030                              | 1.05(2) | 1.0   | 2.98(6) | 3.02                     |  |
| 0.150(2)                                      | 0.622(24)                         | 0.624 | 0.023(4)             | 0.042                              | 1.03(3) | 1.0   | 3.01(5) | 3.06                     |  |
| 0.197(2)                                      | 0.609(22)                         | 0.612 | 0.042(4)             | 0.055                              | 1.03(2) | 1.0   | 3.01(5) | 3.08                     |  |
| 0.245(3)                                      | 0.599(23)                         | 0.600 | 0.08(6)              | 0.067                              | 1.03(1) | 1.0   | 3.07(5) | 3.12                     |  |
| 0.300(1)                                      | 0.577(27)                         | 0.586 | 0.04(5)              | 0.081                              | 1.01(1) | 1.0   | 3.11(5) | 3.16                     |  |
| 0.347(1)                                      | 0.575(26)                         | 0.575 | 0.08(6)              | 0.093                              | 1.02(1) | 1.0   | 3.17(5) | 3.2                      |  |
| 0.398(2)                                      | 0.555(25)                         | 0.562 | 0.09(9)              | 0.105                              | 1.02(1) | 1.0   | 3.21(7) | 3.24                     |  |
| 0.446(2)                                      | 0.542(18)                         | 0.551 | 0.14(10)             | 0.116                              | 1.02(1) | 1.0   | 3.24(6) | 3.28                     |  |
| 0.495(2)                                      | 0.528(22)                         | 0.539 | 0.14(6)              | 0.127                              | 1.02(1) | 1.0   | 3.28(6) | 3.32                     |  |
| 0.550(1)                                      | 0.512(18)                         | 0.527 | 0.24(9)              | 0.140                              | 1.02(1) | 1.0   | 3.33(7) | 3.34                     |  |
| 0.594(2)                                      | 0.508(22)                         | 0.516 | 0.31(10)             | 0.149                              | 1.02(1) | 1.0   | 3.37(5) | 3.4                      |  |
| 0.642(2)                                      | 0.486(20)                         | 0.505 | 0.22(7)              | 0.159                              | 1.01(1) | 1.0   | 3.38(6) | 3.42                     |  |
| 0.699(2)                                      | 0.481(17)                         | 0.492 | 0.16(18)             | 0.171                              | 1.01(1) | 1.0   | 3.39(6) | 3.48                     |  |
| 0.752(2)                                      | 0.468(23)                         | 0.481 | 0.17(16)             | 0.181                              | 1.01(1) | 1.0   | 3.50(3) | 3.52                     |  |
| 0.791(1)                                      | 0.462(16)                         | 0.472 | 0.08(17)             | 0.189                              | 1.01(1) | 1.0   | 3.50(4) | 3.54                     |  |
| 0.848(2)                                      | 0.449(25)                         | 0.459 | 0.22(26)             | 0.200                              | 1.01(1) | 1.0   | 3.59(7) | 3.6                      |  |
| 0.900(1)                                      | 0.435(21)                         | 0.448 | 0.28(28)             | 0.209                              | 1.01(1) | 1.0   | 3.58(6) | 3.64                     |  |
| 0.950(1)                                      | 0.425(19)                         | 0.437 | 0.19(42)             | 0.218                              | 1.01(1) | 1.0   | 3.64(6) | 3.68                     |  |
| 1.000                                         | 0.424(21)                         | 0.427 | -                    | -                                  | -       | -     | 3.67(8) | 3.70                     |  |

| Table 12. | Interfacial properties of the binary Lennard-Jones mixt     | sure B ( $\varepsilon_2/\varepsilon_1 = 0.9$ and $\xi_{12} = 1.2$ ). Results from MD and DGT | 1 |
|-----------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
| The numbe | er in the parentheses indicates the statistical uncertainty | in the last decimal digit. The temperature is $T = 0.92 \varepsilon k_B^{-1}$ .              |   |

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $\varepsilon\sigma$ | -2    | $\Gamma_2^{(1)} \ / \ \sigma^{-2}$ |        | $E_2$   |     | $L_{10}^{90}$ / $\sigma$ |      |
|-----------------------------------------------|--------------------------------|-------|------------------------------------|--------|---------|-----|--------------------------|------|
|                                               | MD                             | DGT   | MD                                 | DGT    | MD      | DGT | MD                       | DGT  |
| 0.000                                         | 0.665(21)                      | 0.663 | -                                  | -      | -       | -   | 2.91(5)                  | 2.95 |
| 0.0111(4)                                     | 0.688(28)                      | 0.669 | -0.021(8)                          | -0.006 | 1.10(8) | 1.0 | 2.90(4)                  | 2.94 |
| 0.0542(8)                                     | 0.714(28)                      | 0.692 | -0.022(24)                         | -0.026 | 1.06(4) | 1.0 | 2.84(5)                  | 2.90 |
| 0.1112(9)                                     | 0.739(24)                      | 0.722 | -0.019(19)                         | -0.042 | 1.04(1) | 1.0 | 2.77(3)                  | 2.84 |
| 0.1575(18)                                    | 0.749(27)                      | 0.744 | -0.05(5)                           | -0.048 | 1.04(2) | 1.0 | 2.77(3)                  | 2.78 |
| 0.2062(14)                                    | 0.780(26)                      | 0.764 | -0.09(5)                           | -0.048 | 1.02(1) | 1.0 | 2.73(4)                  | 2.74 |
| 0.2520(17)                                    | 0.789(28)                      | 0.779 | -0.03(4)                           | -0.042 | 1.03(1) | 1.0 | 2.67(3)                  | 2.70 |
| 0.3094(12)                                    | 0.809(29)                      | 0.791 | -0.00(6)                           | -0.027 | 1.02(1) | 1.0 | 2.65(4)                  | 2.68 |
| 0.3547(12)                                    | 0.811(28)                      | 0.796 | 0.02(2)                            | -0.010 | 1.02(1) | 1.0 | 2.65(4)                  | 2.68 |
| 0.4038(15)                                    | 0.808(29)                      | 0.796 | 0.10(3)                            | 0.014  | 1.02(1) | 1.0 | 2.64(5)                  | 2.68 |
| 0.4528(14)                                    | 0.800(25)                      | 0.790 | 0.09(5)                            | 0.043  | 1.02(1) | 1.0 | 2.65(5)                  | 2.70 |
| 0.4999(9)                                     | 0.786(25)                      | 0.778 | 0.05(6)                            | 0.077  | 1.02(1) | 1.0 | 2.67(4)                  | 2.72 |
| 0.5498(12)                                    | 0.768(22)                      | 0.760 | 0.17(7)                            | 0.118  | 1.01(1) | 1.0 | 2.73(3)                  | 2.76 |
| 0.5943(13)                                    | 0.743(33)                      | 0.739 | 0.21(5)                            | 0.160  | 1.01(1) | 1.0 | 2.78(3)                  | 2.80 |
| 0.6403(15)                                    | 0.715(26)                      | 0.713 | 0.25(10)                           | 0.209  | 1.01(1) | 1.0 | 2.83(5)                  | 2.86 |
| 0.6946(8)                                     | 0.684(26)                      | 0.677 | 0.29(6)                            | 0.275  | 1.01(1) | 1.0 | 2.92(6)                  | 2.94 |
| 0.7479(11)                                    | 0.644(23)                      | 0.637 | 0.27(14)                           | 0.348  | 1.01(1) | 1.0 | 3.04(3)                  | 3.06 |
| 0.7863(18)                                    | 0.604(25)                      | 0.606 | 0.38(12)                           | 0.407  | 1.01(1) | 1.0 | 3.12(6)                  | 3.14 |
| 0.8440(13)                                    | 0.558(20)                      | 0.558 | 0.51(26)                           | 0.506  | 1.01(1) | 1.0 | 3.28(8)                  | 3.28 |
| 0.8938(8)                                     | 0.510(18)                      | 0.515 | 0.68(14)                           | 0.600  | 1.01(1) | 1.0 | 3.43(7)                  | 3.44 |
| 0.9469(10)                                    | 0.471(26)                      | 0.470 | 0.64(27)                           | 0.710  | 1.01(1) | 1.0 | 3.58(7)                  | 3.58 |
| 1.0000                                        | 0.426(21)                      | 0.427 | -                                  | -      | -       | -   | 3.67(8)                  | 3.70 |

| Table 13. | Interfacial properties of the binary Lennard-Jones mixture C ( $\varepsilon_2/\varepsilon_1 = 0.9$ and $\xi_{12} = 0.85$ ). Results from MD and DGT. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| The numbe | r in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is $T = 0.92 \varepsilon k_B^{-1}$ .           |

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $arepsilon\sigma$ | 2     | $\Gamma_2^{(1)}$ / | $\sigma^{-2}$ | $E_2$    |      | $L_{10}^{90}$ , | $/\sigma$ |
|-----------------------------------------------|------------------------------|-------|--------------------|---------------|----------|------|-----------------|-----------|
|                                               | MD                           | DGT   | MD                 | DGT           | MD       | DGT  | MD              | DGT       |
| 0.000                                         | 0.665(21)                    | 0.663 | -                  | -             | -        | -    | 2.91(5)         | 2.95      |
| 0.0090(4)                                     | 0.662(35)                    | 0.649 | 0.01(1)            | 0.016         | 1.31(17) | 1.49 | 2.94(5)         | 3.00      |
| 0.0430(10)                                    | 0.604(17)                    | 0.597 | 0.07(1)            | 0.078         | 1.33(10) | 1.46 | 3.09(7)         | 3.16      |
| 0.0886(17)                                    | 0.555(23)                    | 0.539 | 0.18(3)            | 0.157         | 1.34(10) | 1.41 | 3.34(6)         | 3.36      |
| 0.1333(12)                                    | 0.515(22)                    | 0.493 | 0.23(5)            | 0.229         | 1.25(4)  | 1.35 | 3.47(7)         | 3.54      |
| 0.1771(18)                                    | 0.479(20)                    | 0.457 | 0.23(3)            | 0.290         | 1.17(5)  | 1.30 | 3.60(7)         | 3.72      |
| 0.2222(25)                                    | 0.442(23)                    | 0.428 | 0.36(6)            | 0.340         | 1.20(6)  | 1.24 | 3.75(7)         | 3.84      |
| 0.2797(41)                                    | 0.414(26)                    | 0.401 | 0.38(12)           | 0.381         | 1.11(4)  | 1.16 | 3.83(6)         | 3.98      |
| 0.3335(46)                                    | 0.406(22)                    | 0.383 | 0.37(9)            | 0.393         | 1.05(2)  | 1.10 | 3.87(6)         | 4.04      |
| 0.3821(31)                                    | 0.380(22)                    | 0.371 | 0.28(9)            | 0.381         | 1.04(2)  | 1.06 | 3.89(8)         | 4.08      |
| 0.4390(25)                                    | 0.370(22)                    | 0.361 | 0.24(11)           | 0.340         | 1.03(2)  | 1.02 | 3.95(7)         | 4.10      |
| 0.4939(51)                                    | 0.351(21)                    | 0.353 | 0.38(13)           | 0.279         | 1.03(1)  | 1.00 | 3.99(7)         | 4.12      |
| 0.5510(25)                                    | 0.345(18)                    | 0.347 | 0.15(20)           | 0.197         | 1.01(2)  | 1.00 | 3.95(4)         | 4.14      |
| 0.6481(37)                                    | 0.342(19)                    | 0.343 | 0.26(22)           | 0.027         | 1.02(1)  | 1.00 | 3.98(8)         | 4.16      |
| 0.7038(9)                                     | 0.342(15)                    | 0.343 | -0.13(13)          | -0.084        | 1.01(1)  | 1.00 | 4.02(7)         | 4.14      |
| 0.7647(17)                                    | 0.338(21)                    | 0.348 | -0.14(27)          | -0.213        | 1.01(1)  | 1.00 | 4.03(8)         | 4.12      |
| 0.8007(18)                                    | 0.354(25)                    | 0.353 | -0.09(20)          | -0.293        | 1.01(1)  | 1.00 | 3.95(7)         | 4.12      |
| 0.8575(23)                                    | 0.366(20)                    | 0.365 | -0.04(32)          | -0.421        | 1.01(1)  | 1.00 | 3.91(7)         | 4.06      |
| 0.9085(25)                                    | 0.373(15)                    | 0.382 | -1.25(30)          | -0.536        | 1.01(1)  | 1.00 | 3.89(7)         | 3.96      |
| 0.9548(9)                                     | 0.393(24)                    | 0.402 | -0.72(63)          | -0.639        | 1.01(1)  | 1.00 | 3.75(7)         | 3.86      |
| 1.0000                                        | 0.423(21)                    | 0.427 | -                  | -             | -        | -    | 3.67(8)         | 3.70      |

**Table 14.** Interfacial properties of the binary Lennard-Jones mixture D ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 1$ ). Results from MD and DGT. The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $arepsilon\sigma^{-2}$ |       | $\Gamma_2^{(1)} \ / \ \sigma^{-2}$ |       | $E_2$   |      | $L_{10}^{90}$ / $\sigma$ |       |
|-----------------------------------------------|-----------------------------------|-------|------------------------------------|-------|---------|------|--------------------------|-------|
|                                               | MD                                | DGT   | MD                                 | DGT   | MD      | DGT  | MD                       | DGT   |
| 0.000                                         | 0.665(21)                         | 0.663 | -                                  | -     | -       | -    | 2.91(5)                  | 2.95  |
| 0.015(1)                                      | 0.625(21)                         | 0.620 | 0.05(1)                            | 0.047 | 2.2(3)  | 2.26 | 3.08(6)                  | 3.06  |
| 0.051(1)                                      | 0.540(20)                         | 0.529 | 0.13(2)                            | 0.139 | 1.8(1)  | 1.98 | 3.42(5)                  | 3.38  |
| 0.099(2)                                      | 0.424(18)                         | 0.427 | 0.26(3)                            | 0.238 | 1.68(4) | 1.72 | 3.99(8)                  | 3.80  |
| 0.136(3)                                      | 0.354(13)                         | 0.360 | 0.33(4)                            | 0.302 | 1.52(3) | 1.57 | 4.47(8)                  | 4.18  |
| 0.176(3)                                      | 0.286(15)                         | 0.296 | 0.38(4)                            | 0.361 | 1.40(4) | 1.44 | 5.0(2)                   | 4.64  |
| 0.228(4)                                      | 0.206(17)                         | 0.226 | 0.52(6)                            | 0.423 | 1.30(4) | 1.32 | 5.9(2)                   | 5.34  |
| 0.253(3)                                      | 0.185(14)                         | 0.196 | 0.48(3)                            | 0.446 | 1.24(2) | 1.27 | 6.2(2)                   | 5.72  |
| 0.314(9)                                      | 0.133(13)                         | 0.135 | 0.45(11)                           | 0.488 | 1.14(2) | 1.17 | 7.2(3)                   | 6.82  |
| 0.332(6)                                      | 0.118(14)                         | 0.119 | 0.49(9)                            | 0.495 | 1.12(2) | 1.14 | 7.7(3)                   | 7.22  |
| 0.391(6)                                      | 0.073(13)                         | 0.076 | 0.48(5)                            | 0.511 | 1.06(1) | 1.08 | 9.4(8)                   | 8.76  |
| 0.424(3)                                      | 0.051(12)                         | 0.056 | 0.42(7)                            | 0.503 | 1.04(1) | 1.05 | 10.5(12)                 | 9.86  |
| 0.467(6)                                      | 0.036(15)                         | 0.034 | 0.42(10)                           | 0.472 | 1.03(1) | 1.02 | 13.4(21)                 | 12.00 |
| 0.498(15)                                     | 0.026(15)                         | 0.023 | 0.30(17)                           | 0.430 | 1.02(2) | 1.01 | 14.8(35)                 | 13.90 |

**Table 15.** Interfacial properties of the binary Lennard-Jones mixture E ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 1.2$ ). Results from MD and DGT. The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $arepsilon\sigma^{-2}$ |       | $\Gamma_2^{(1)} \ / \ \sigma^{-2}$ |       | $E_2$   |      | $L_{10}^{90}$ / $\sigma$ |       |
|-----------------------------------------------|-----------------------------------|-------|------------------------------------|-------|---------|------|--------------------------|-------|
|                                               | MD                                | DGT   | MD                                 | DGT   | MD      | DGT  | MD                       | DGT   |
| 0.000                                         | 0.665(21)                         | 0.663 | -                                  | -     | _       | -    | 2.91(5)                  | 2.95  |
| 0.032(1)                                      | 0.634(3)                          | 0.637 | 0.013(14)                          | 0.028 | 1.1(1)  | 1.03 | 3.03(3)                  | 3.02  |
| 0.071(2)                                      | 0.592(16)                         | 0.603 | 0.09(2)                            | 0.060 | 1.2(1)  | 1.01 | 3.19(5)                  | 3.14  |
| 0.127(1)                                      | 0.530(18)                         | 0.551 | 0.14(3)                            | 0.107 | 1.09(3) | 1.00 | 3.36(6)                  | 3.30  |
| 0.175(1)                                      | 0.469(20)                         | 0.504 | 0.15(3)                            | 0.147 | 1.05(2) | 1.00 | 3.60(6)                  | 3.48  |
| 0.225(2)                                      | 0.419(19)                         | 0.453 | 0.19(4)                            | 0.188 | 1.03(1) | 1.00 | 3.77(4)                  | 3.70  |
| 0.271(1)                                      | 0.362(14)                         | 0.403 | 0.23(5)                            | 0.227 | 1.03(1) | 1.00 | 4.04(7)                  | 3.94  |
| 0.326(2)                                      | 0.300(15)                         | 0.343 | 0.25(4)                            | 0.272 | 1.02(1) | 1.00 | 4.43(6)                  | 4.28  |
| 0.373(2)                                      | 0.250(13)                         | 0.291 | 0.28(5)                            | 0.310 | 1.01(1) | 1.00 | 4.91(11)                 | 4.64  |
| 0.428(3)                                      | 0.199(15)                         | 0.231 | 0.31(8)                            | 0.350 | 1.01(1) | 1.00 | 5.5(2)                   | 5.20  |
| 0.489(1)                                      | 0.134(12)                         | 0.168 | 0.36(5)                            | 0.388 | 1.01(1) | 1.00 | 6.4(3)                   | 6.02  |
| 0.544(3)                                      | 0.091(11)                         | 0.116 | 0.31(6)                            | 0.408 | 1.01(1) | 1.00 | 7.4(3)                   | 7.10  |
| 0.610(3)                                      | 0.054(9)                          | 0.063 | 0.33(6)                            | 0.397 | 1.01(1) | 1.00 | 9.9(6)                   | 9.10  |
| 0.681(6)                                      | 0.020(13)                         | 0.023 | 0.29(8)                            | 0.291 | 1.01(1) | 1.00 | 16.1(26)                 | 12.68 |

**Table 16.** Interfacial properties of the binary Lennard-Jones mixture F ( $\varepsilon_2/\varepsilon_1 = 0.5$  and  $\xi_{12} = 0.85$ ). Results from MD and DGT. The number in the parentheses indicates the statistical uncertainty in the last decimal digit. The temperature is  $T = 0.92 \varepsilon k_B^{-1}$ .

| $x'_2 \ / \ \mathrm{mol} \ \mathrm{mol}^{-1}$ | $\gamma$ / $arepsilon\sigma^{-2}$ |       | $\Gamma_2^{(1)}$ / $\sigma^{-2}$ |       | $E_2$   |      | $L_{10}^{90}$ / $\sigma$ |      |
|-----------------------------------------------|-----------------------------------|-------|----------------------------------|-------|---------|------|--------------------------|------|
|                                               | MD                                | DGT   | MD                               | DGT   | MD      | DGT  | MD                       | DGT  |
| 0.000                                         | 0.665(21)                         | 0.663 | -                                | -     | -       | -    | 2.91(5)                  | 2.95 |
| 0.012(1)                                      | 0.600(16)                         | 0.587 | 0.07(1)                          | 0.082 | 2.45(7) | 3.18 | 3.15(5)                  | 3.14 |
| 0.032(1)                                      | 0.519(17)                         | 0.477 | 0.16(2)                          | 0.199 | 2.22(3) | 2.71 | 3.59(7)                  | 3.52 |
| 0.048(2)                                      | 0.455(15)                         | 0.394 | 0.21(2)                          | 0.284 | 2.04(5) | 2.38 | 3.92(7)                  | 3.90 |
| 0.059(2)                                      | 0.400(18)                         | 0.345 | 0.31(3)                          | 0.333 | 1.91(4) | 2.18 | 4.38(9)                  | 4.18 |
| 0.084(4)                                      | 0.311(16)                         | 0.242 | 0.38(3)                          | 0.418 | 1.67(3) | 1.77 | 5.1(1)                   | 4.94 |
| 0.101(3)                                      | 0.268(20)                         | 0.184 | 0.45(3)                          | 0.443 | 1.56(2) | 1.53 | 5.8(1)                   | 5.50 |
| 0.110(4)                                      | 0.207(21)                         | 0.158 | 0.53(5)                          | 0.432 | 1.40(2) | 1.42 | 6.6(3)                   | 5.74 |
| 0.137(3)                                      | 0.166(14)                         | 0.091 | 0.49(4)                          | 0.322 | 1.28(1) | 1.15 | 7.3(4)                   | 6.14 |