## Supporting Information

# Computational investigation reveals Picrasidine $\mathbf{C}$ as selective PPAR $\alpha$ lead: binding pattern, selectivity mechanism and ADME/Tox profile 

Fangfei Li ${ }^{\text {a }}$, Hanxun Wang ${ }^{\text {a }}$, Ying Wang ${ }^{\text {a,b }}$, Shasha Feng ${ }^{\text {a }}$, Baichun Hu ${ }^{\text {a,c }}$, Xiangyu Zhang ${ }^{\text {a }}$, Jian Wang ${ }^{\text {a, }}$, Wei Li ${ }^{\text {d }}$, Maosheng Cheng ${ }^{\text {a }}$<br>${ }^{a}$ Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China<br>${ }^{\text {b }}$ Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China<br>${ }^{\mathrm{c}}$ School of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R. China<br>${ }^{\mathrm{d}}$ Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

## ConSurf Results

## A




## 

- An expoted residue according to the neural-network algori thm
- A buried residue accoording to the neurral-network olgoritha.

A praifetod sruatural rasidac (inghy conserved and

Figure S1. Key conservative amino acid analysis of PPAR $\alpha / \gamma$.


Figure S2. Glide docking validation: superimposition of the native (green) and redocked pose (yellow) of cocrystal ligand within the PPAR $\alpha / \gamma$-LBD. (A: PPAR $\alpha, \mathrm{B}$ : PPAR $\gamma$ )


Figure S3. Hydrophobicity of the active cavity of PPAR $\alpha / \gamma$ structure.


Figure S4. Ligand-Protein contacts of 3KDT-7HA complex during the simulation of 100 ns.
A


Hydrophobic
$\therefore \begin{array}{r}\text { Water } \\ \text { Pi-Pi }\end{array}$

- Solvent exposure
B


Figure S5. Ligand-Protein contacts of 3KDT-Picrasidine C complex during the simulation of 100 ns .


Figure S6. Ligand-Protein contacts of 2PRG-BRL complex during the simulation of 100 ns .
A



## B




Figure S7. Ligand-Protein contacts of 2PRG-Picrasidine C-1 complex during the simulation of 100 ns .


B



Figure S8. Ligand-Protein contacts of 2PRG-Picrasidine C-2 complex during the simulation of 100 ns .

B


C

D




Figure S9. Ligand Torsion Profile of five complexes. A: 3KDT-7HA. B: 3KDT-
Picrasidine C. C: 2PRG-BRL. D: 2PRG-Picrasidine C-1. E: 2PRG-Picrasidine C-2.


Figure S10. Five properties of the ligands in five complexes (A: 3KDT-7HA; B:
3KDT-Picrasidine C; C: 2PRG-BRL, D: 2PRG-Picrasidine C-1 and E: 2PRG-
Picrasidine C-2) during the simulation of 100 ns .


Figure S11. The contact diagram of the total number of specific contacts that protein formed with compound C1 during trajectory.

A:
VAL
255




Figure S12. The contact diagram of the total number of specific contacts that protein formed with compound C2 during trajectory.


Figure S13. The contact diagram of the total number of specific contacts that protein formed with compound C3 during trajectory.
A:
ILE
241 A:
CYS
275




Figure S14. The contact diagram of the total number of specific contacts that protein formed with compound C 4 during trajectory.




C






D


(4)


Figure S15. Ligand Torsion Profile of four complexes. A: 3KDT-C1. B: 3KDT-C2. C: 3KDT-C3. D: 3KDT-C4.


Figure S16. Protein secondary structure elements (SSE) distribution by residue index was monitored during the MD simulation. The protein secondary structures were displayed in different colors while orange denotes alpha-helices and blue denotes beta-strands. A: 3KDT-Picrasidine C complex. B: 3KDT-C1 complex. C: 3KDT-C2 complex. D: 3KDT-C3 complex. E: 3KDT-C4 complex.


Figure S17. RMSD values of MD simulation performed by Amber version 18.

Table S1. Binding free energy ( $\mathrm{Kcal} / \mathrm{mol}$ ) of cocrystal ligand and Picrasidine C with PPAR $\alpha / \gamma$ calculated by MM-GBSA algorithm.

| Complex | $\Delta \mathrm{G}_{\text {bind }}$ | $\Delta \mathrm{G}_{\text {bind }}$ <br> coulomb | $\Delta \mathrm{G}_{\text {bind }}$ <br> Covalent | $\Delta \mathrm{G}_{\text {bind }}$ <br> Hbond | $\Delta \mathrm{G}_{\text {bind }}$ <br> lipo | $\Delta \mathrm{G}_{\text {bind }}$ <br> Solv_GB | $\Delta \mathrm{G}_{\text {bind }}$ <br> vdW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3KDT-7HA | -113.839 | 19.390 | 2.069 | -2.875 | -61.035 | -4.685 | -66.704 |
| 3KDT-Picrasidine C | -98.879 | -9.978 | 8.883 | -0.707 | -69.722 | 17.710 | -44.181 |
| 2PRG-BRL | -99.150 | -17.953 | 2.530 | -1.042 | -46.307 | 18.523 | -54.515 |
| 2PRG-Picrasidine C-1 | -81.506 | 29.481 | 9.665 | -0.713 | -55.671 | -12.262 | -52.007 |
| 2PRG-Picrasidine C-2 | -50.567 | 102.579 | 10.647 | -0.155 | -58.574 | -45.821 | -58.789 |

Table S2. All parameters of Fenofibrate and Picrasidine C predicted by the pkCSM online software.

| ADMET properties | Fenofibrate | Picrasidine C |  |
| :--- | :--- | :--- | :--- |
| Absorption | Water solubility $(\log \mathrm{mol} / \mathrm{L})$ | -5.891 | -3.172 |
|  | Caco2 permeability $(\log \mathrm{cm} / \mathrm{s})$ | 1.048 | 1.17 |
|  | Intestinal absorption (human) | 95.92 | 100 |
|  | Skin Permeability (logKp) | -2.495 | -2.735 |


|  | P-glycoprotein substrate | No | No |
| :---: | :---: | :---: | :---: |
|  | P-glycoprotein I inhibitor | Yes | Yes |
|  | P-glycoprotein II inhibitor | No | Yes |
| Distribution | VDss (human) ( $\log \mathrm{L} / \mathrm{kg}$ ) | 0.052 | -0.212 |
|  | Fraction unbound (human) | 0.006 | 0.191 |
|  | BBB permeability ( $\operatorname{logBB\text {)}{}^{\text {a}}\text {(}{}^{\text {a}}\text {(}}$ | 0.066 | -0.424 |
|  | CNS permeability (logPS) | -1.953 | -3.396 |
| Metabolism | CYP2D6 substrate | No | No |
|  | CYP3A4 substrate | Yes | Yes |
|  | CYP1A2 inhibitior | Yes | Yes |
|  | CYP2C19 inhibitior | Yes | Yes |
|  | CYP2C9 inhibitior | Yes | Yes |
|  | CYP2D6 inhibitior | No | No |
|  | CYP3A4 inhibitior | No | Yes |
| Excretion | Total Clearance (log $\mathrm{ml} / \mathrm{min} / \mathrm{kg}$ ) | -0.332 | 0.704 |
|  | Renal OCT2 substrate | No | No |
| Toxicity | AMES toxicity | No | No |
|  | Max. tolerated dose (human) ( $\log \mathrm{mg} / \mathrm{kg} /$ day) | 0.555 | 0.528 |
|  | hERG I inhibitor | No | No |
|  | hERG II inhibitor | No | Yes |
|  | Oral Rat Acute Toxicity (LD50) ( $\mathrm{mol} / \mathrm{kg}$ ) | 2.325 | 2.621 |
|  | Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) | 1.411 | 1.998 |
|  | Hepatotoxicity | No | Yes |
|  | Skin Sensitisation | No | No |
|  | T.Pyriformis toxicity (log ug/L) | 1.165 | 0.285 |

Table S3. Binding free energy ( $\mathrm{Kcal} / \mathrm{mol}$ ) of Picrasidine C and four selected analogs with PPAR $\alpha$ calculated by MM-GBSA algorithm.

| Complex | $\Delta \mathrm{G}_{\text {bind }}$ | $\Delta \mathrm{G}_{\text {bind }}$ <br> coulomb | $\Delta \mathrm{G}_{\text {bind }}$ <br> Covalent | $\Delta \mathrm{G}_{\text {bind }}$ <br> Hbond | $\Delta \mathrm{G}_{\text {bind }}$ <br> lipo | $\Delta \mathrm{G}_{\text {bind }}$ <br> Solv_GB | $\Delta \mathrm{G}_{\text {bind }}$ <br> vdW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3KDT-Picrasidine C | -98.879 | -9.978 | 8.883 | -0.707 | -69.722 | 17.710 | -44.181 |
| 3KDT-C1 | -115.284 | 5.316 | 4.256 | -1.254 | -44.127 | -11.237 | -68.238 |
| 3KDT-C2 | -118.872 | 4.861 | 6.872 | -0.339 | -49.157 | -18.825 | -62.284 |
| 3KDT-C3 | -110.237 | -5.472 | -3.452 | -0.926 | -26.575 | 5.482 | -79.294 |
| 3KDT-C4 | -105.438 | 8.982 | -4.231 | -0.255 | -31.483 | -21.257 | -57.194 |

