SUPPLEMENTARY MATERIAL

Two new cephalochromin derivative from the *Alternaria* sp. ZG22

Xin-Ming Song ^{a,b}, Xue-Ming Zhou ^{a,b}, Ya-Ling Li ^{a,b}, Li-Bing Huang ^{a,b}, Cai-Cui Chen ^{a,b}, Yan Gao ^{a,b}, Lin He ^{a,b}, Xiao-qun Mao ^{a,b}, Bing Chen ^{a,b}, Jing-Wen Liu ^{a,b}, Hui-Jie Liu ^{a,b}, Xiao-Ping Song ^{a,b*}, and Chang-Ri Han ^{a, c*}

^a Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127, P. R. China;

^b Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Haina n Normal University, Haikou 571127, P. R. China;

^c Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, School of Chemical and Material Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, P. R. China

Abstract: Two new cephalochromin derivatives, prenylcephalochromin A (1), prenylcephalochromin B (2), along with cephalochromin (3) were isolated from the *Alternaria* sp. ZG22 obtained from a *Dasymaschalon rostratum* collected from the Hainan. The structures of two new compounds were elucidated by comprehensive spectroscopic methods. Compounds 1-3 showed $\underline{\alpha}$ -glucosidase inhibitory activity.

Key words: Alternaria sp; cephalochromin derivative; α-glucosidase inhibitory activity

^{*} CONTACT Xiao-Ping Song sxp628@126.com; Chang-Ri Han hchr116@126.com

List of Supplementary Material

Table S1. ¹H and ¹³C NMR data (400 MHz, CDCl₃) for compound **1** - **3** spectrum Figure S1. Key partial structures of compound **1** and **2** from HMBC data and ¹H-¹H COSY

- Figure S2. ¹H NMR spectrum of compound **1**
- Figure S3. ¹³C NMR spectrum of compound **1**
- Figure S4. 135DEPT spectrum of compound 1
- Figure S5. HSQC spectrum of compound 1
- Figure S6. HMBC spectrum of compound 1
- Figure S7. ¹H-¹H COSY spectrum of compound **1**
- Figure S8. HRESIMS of compound 1
- Figure S9. ¹H NMR spectrum of compound **2**
- Figure S10. ¹³C NMR spectrum of compound **2**
- Figure S11. 135DEPT spectrum of compound 2
- Figure S12. HSQC spectrum of compound 2
- Figure S13. HMBC spectrum of compound 2
- Figure S14. ¹H-¹H COSY spectrum of compound **2**
- Figure S15. HRESIMS of compound 2

	1 (in CDCl ₃)		2 (in CDCl ₃)		3 (in CDCl ₃)	
position	<u>δ</u> μ	<u>δ</u> ς	<u>δ</u> μ	<u>δ</u> ς	δ _H	δ _C
2	4.44 (1H, q, J = 8 Hz)	73.2	4.45 (1H, q, J = 8 Hz)	73.3	4.48 (1H, q, J = 8 Hz)	73.4
3	2.68 (2H, d, J = 8 Hz)	43.4	2.65 (2H, d, J = 8 Hz)	43.9	2.69 (2H, d, J = 8 Hz)	43.2
4		197.9		198.4		198.4
4a		102.8		103.7		102.1
5		164.9		166.3		164.5
5a		105.3		107.6		102.6
6		154.4		156.2		161.0
7		106.3		101.5	6.53 (1H, s)	99.9
8		157.4		157.0		160.0
9		105.8		102.4		105.6
9a		141.5		142.1		142.3
10	5.94 (1H, s)	100.2	5.83 (1H, s)	98.6	5.94 (1H, s)	99.6
10a		155.2		154.2		156.4
11	1.41 (3H, d, <i>J</i> = 8 Hz)	21.0	1.41 (3H, d, <i>J</i> = 8 Hz)	20.9	1.41 (3H, d, <i>J</i> = 8 Hz)	20.9
2'	4.45 (1H, q, <i>J</i> = 8 Hz)	73.3	4.44 (1H, q, <i>J</i> = 8 Hz)	73.0	4.48 (1H, q, <i>J</i> = 8 Hz)	73.4
3'	2.66 (2H, d, J = 8 Hz)	43.3	2.65 (2H, d, J = 8 Hz)	43.2	2.69 (2H, d, J = 8 Hz)	43.2
4'		198.3		197.4		198.4
4'a		102.3		102.6		102.1
5'		164.8		164.6		164.5
5'a		105.4		106.3		102.6
6'		159.8		161.0		161.0
7'	6.53 (1H, s)	99.5	6.51 (1H, s)	99.9	6.53 (1H, s)	99.9
8'		158.4		160.0		160.0
9'		104.2		105.6		105.6
9'a		141.6		141.3		142.3
10'	5.95 (1H, s)	100.1	5.98 (1H, s)	99.6	5.94 (1H, s)	99.6
10'a		156.0		156.4		156.4
11'	1.39 (3H, d, <i>J</i> = 8 Hz)	20.9	1.37 (3H, d, J = 8 Hz)	20.9	1.41 (3H, d, <i>J</i> = 8 Hz)	20.9
1"	6.86 (1H, d, <i>J</i> = 10 Hz)	116.1	6.71 (1H, d, <i>J</i> = 10 Hz)	116.7		
2"	5.67 (1H, d, <i>J</i> = 10 Hz)	129.3	5.62 (1H, d, <i>J</i> = 10 Hz)	127.2		
3"		77.7		77.9		

Table S1.¹H and ¹³C NMR data (400 MHz, CDCl₃) for compound **1** - **3** spectrum

4''	1.32 (3H, s)	28.4	1.62 (3H, s)	28.1		
5"	1.26 (3H, s)	28.2	1.62 (3H, s)	27.9		
	5.37 (1H, s)	8'-OH	5.71 (1H, s)	8'-OH	5.81 (1H, s)	8'-OH
	9.67 (1H, s)	6'-OH	9.65 (1H, s)	6'-OH	9.70 (1H, s)	6'-OH
	15.2 (1H, s)	5-OH	14.1 (1H, s)	5-OH	15.1 (1H, s)	5'-OH
	15.3 (1H, s)	5'-OH	15.1 (1H, s)	5'-OH	5.81 (1H, s)	8-OH
	9.92 (1H, s)	6-OH	5.80 (1H, s)	8-OH	9.70 (1H, s)	6-OH
					15.1 (1H, s)	5-OH

Figure S1. Key partial structures of compound 1 and 2 from HMBC data and ${}^{1}H{}^{-1}H$ COSY

Figure S2. ¹H NMR spectrum of compound 1

Figure S3. ¹³C NMR spectrum of compound **1**

Figure S4.135DEPT spectrum of compound 1

Figure S5. HSQC spectrum of compound 1

Figure S6. HMBC spectrum of compound 1

Figure S7. ¹H-¹H COSY spectrum of compound **1**

Figure S8. HRESIMS of compound 1

Figure S9. ¹H NMR spectrum of compound 2

Figure S10. ¹³C NMR spectrum of compound **2**

Figure S11. 135DEPT spectrum of compound 2

Figure S12. HSQC spectrum of compound 2

Figure S13. HMBC spectrum of compound 2

Figure S14. ¹H-¹H COSY spectrum of compound **2**

Figure S15. HRESIMS of compound 2