SUPPLEMENTARY MATERIAL

Two new biflavanoids from Selaginella trichoclada Alsto

Yang Xie^a, Ping-Sheng Xu^a, Kang-Ping Xu^b, Zhen-Xing Zou^b, Gan Zhou^a,

Dai Li^a, Dan Li^a, Xiao-Min Li^a, Jing Li^{a*} and Gui-Shan Tan^{a,b**}

^aXiangya Hospital of Central South University, Changsha, PR China

^bXiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China

Abstract

Two new robustaflavones, (\pm) -trichocladabiflavone A (1) and uncinatabiflavone E (2), along with seven known biflavanoids (3-9) were isolated from the 70% EtOH extract of *Selaginella trichoclada*. Their structures and absolute configurations were established by extensive spectroscopic and circular dichroism (CD) analyses. Compound 1 was resoluted into optically pure enantiomers (+)-1 and (-)-1 by chiral-phase HPLC. Moreover, compounds 1 and 2 exhibited moderate cytotoxicity against A549 and HepG2 human cancer cell lines.

Keywords: Selaginella trichoclada; robustaflavone; cytotoxicity

^{**} Corresponding author.

E-mail address: tgs395@csu.edu.cn (G.S. Tan)

^{*} Corresponding author.

E-mail address: lijingliyun@163.com (J. Li)

Content

- Table S1 ¹H NMR and ¹³C NMR spectroscopic data for compounds 1 and 2
- Figure S1 Key HMBC and ¹H-¹H COSY correlations of compounds 1 and 2
- Figure S2 Chiral HPLC separation chromatograms of compound 1.
- Figure S3 CD spectrum of (\pm) -1 in MeOH.
- Figure S4 HRESIMS spectrum of compound 1
- **Figure S5** ¹H NMR spectrum (500 MH, DMSO- d_6) of compound **1**
- **Figure S6.** ¹H NMR spectrum of compound **1** (zoomed in)
- Figure S7 13 C NMR spectrum (500 MHz, DMSO- d_6) of compound 1
- Figure S8 1 H- 1 H COSY spectrum (500 MHz, DMSO- d_{6}) of compound 1
- Figure S9 DEPT spectrum (500 MHz, DMSO-d₆) of compound 1
- Figure S10 HSQC spectrum (500 MHz, DMSO-*d*₆) of compound 1
- Figure S11 HMBC spectrum (500 MHz, DMSO-*d*₆) of compound 1
- Figure S12 NOESY spectrum (500 MHz, DMSO-*d*₆) of compound 1
- Figure S13 CD spectrum of compound 2 in MeOH
- Figure S14 HRESIMS spectrum of compound 2
- Figure S15 ¹H NMR spectrum (500 Mz, DMSO-*d*₆) of compound 2
- Figure S16 ¹H NMR spectrum of compound 2 (zoomed in)
- Figure S17 ¹³C NMR spectrum (400 MHz, DMSO-*d*₆) of compound 2
- Figure S18 ¹H-¹H COSY spectrum (400 MHz, DMSO-*d*₆) of compound 2
- **Figure S19** DEPT spectrum (500 MHz, DMSO-*d*₆) of compound **2**
- Figure S20 HSQC spectrum (500 MHz, DMSO-*d*₆) of compound 2
- Figure S21 HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 2
- Table S2 Cytotoxicity of compounds 1-9 against Human Cancer Cells

Position -	1		2		
	$\delta_{ m H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (J in Hz)	$\delta_{ m C}$	
2		163.9	5.48 (1H, dd, 2.8, 12.9)	79.5	
2	607.608(111.a)	104.1	3.32 (1H, m)	42.5	
3	6.97, 6.98 (1H, s)	104.1	2.71 (1H, dd, 2.8, 17.1)	42.3	
4		182.4		197.6	
5	13.11 (1H, br s)	157.9		163.6	
6		108.0	6.07 (1H, d, 2.2)	95.1	
7		163.6		167.9	
8	6.93, 6.95 (1H, s)	91.1	6.12 (1H, d, 2.2)	94.2	
9		155.9		163.5	
10		104.9		103.1	
1'		122.7		127.7	
2'	7.84 (1H, m)	130.7, 130.8	7.32 (1H, d, 2.0)	132.0	
3'		123.3		116.9	
4'		161.4		157.5	
5'	7.23 (1H, d, 8.8)	112.1	6.81 (1H, d, 8.3)	115.6	
6'	8.12 (1H, d, 8.8)	128.3	7.24 (1H, dd, 2.0, 8.3)	126.8	
2"	5.44-5.55 (1H, m)	78.7, 78.9	5.39 (1H, dd, 2.6, 12.5)	78.4	
	3.16-3.29 (1H, m)	40.2 40.5	3.18 (1H, dd, 12.5, 16.9)	42.5	
3	2.69-2.77 (1H, m)	42.3, 42.3	2.65 (1H, dd, 2.6, 16.9)		
4"		196.9		195.2	
5"	12.39 (1H, br s)	161.3	12.13 (1H, br s)	158.1	
6"		106.1, 106.0		108.1	
7"		162.4		161.7	
8"	6.07 (1H, s)	95.1	5.81 (1H, s)	96.7	
9"		162.4		161.8	
10"		101.9, 102.0		100.5	
1'''		129.3, 129.4		129.8	
2""/6""	7.36 (2H, d, 8.3)	128.8	7.33 (2H, d, 8.7)	128.7	
3"'/5'''	6.82 (2H, d, 8.3)	115.7	6.80 (2H, d, 8.7)	115.6	
4'''	9.65 (1H, br s)	158.2		158.1	
7-OCH ₃	3.90, 3.91 (3H, s)	56.8	3.78 (1H, s)	56.3	
4'-OCH ₃	3.79, 3.80 (3H, s)	56.3			
6-CH ₃	2.01 (3H, s)	7.8			

 Table S1 ¹H NMR and ¹³C NMR spectroscopic data of compounds 1 and 2

Figure S1. Key HMBC and ${}^{1}\text{H}{}^{-1}\text{H}$ COSY correlations of compounds 1 and 2

Figure S2. Chiral HPLC separation chromatograms of compound 1.

Figure S3. CD spectrum of compound (±)-1 in MeOH

Figure S5. ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of compound 1

Figure S7. ¹³C NMR spectrum (500 MHz, DMSO-*d*₆) of compound 1

Figure S9. DEPT spectrum (500 MHz, DMSO-*d*₆) of compound 1

Figure S11. HMBC spectrum (500 MHz, DMSO-*d*₆) of compound 1

Figure S12. NOESY spectrum (500 MHz, DMSO- d_6) of compound 1

Figure S13. CD spectrum of compound 2 in MeOH

User Spectra

Figure S14. HRESIMS spectrum of compound 2

Figure S16. ¹H NMR spectrum of compound 2 (zoomed in)

Figure S17. ¹³C NMR spectrum (400 MHz, DMSO- d_6) of compound 2

Figure S18. ¹H-¹H COSY (400 MHz, DMSO-*d*₆) spectrum of compound 2

Figure S19. DEPT spectrum (500 MHz, DMSO-d₆) of compound 2

Figure S20. HSQC spectrum (500 MHz, DMSO-*d*₆) of compound 2

Figure S21. HMBC spectrum (400 MHz, DMSO-*d*₆) of compound 2

Table 52. Cytotoxicity of compounds 1-9 against Human Cancer Cens							
compound	A549	HepG2					
1	34.8 ± 0.1	31.4 ± 0.2					
2	32.2 ± 0.4	33.5 ± 0.8					
3	54.5 ± 0.3	61.7 ± 0.4					
4	62.8 ± 0.6	52.1 ± 0.6					
5	69.6 ± 0.5	60.4 ± 0.2					
6	> 80	73.9 ± 0.3					
7	58.1 ± 0.9	> 80					
8	> 80	> 80					
9	> 80	> 80					
Oxaliplatin	5.2 ± 0.2	6.5 ± 0.1					

Table S2. C	Cytotoxicity	y of com	pounds 1-	- 9 against	Human	Cancer	Cells ^a
-------------	--------------	----------	-----------	-------------	-------	--------	--------------------

^a Results expressed as the mean IC₅₀ values in μ M from triplicate measurements.