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6 The likelihood derivatives

Recall that the quasi log-likelihood function is given by LT (�) = �1
2
1
T

PT
t=1 lt(�), where

lt(�) = log (ht (�)) +
[Yt � �1 � �2ht (�)]2

ht (�)
: (6.1)

Let "t (�) := Yt � �1 � �2ht (�). The �rst and second derivatives of lt (�) with respect to � are

given by
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�
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2
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+
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where, denoting ein the i-th unit vector in Rn with n = dim(�),

@"t (�)

@�
= �e1n � e2nht(�)� �2

@ht (�)

@�
@2"t (�)

@�@�>
= �@ht (�)

@�
e>2n � e2n

@ht (�)

@�>
� �2

@2ht (�)

@�@�>

7 Simulation study

In order to investigate the small, moderate and large sample behavior of the QMLE in the

EGARCH(1; 1)-M and Log-GARCH(1; 1)-M models, we perform the following simulation study.

We generate time series of length T = 500; 1000; 2500; 5000 and 10000 observations and

we tie the data generating process parameterization for both models to empirically relevant

values (see Section 4.2), i.e. the true parameter vector for the EGARCH(1; 1)-M model is

given by �0 = (0; 0:04;�0:10;�0:12; 0:13; 0:98)>, and for the Log-GARCH(1; 1)-M model by

�0 = (0; 0:07; 0:024; 0:027; 0:016; 0:971)
>. For the innovation process, we assume that Zt has a

Generalized Error Distribution (GED) with tail-thickness parameter � given by either 2, which

yields the Gaussian case, or 1:4, which produces fatter tails. The latter choice corresponds to

typical estimates in empirical applications, see e.g. Hafner and Linton (2017) for the S&P 500

index.

The QML estimation is applied in a second step to obtain parameter estimates. We simulate

1000 paths and hence get 1000 independent replicates of b�T . In Figures 1 and 2 we depict the
distributions of the vectors b�T for the EGARCH(1; 1)-M model, when the GED parameter � is

2 and 1:4, respectively, by compiling boxplots for each estimated parameter. These numerical

results illustrate the performance of the QMLE in �nite samples. For both cases, the dispersion

obviously shrinks as T increases, and the median parameter estimates are very close to the true
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parameter values even for small sample sizes. The corresponding boxplots for the Log-GARCH-

M model are presented in Figures 3 and 4, respectively, and show a very similar behavior.

Tables 1 and 2 summarize the bias and RMSE performance of the QMLE of the EGARCH-

M and Log-GARCH-M model parameters, respectively. As we can see from the results of Table

1, the bias is small even for small sample sizes and approaches zero as T increases. The RMSE

drops quite fast for all estimated parameters as T gets larger, con�rming consistency. While

the bias is very similar for the Gaussian case and � = 1:4, the RMSE is slightly larger for most

parameters in the case of fat tails. In terms of estimation precision, the parameter that is most

di¢ cult to estimate is the risk premium, as the RMSE is about 100% for T = 500, and for

T = 10000 is still 19% and 23% for the Gaussian and GED(1.4) case, respectively.

As for the Log-GARCH-M results of Table 2, the results are similar to the EGARCH-M

case, except that the volatility parameter estimates tend to have a higher RMSE, while the risk

premium parameter has a lower RMSE across di¤erent sample sizes and distributions. This

suggests that volatility estimates are more precise for EGARCH-M than log-GARCH-M, but

that the reverse is true for the estimation of the risk premium.

Table 3 presents some parameter evaluations from each model, that is summary statistics

of the estimated conditional standard deviations simulated by both the EGARCH-M and Log-

GARCH-M models, under GED innovations and for the two cases, i.e. � = 2 and � = 1:4. As

we can see, all statistics are very close for both models.

8 Proofs

Proof of Lemma 1

Following Bougerol (1993) and Straumann and Mikosch (2006), there is a unique stationary

and ergodic solution if the function �t in (2.6) is contracting on average, i.e. if the Lyapunov

exponent of the mapping is negative. The contraction condition of Bougerol (1993) can be used

to ensure model invertibility and bounded moments for the �ltered sequence, logbht (�). We
consider a new functional SRE that is driven by a function of the observations Yt

st+1 = [�t (st)] (�) ; (8.1)
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where the sequence of random functions �t are given by

[�t (s)] (�) = !+[
 (Yt � �1 � �2 exp (s (�))) + � (jYt � �1 � �2 exp (s (�))j)] exp (�s (�) =2)+�s (�) ;

for each � 2 �. The functions �t map continuous functions s : � !
�
inf� ! (1� �)�1 ;+1

�
onto the class of such functions. Because �0 is Lipschitz continuous, and in general a Lipschitz

continuous function is di¤erentiable pointwise almost everywhere due to Rademacher�s theorem

(Evans and Gariepy, 2015, p. 103), continuous di¤erentiability is not necessary to prove that

its �rst derivative is bounded. The Lipschitz constant �, in this case, is given by the essential

supremum of its derivative, ignoring any set of elements of Lebesgue measure zero where the

derivative of the random functions �t is not de�ned, which is the following����@�0 (s)@s

���� =
������ � � 2

�1 [
 (Y0 � �1 � �2 exp (s (�))) + � (jY0 � �1 � �2 exp (s (�))j)] exp (�s (�) =2)

��2 exp (s (�)) [
 + � sgn (Y0 � �1 � �2 exp (s (�)))] exp (�s (�) =2)

������ :
Hence,

� = sup
�

������ � �
1
2
[
 (Y0 � �1 � �2 exp (s (�))) + � (jY0 � �1 � �2 exp (s (�))j)] exp

�
�1
2
inf� ! (1� �)�1

�
��2 [
 + � sgn (Y0 � �1 � �2 exp (s (�)))] exp

�
2�1 inf� ! (1� �)�1

�
������ :

The condition E [log �] < 0, which implies continuous invertibility, is pointwise and reads

E [logmax f�;	0g] < 0;

where

	0 = 2�1 [
"0 (�) + � j"0 (�)j] exp
�
�2�1 inf

�
! (1� �)�1

�
+�2 [
 + � sgn ("0 (�))] exp

�
2�1 inf

�
! (1� �)�1

�
� �;

with "0 (�) := Y0 � �1 � �2h0 (�) and

log h0 (�) = ! + 

"�1(�)p
h�1 (�)

+ �

����� "�1(�)p
h�1 (�)

�����+ � log h�1 (�) :
Since the uniform log moments exist by continuity of the Lipschitz coe¢ cient in �, having

excluded the zero point of discontinuity, and because E
�
log+ (Yt � �1 � �2ht (�))

�
< 1, to-

gether with the last result for each � 2 � the condition (CI) for continuous invertibility of

Wintenberger (2013) is satis�ed.
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The lemma follows from an application of Theorem 3.1 in Bougerol (1993), as its conditions

are met since E [log �] < 0 which implies E
�
log+ �

�
<1 and also E [log+ k�t (s)� sk] <1

for a constant function s by the fact that Yt has a bounded �rst moment. The invertibility

condition is su¢ cient for

sup
�

���logbht (�)� log ht (�)��� e:a:s:! 0; t!1:

Also, since log ht (�) is stationary and because

E (log h0) � (! + �) (1� �)�1 <1;

this implies that

sup
�

���bht (�)� ht (�)��� e:a:s:! 0; t!1; (8.2)

by the mean value theorem and Lemma 2.5.4. of Straumann (2005). �
Proof of Lemma 2

The proof follows the lines of Proposition 5.5.1 of Straumann (2005) and Theorem 8 of

Wintenberger (2013), which essentially show the existence of a unique stationary solution

to the stochastic recurrence equation (SRE), which is ergodic. We need similar contraction

techniques as in the proof of Lemma 1. Equation (A.4) is a linear SRE, @ log ht+1 (�) =@� =

�0t [@ log ht (�) =@�], where �
0
t(s) := @�t(s)=@s is the stationary approximation of @b�t(s)=@s.

By Assumption 2, log-volatility is bounded from below, i.e. there exists a constant s� such that

inf� log (ht) � s� a.s. Note also that except for a point with Lebesgue measure zero, both At
and Bt are continuous functions in (s; �) and that g� in (3.3) is di¤erentiable pointwise almost

everywhere. There exists a � > 0 such that


b�0t (0)� �0t (0)


 = 


 bBt �Bt


k���0k�� �




sup
s�s�

@2g�
@s@�






k���0k��




logbht (�)� log ht (�)



k���0k��

;

where

@2g�
@�@s

=

0BBBBBBBBBBBB@

2�1 [
 + � sgn (g (s))] exp (s=2)

�2�1 [
 + � sgn (g (s))] exp (s=2)

0

[�2�1g(s)� �2 exp (s)] exp (�s=2)

f[�2�1g(s)� �2 exp (s)] exp (�s=2)g sgn (g (s))

1

1CCCCCCCCCCCCA
;
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where g (s) = y � �1 � �2 exp (s). Because

E

�
log+





sup
s�s�

@2g�
@�@s





� <1;
as E

h
log+

���Yt � �1 � �2bht���i <1 and E
h
log+ bhti <1, then for any j�j < 1,

1X
t=0

�
�t




sup
s�s�

@2g�
@�@s





� <1;
by an application of the Borel-Cantelli lemma (see Lemma 2.2 of Berkes et al. 2003). This

means that
1X
t=0




sups�s� @2g�@�@s







logbht (�)� log ht (�)



k���0k��

converges a.s. and hence




b�0t (0)� �0t (0)


! 0 e:a:s:

because



logbht (�)� log ht (�)




k���0k��
! 0 e.a.s. by Lemma 1.

We also have

�
�b�0t � �0t� � 


 bAt � At


k���0k�� �





sup
s�s�

@2g�
@s2






k���0k��




logbht (�)� log ht (�)



k���0k��

;

where

@2g�
@s2

=
�
4�1

�

g(s) + 2�1�2 exp (s) +

�
�g(s) + 2�1�2 exp (s)

�
sgn (g (s))

�	
exp (�s=2)

+
�
2�1�2 [
 + � sgn (g (s))]

	
exp (s=2) :

Again, because

E

�
log+





sup
s�s�

@2g�
@s2





� <1;
as E

h
log+

���Yt � �1 � �2bht���i < 1, then �
�b�0t � �0t� ! 0 e:a:s: by an application of the

Borel-Cantelli lemma as before, since we also have that


logbht (�)� log ht (�)



k���0k��

! 0 e:a:s:.

Now, because (i) the SRE (A.4) has a unique stationary ergodic solution as it is contractive

by virtue of E (log � (�0t)) = E (log kAtk) < 0 from Lemma 1, (ii) the �ltered log-volatility

process is invertible, and (iii) log ht (�) is di¤erentiable as a consequence of Proposition 5.5.1 of
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Straumann (2005) and Theorem 8 of Wintenberger (2013), it follows that @ logbht=@� converges
to the unique stationary ergodic solution uniformly locally in a neighborhood of �0, that is




@ logbht@�

� @ log ht
@�







k���0k��

e:a:s:! 0; t!1:

�

We now consider the second order derivatives and obtain a new linear SRE, that is

@2 log ht+1 (�)

@�@�>
= At

@2 log ht (�)

@�@�>
+ Ct; (8.3)

where At :=
@2g�
@s@s> and Ct :=

@2g�
@�@�>

+ 2 @
2g�
@s@�

@ log ht(�)
@�

. The next lemma implies the existence and

uniqueness of a stationary and ergodic solution of the SRE (8.3).

Proof of Lemma 3

The proof is analogous to the proof of Lemma 2 for the �rst derivative, applying Propo-

sition 5.5.1 of Straumann (2005) and Theorem 8 of Wintenberger (2013). Notice that the

stationary solution @2 log ht (�) =@�@�
> is continuous, as it is the locally uniform limit law of

@2 logbht (�) =@�@�> that is continuous by de�nition. �

The following two lemmas state that for the limiting processes of the derivatives of logbht (�),
the contraction condition is satis�ed for their functional SRE restricted to V (�0) := f� :

k� � �0k � �g, having ��T 2 V (�0) for T su¢ ciently large.

Proof of Lemma 4

From (A.4) with ht := ht (�0) and letting � = �0, we get

Atj�0 = �0 �
h
2�1 (
0Zt + �0 jZtj) + �02 [
0 + �0 sgn (Zt)]

p
ht

i
; and

Btj�0 =
�
� [
0 + �0 sgn (Zt)]h

�1=2
t ;� [
0 + �0 sgn (Zt)]h

1=2
t ; 1; Zt; jZtj ; log ht

�>
:

Let rgt (�) := @ log ht (�) =@�. The SRE (A.4) can be written as

rgt+1 (�) = �0t (gt (�) ; �)rgt (�) +r��t (gt (�) ; �) ; t 2 Z

where �0t (gt (�) ; �) =: At in (A.2) and r��t (gt (�) ; �) =: Bt in (A.3).

Notice that we can rewrite (A.4), letting

�t(�) :=
"t(�)p
ht(�)

=

p
htZt + �01 + �02ht � �1 � �2ht(�)p

ht(�)
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with �t(�0) = Zt, as

At = � � 2�1 [
�t (�) + � j�t (�)j] + �2 [
 + � sgn (�t (�))]
p
ht (�)

Bt =
�
� [
 + � sgn (�t(�))]ht(�)�1=2;� [
 + � sgn (�t(�))]ht(�)1=2; 1; �t(�); j�t(�)j ; log ht(�)

�>
By similar arguments as in the proof of Lemma 3 in Wintenberger (2013) we can argue that

there exists a positive random variable a such that

��At � Atj�0��+ 

Bt � Btj�0

 � a (k� � �0k+ jlog ht (�)� log ht (�0)j) ;
that is, for any � that belongs to a compact neighborhood of �0, V (�0), we can apply a local

continuity argument with respect to the parameters to the Lipschitz coe¢ cients of the SRE

(A.4).

Thus, for any sequence
�b�T� such that 


b�T � �0


 a:s:! 0 as T ! 1 and b�T 2 V (�0) for T

su¢ ciently large, using the consistency result of Theorem 1, we have






@ log ht+1

�b�T�
@�

� @ log ht+1 (�0)
@�







 =







Atjb�T
@ log ht

�b�T�
@�

+ Btjb�T � Atj�0 @ log ht@�
� Btj�0








�

��Atj�0��







@ log ht

�b�T�
@�

� @ log ht
@�








+








@ log ht

�b�T�
@�








���Atjb�T � Atj�0���+ 


Btjb�T � Btj�0




�
��Atj�0��








@ log ht

�b�T�
@�

� @ log ht
@�







+ a� 



@ log ht@�






V(�0)

+ 1

!�


b�T � �0


+ ���log ht �b�T�� log ht����
Now k@ log ht(b�T )=@��@ log ht(�0)=@�k is Césaro summable, i.e. its arithmetic mean of the

�rst T partial sums tends to a limit as T ! 1, and there exist a positive random variable a�

and a random continuous function b satisfying b(�0) = 0 a.s.,

T�1
TX
t=1








@ log ht

�b�T�
@�

� @ log ht (�0)
@�







 � a�



b�T � �0


+ b�b�T� :
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Hence, for any sequence
�b�T� converging a.s. to �0;

P

24 lim
T!1

T�1
TX
t=1








@ log ht

�b�T�
@�

� @ log ht (�0)
@�







 = 0
35 = 1

which implies that, as stated,





@ log ht(b�T )@�
� @ log ht(�0)

@�





 = op (1) : �

Proof of Lemma 5 By Lemma 4, taking the derivative in




@ log ht+1(b�T )@�

� @ log ht+1(�0)
@�





, the
second derivative of the log volatility is also Césaro summable, such that

T�1
TX
t=1








@2 log ht

�b�T�
@�@�>

� @
2 log ht (�0)

@�@�>







 � a0



b�T � �0


+ b0 �b�T� ;

with a0 a positive random variable and b0 a random continuous function which satis�es b0 (�0) = 0

a.s. Then

lim
n!1

nX
t=I








@2 log ht

�b�T�
@�@�>

� @
2 log ht (�0)

@�@�>







 = 0
a.s. for a random integer I > 1. Due to the fact that @2 log ht=@�@�

> is continuous in its

arguments, for any sequence
�b�T� converging a.s. to �0; @2 log ht(b�T )@�@�>

� @2 log ht(�0)

@�@�>
! 0 a.s. �
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Figure 1: Boxplots of independent realizations of the QML estimators of the EGARCH(1,1)-M

parameters with GED innovations.
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Notes: GED errors with � = 2: Various sample sizes are compared. The red line represents the median.
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Figure 2: Boxplots of independent realizations of the QML estimators of the EGARCH(1,1)-M

parameters with GED innovations.
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Notes: GED errors with � = 1:4: Various sample sizes are compared. The red line represents the median.
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Figure 3: Boxplots of independent realizations of the QML estimators of the Log-GARCH(1,1)-

M parameters with GED innovations.
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Figure 4: Boxplots of independent realizations of the QML estimators of the Log-GARCH(1,1)-

M parameters with GED innovations.
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Table 1: Bias and RMSE in % of the true parameter values: key characteristics of the �nite

sample distribution of the QMLE for the EGARCH(1,1)-M model, for various sample sizes and

two types of GED errors.

EGARCH(1; 1)-M

� = 2 (Gaussian)

T b! b
 b� b� c�2
500 �0:129 0:0267 �0:1308 �0:0050 0:2875

1000 �0:062 0:0100 �0:0646 �0:0021 0:1375

Bias 2500 �0:028 0:0108 �0:0292 �0:0007 0:0550

5000 �0:011 �0:0025 �0:0123 �0:0004 0:0425

10000 �0:005 0:0008 �0:0054 �0:0001 0:0125

500 0:437 0:2317 0:4254 0:0139 1:0025

1000 0:253 0:1542 0:2485 0:0076 0:6550

RMSE 2500 0:147 0:0983 0:1423 0:0039 0:4100

5000 0:01 0:0675 0:0977 0:0027 0:2825

10000 0:071 0:0483 0:0692 0:0018 0:1900

� = 1:4

T b! b
 b� b� c�2
500 �0:099 0:0542 �0:1338 �0:0074 0:3450

1000 �0:053 0:0083 �0:0677 �0:0024 0:1350

Bias 2500 �0:02 0:0117 �0:0238 �0:0008 0:0450

5000 �0:008 �0:0008 �0:0115 �0:0005 0:0450

10000 �0:006 0:0050 �0:0069 �0:0002 0:0175

500 0:473 0:2875 0:4700 0:0287 1:1050

1000 0:273 0:1867 0:2738 0:0083 0:6900

RMSE 2500 0:159 0:1175 0:1600 0:0046 0:4625

5000 0:102 0:0800 0:1023 0:0031 0:3150

10000 0:076 0:0583 0:0762 0:0021 0:2325

Notes: The number of simulations is 1000. The true values of the parameters are: ! = �0:10; 
 = �0:12; � =

0:13; � = 0:98; �2 = 0:04: We also assume that �1 = 0:
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Table 2: Bias and RMSE in % of the true parameter values: key characteristics of the �nite

sample distribution of the QMLE for the Log-GARCH-M model, for various sample sizes and

two types of GED errors.

Log-GARCH(1; 1)-M

� = 2 (Gaussian)

T b! c�� c�+ b� c�2
500 �0:1250 0:1438 0:0333 �0:0194 0:0986

1000 �0:0542 0:0250 0:0148 �0:0075 0:0500

Bias 2500 �0:0042 0:0313 0:0074 �0:0020 0:0114

5000 0:0083 0:0313 0:0111 �0:0012 0:0071

10000 0:0125 0:0250 0:0111 �0:0008 0:0029

500 0:5333 0:9313 0:5296 0:0683 0:4843

1000 0:3417 0:5250 0:3037 0:0388 0:2614

RMSE 2500 0:1708 0:2813 0:1556 0:0067 0:0986

5000 0:1042 0:1563 0:1037 0:0038 0:0500

10000 0:0667 0:1000 0:0667 0:0023 0:0243

� = 1:4

T b! c�� c�+ b� c�2
500 �0:2167 0:1438 0:0519 �0:0101 0:0986

1000 �0:1125 0:0625 0:0407 �0:0053 0:0229

Bias 2500 �0:0125 0:0438 0:0259 �0:0021 0:0114

5000 0:0083 0:0313 0:0259 �0:0013 0:0057

10000 0:0125 0:0313 0:0148 �0:0008 0:0029

500 0:6167 0:9375 0:5074 0:0234 0:5200

1000 0:4333 0:5500 0:3296 0:0153 0:2729

RMSE 2500 0:2333 0:2938 0:1815 0:0072 0:1157

5000 0:1500 0:1813 0:1222 0:0041 0:0586

10000 0:0875 0:1188 0:0741 0:0026 0:0329

Notes: The number of simulations is 1000. The true values of the parameters are: ! = 0:024; �� = 0:016; �+ =

0:027; � = 0:971; �2 = 0:07: We also assume that �1 = 0:
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Table 3: Summary statistics of the estimated conditional standard deviation for simulated

EGARCH-M and Log-GARCH-M models.

Mean Min. Max. Median St.Dev.

EGARCH-M � = 2 0:148 0:122 1:007 0:126 0:091

� = 1:4 0:152 0:109 0:841 0:144 0:053

Log-GARCH-M � = 2 0:149 0:124 1:007 0:128 0:090

� = 1:4 0:069 0:048 0:715 0:062 0:052
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