Supplemenary Material: Proofs

Denote by F'(.|W, X) the conditional cumulative distribution function of the error term
e given the covariates. The true conditional quantile g* (W 3,)X; is also written as

m; for simplicity of notation. Below C denotes a generic positive constant.

Lemma 1. Let r, = \/K/n+ K¢

n

sup > pe( ZXUBT (WIB)6, ZpT (Y; — ZXWBT WIB0)60;)
1B=B,|l+10-60|<Crn i=1 =1 i=1 =1

+Zn: Zp:(XijBT(WzTﬁ)ej — X BT (W] B80)80;) (T — I{e; < 0})

i=1 j=1
n P
—E Z p‘r T Z X’LJBT WTB JF E Z pT [ Z XijBT(W;f/BO)OOj) = Op(nrgz)'
i=1 j=1 j=1

Proof. As argued in He and Shi (1994)), without loss of generality we only need
to consider median regression with 7 = 1/2, p;(u) = |u| / 2. Below we use covering
arguments to achieve uniformility of bounds. Let A" = {(8M,0WM), ... (8™ 0}
be a d, covering of {(B3,0) : ||B — Byl + |0 — O¢|| < Cry}, with size bounded by
N < (Cry/8,)¢% and thus logN < C'Klogn if we choose d,, ~ n~® for some a > 0 (we
will choose a to be large enough).

Let Mpi(8,0) = 5|Y; = >0_, Xy BT (W[ B)8;| - 5|Y; — 20—, Xi;BT (W By)60;] +

1 (X BY(W{B)0;—XiBT (W 8)00;)(1/2—I{e; < 0}), and My (8, 0) = 3711 Mni(83,6).

Since the absolute value function |u| is Lipschitz, for any (3,0) there is a (3%, 8")
that satisfies |8 — 8|2 + |0 — V|2 < 62, we have

M,(8,0) — EM,(8,0) — M,(8Y,0V) + EM, (8D, 6V)

n p n p
l l
< O B WIB)e; - B W6l + YY" BB (W] )e; - BT (W6,
i=1 j=1 i=1 j=1
which can obviously be made o,(nr2) by the uniform continuity of the spline functions,

if one sets 9,, ~ n~% for a sufficiently big.



Then, we easily have

Myni(B,0)] =

Thus

IN

1 P 1 -
51Yi— > XiBT(W/B)6;| - SlYi - > X BT (W{By)80;|
j=1 Jj=1

p
+) (X;BT(W[B)0; — Xi;BT (W 30)00;)(1/2 — I{e; < 0})
j=1

1 p 1 p
Slei+mi =Y Xy BY(WIB)6;| - Slei +mi — Y XiB (Z{ Bo)0o,|
j=1 j=1

(x5BT (WIB)0; — X;;B" (W] B)00;)(1/2 — I{e; < 0})

M@

_l’_

[y

(X;BT(W[B)8; — X;;BY (W] By)8;)] -

Mw

1

J

H{le;| < |Z(XijBT(WZTB)0j — X;;BY (W[ B,)60;)]
=

p
+Hmi =Y Xy BT (WIB8,)80;1}.
j=1

p
< D _(X;BT(WB)8; — X;;BT (W] By)8y;)|
j=1

< CZ (IBYT(WTB")0,WT (B - B)|+ BT (W]B,)(0; — 60)])

< OZ IBOT(WIB)00,W! (8- B,)| + BT (WIBy)(8; — 60;)|
+\B“>T<W?ﬁ )(8; — 00;) W (B — By)l)

< C(Tn + \/Ern + K3/27",,21)

< C\/ﬁrn

=: A,

where we used that |B(z)| < CVK and |BY(z)| < CK3/? for any z € [a,b].

Furthermore, using

E[M.(8,0)> < C(VEry) Y EBT(W[B)8; — BT(W]3,)0;|”



< C(VKry)(r?) =: D?, (10)

application of Bernstein’s inequality together with the union bound yields

P( sup |Ma(B,6) — EMo(8,8)] > a) < Cexp{———2

CKlogn}.
(B.0)eN ad+nD? " s}

It is clear that the right hand side above will converge to zero when a = O (max{K 3/2r, logn, \/nK3/?r3logn}
o(nr?). O

Lemma 2. For sufficiently large L > 0,

P
inf Ep:(e; +m; — » X;BT(W[B)6;)
BB, +10~60|=Lr. Z ]z_:l y ’

—ZE,OT (e; +m; — ZXUB W/ 8)60;)
7j=1
> L2CTLT72T

Proof. We make use of the Knight’s identity that p,(z—y)—p-(z) = —y(r—I{z <
D+ [ (I{z < t} — I{a < 0})d¢, which implies that

n p n p
EZPT(e’i +m; — Z X;BY(W/B)8;) — E Z pr(ei +m; — ZXijBT(W;‘FIBO)GOj)
i=1 Jj=1 i=1 j=1

p XijBT(WiTﬁ)ej*mi
=B Z/ v F(t|W;,X;) — F(0|W;, X;)dt

_ Xi;BT(WTB)00;—m;

> CES Y fO[W3,X;) ZX BT(W3)6; —ZX BT (W] B,)60))*
% 7j=1

p p p
+20) " X;BY(W]B)0; — > X;;BY (W] B))00,) (> XiBT (W] B)00; — mi)
j=1 J=1 J=1

We have, by Taylor’s expansion,

p p
Z(Z X;BY(W!B)8; - Z Xi;BT (W By)00;)
i j=1 Jj=1
2

p p
> CY ZX BUT(WTB)00, W (8- 8y) + Y XiBT(W[Bo)(0 — 60j) | + op(nry)

=1



> CL*nrl.

Note that we have used the eigenvalue property as in Lemma [3|stated below. Further-

more, as in (10)) we can derive a corresponding upper bound

p p
SO x;BYWIB)0; - Xi;BY(WB,)80;)* < CL*nr2,
i =1 j=1

and using the property of polynomial splines,
> ZX BY(WIB))80; — mi)? < CnK =% (11)
i
Combining several bounds stated above, we have

n P p

EY prlei+mi— Y XiBY(WIB3)6;) — Ep,(e; +mi — > X;;BT (W] By)60;)
i=1 =1 =1
> C’LQnr%,

when L is sufficiently large. g

Lemma 3. With probability approaching one, the eigenvalues of
li (X; @ BH(WTB))T0,W;
ni3 X; @ B(WI3)

are bounded away from zero and infinity.

(% @ BOWT,))"00WT, XT @ BT(W]g,))

Proof. Using Markov’s inequality, we only need to show the population version

that the eigenvalues of
T T
E (X & BUW? )" 00W ((X @ BOWT3,)To,wT, X" ® BT(WTBO))
X @ B(W'g,)
(12)

are bounded away from zero and infinity.
Since |(X @ BO(WTB,))T0 — gDT(WTB,)X| < CK 41, we only need to show

that the eigenvalues of

M)TwT
(e (WTB,)XW (g(l)T (WTB)XWT XT @ BT(WTﬁo)) (13)
X ®B(W'g3))



are bounded away from zero and infinity.

By (A4), we can find a pK x ¢ matrix v, satisfying ||Exm[gMT(WTB)XW] —
Y6 (X @B(W'8y))| < CK~%,

Pre-multiplying by

I — T
Y0 (14)
0o 1
and post-multiplying by its transposition, we obtain the new matrix
®2
B gWT(WTB))XW — 77 (X @ B(W'B)) (15)
X @ B(WT3))

Since it can be directly verified that singular values of are bounded away from zero
and infinity, we only need to show that the eigenvalues of are bounded away from
zero and infinity. Since ||[Ep[gMT(WTB0)XW] —4f (X @ B(WT3))|| < CK~¢, we
can replace v§ (X@B(WT3,)) with Ex[gVT(WTB,)XW] in the displayed expression
above. By the assumed boundedness of f(0|W,X) in (A2), we only need to consider

the matrix
®2
g | row.x) [ BTWTBOXW — (W, X W) R
X ®B(W1g))
By our specific definition of the projection in the main text, E[f(0|W, X)(gMT(WT3,)XW—
EmlgMWT(WTB)XW])(XT @ BT (WT3,))] = 0 and is block-diagonal and it is
easy to see by (Ab) that the matrix has eigenvalues bounded away from zero and

infinity. O

Lemma 4.

p p
sup DD XuBTWIB)0; - > XiBT (W] By)6y;
||/8*180H+||0*00”=Lrn 3 j=1 J=1

(1 —I{e; <0})=L- Op(m"i).



Proof. For simplicity of presentation below, we denote ¢; = 7 — I'{e; < 0}. We

have

p p
Z(Z XZ]BT(W;T,B)HJ - Z XijBT(Wi’I‘IBO)OOJ)Gi

i =1 =
Z Z XiBUT(WTB0)00; W (B — By)ei (17)
+ Z Z T(WTB,) (6, — 00,)WT (B — By)ei (18)
+ Z Z X;;BYTWEG) - BOT(WTB)))00,WE (B - By)e; (19)

+ Z Z Xi;(B Twis) - BUT(WTB0))(8; — 00;) W (B — By)e{20)
+ Z Z Xz]B Wz ﬂo)(ej — Ooj)ei. (21)
g
The term (17) obviously has order L-O (\/ﬁrn) For , we have that HB(W'T,@())QH? —
Op(3; IBIW]By)|1?) = Op(nK) and thus (21)) is Op(vVnK |0 —800|)) = L-Op(v/nKry).
For the term (1), since | B(l)(W;‘FIBO)GiHZ — 0,(%, B (W?ﬁow ) = Oy(nE?)

we have

Z ZXZ]B (WEB0)(8; — 00;,) WL (B — By)ei = Op(vnK>?12) = o0,(nr?).

With further Taylor expansion BO(WT3*) - BO(WTG)) = BO(WIg* )W (3" -
Bo)s and (20 are also of order o,(nr2) and the proof is complete. 0

Proof of Theorem [I} Combining Lemmas stated above, we get that

p
Zp.,. i ZXUBT WT,@ > ZPT [ ZXZ]BT(W?BO)HOJ) — 1,
18- ﬂou+u0 Ool=Lry ;= = =1

and thus there is a local minimizer of (3,8) with |3 — Boll + |10 — 6o = Op(ry). O
Next we try to establish asymptotic normality of B Orthogonality step plays an
important role in this part. Due to the more complicated model structure here, this

procedure is more complicated than partially linear models considered in some previous

works (Wang et al., |2009} 2011)).



Let TI; = X; ® B(W/3,) and let I be the n x (pK) matrix with rows IT}. The

empirical counterpart of the previously defined projection is
Hbin Z f(0|WZ7 XZ)(VZ - H;ro)Z?
i

with the minimizer (II'T'II)"'II'T'V where T is the diagonal matrix containing
f(0|W;, X;) as its diagonal entries, and V = (V4,...,V;)". Define P = II(TT'T'II)~'TI'T.

We write

r(ei +m; — Z B(W/3)6;)

= prle; — ZXWB (Wi B0)(0; = 00j) = 3 Xy BT (W By)00; W (B — By) — Fi(B,0))
= prle — TLT(@ —60) — U (B—By) — Rz’(]ﬁ» 0)),
where we defined U; = 3, X;;BWT(WT8))6;W; and
Ri(B,6)
ZXw B(W/8) —B(W/5,))"6; - ZX BUYT(WT B0)00, W (8- B)

+ ZXijB (W By)80; —my)

J
=: Ril(ﬁ, 0) +Ri2(/67 0)

Let V = U — PU with the i-th row of V denoted by VI = U} — PTU. We further

write
pre; =TI (6 — 60) — U7 (B — By) — Ri(B,9))
= pr(ei =TI/ ((6 — 6o) + (II'TI) 'II'TU(B - By)) — V(B — By) — Ri(B3,9))
= prlei =i = V(B ~ By) — Ri(B,9)),
with p = 6 — 6 + (II'TII)~'TITTU(B — 3,). We require the following lemma which
is a refinement of Lemma [Il

Lemma 5.

sup > prlei —IIn — V(B - By) — Ri(B,0))
1B-B,lI<C/vn,|In<Crn | 5



=D prles =T — Ri(By, 0) +ZVT B - Bo)ei
—EZpT — 0/ n— V(8- By) — Ri(B,9)) + EZpT —IL'n — Ri(B,,9))| = 0,(1).
Proof. Same as for Lemma |1, we assume 7 = 1/2 here for simplicity. We have
Ri(8,0) = Zng B(W; 8) - B(W/3))"(8; — 60;)
- Z Xij (BT (W] 8)00; — BT (W 8y)80; — BUT(WT30)00; W (B — o))
J

= > XyBUT(WIB)(8; - 00;) (W] (B - By))
J
= > XyBOT(WIB)60;(W (8 — By))*

J
It is easy to see that |R;| < C\/K?’/m"n and Y, B2 = O,(r2K3 + 1/n) = O,(r2K3).
Ri(Bo,0)| + (VI (B = Bo) + Rir(8,0))(1/2 — I{e; < 0}), we have

| Moi (B, m)|
IVE(B = By) + Ria(B,0)|I{les| < |V (B~ By) + Rin(B,0)| + |IIFn + Ri(By, 0)|}

— C(l/\/ﬁ—i_ V K3/nrn),

IN

A

and
E|Mu(B,m)* < (1/n+ K% /n)(VEry).

The rest of the proof is similar to the proof of Lemma|[ll In particular, using a covering

argument with Bernstein’s inequality, we have that

sup > prlei =T — V(B - By) — Ri(B,9))
I1B-Bol<C/vm|ml<Cra |

_ZPT(Z HT"T R;i(By,0) +Z VTﬁ Bo) + Ri1(3,0))e;

—EY prlei =T — V(B - By) — Ri(B,6)) + E Y _ pr(e; — IT['n — Ri(By, )



is of order Op(max{Klogn(1/\/n+ \/K3/nry), \/(1 + K37r2)(VKr, Klogn) = 0,(1).
Finally, using the above bounds for R;; and similar arguments, we have ), R;1(3,0)(1/2—
I{e; < 0}) = 0p(1) which completes the proof. O

Lemma 6.

sup Z Ep-(e; —IIin — V(B — By) — Ri(B,9))
IM<Crn, |B-BlI<C/vn |

Y Bprler T~ Ri(80,0)) - S T R (5 g vivT(s - 3y)| = 0y1).

Proof. By Knight’s identity,

Z Epr(e; —ILin — Vi(B — By) — Ri(B,0)) — Z Ep;(e; — ILin — Ri(By, 0))

(2

ILn+R:(8.0)+Vi(B-8,)
_ / F(t|X:,Z:) — F(0|Xs, Z:)dt
HinJrRi(/@o’e)

S OV (5~ 3 ViVE(B — Bu) + Iy + 2R V(B — Bo) + 2R (T + (B, 0)

+2(ILin + Ri(By,0)) V] (B — By) } (1 + 0p(1)).

We have 37, R}y = O(r K°) = 0,(1), (3; Ra Vi (B — By))* = Op(ri K?%) = 0,(1), and
(X, Rin(ILim + Ri(By,0)))? = (r2K3)(nr2) = 0p(1). By the defined orthogonalization
step, >; £(0|1Xy, Z)IL V] = 3, £(0|X;, Z,)IL(U; — IIF (IT'TT) ~'IITU) = I'TU —
IT'TU = 0. Thus we only need to show

Z FOOIW 4, X5)Ri(By, 0) VI (B — By) = 0p(1),

with R;(8y,0) = >, XijBT (W] B,)00; — mi.
Note that directly using |R;(8y,0)| < CK~¢ shows that the above displayed equa-
tion is of order Op,(v/nK ~?%) # 0,(1) in general. So we need to use a different strategy
based on finer analysis.
Write VI = (U —gMT (W] Bo)XWI)+(gDT (W By) XW—En gV (W B) XWT])+
(EmgMT(WTEB)XWI-PTU)), and we deal with each one of the three terms below.

9



By the approximation property of splines,
> FOIW3, X3) Ri(By, 0) (U] g™ (W B) XW)(B—By) = Op(VnK 1) = 0(1).

Then, using the definition of projection, we have E[f(0[W;, X;)R;(B0, 8)(g M (W] B,) XWT —
EmlgWT(WTBy)XWI])] = 0. Thus by a simple variance calculation, we get

> JO0[Wi, Xi) Fi(Bo, 0) (8T (W Bo) XWT = Ea[g™ T (W B) XWT])(B-y) = Op(K ™) = 0 (1).

Finally, using (A4), we have ||Ey[gMT(WTBy)XWT] - PIU|| = O, (K% + K—4+1)
and thus
> J(O[Wi, Xi)Ri(By, 0) (Enalg " (W B)XW] — PIU)V(B — By)
= (;p(ﬁK—d—d’ + VK72 = o (1).
Thus >, f(0|W;, X;)Ri(Bg, 0) VI (B — By) = 0p(1) and the proof is complete. O.

Lemma 7.

% > FOIW;, X) ViV — E[f(0[W, X) (g (W 8) XW—Eplg T (W 8) XW))*] in probability,

1 > ViV = El(gMT(WTB))XW — Ep[gM T (W B)XW])®2] in probability.
n

Proof. The left hand side is VITV/n = UN(I — PT)I'(I — P)U/n where the
rows of U are U} = > Z;;BWT(WTB,)80;WT. Let U* be defined similarly as U
with BWT(WT3,)8¢; replaced by gj(-l)(WiTBO). By the approximation property of
splines [|(1/n)U*"(I - PT)[(I-P)U* — (1/n)UTI - PT)I'(I-P)U||, = 0,(1) and
then using the same arguments as in Lemma 1 of Wang et al. (2009). The second
expression is proved in the same way. ]

Proof of Theorem Let 7 = 0 — 0+ (II'TTI) " 'II'T'U(B — B,). By Lemmas

B 6 and ]

sup > prles =TT — V(8- By) — Ri(B,0))
18-Boll<C/vn|

10



=D prlen =TT = Ri(Bo,0)) + 3 Vi (B~ Bo)ei
~2(B=B0)"®(8~ By)| = 0,(1): (22)
Let Q(8) = 5(8—B0) " ®(8—By)~ X2, V{ (B-By)e; and define B = By+(1/m)@ 1 32, VT

We have by central limit theorem
V(B - Bo) 5 N(0, @' 5.

Note 3 is the minimizer of Q(8), which has a quadratic form (3 — 3)T®(3 — 3) plus
a term that is independent of 3. Define
Bi= argmin (8- B)T®(8 - B).
1811=1,8:>0
By Proposition 4.1 of Shapiro| (1986) which works for overparametrized models (consid-
ering 3 as a function of BV and the parametrization using 3 is an overparametriza-

tion), we get that
Va3 — By) % N(0,J3Te) 1 ITEI(ITeI) "I ).

Given any 3 with ||8|| =1 and ||B — é” = ¢/+/n for a sufficiently small § > 0, due to
that @ being quadratic, we obtain

Q(B) - Q(B) = C¥”
and thus by (22)),

P(S” pelei T =V (B—By)—Ri(8,0)) > 3 pr(ei—TI VT (B—By)~Ri(B.9)) — 1.

By the arbitrariness of &, we get |3 — [:3H = 0p(1/4/n) which finishes the proof. O

Lemma 8. Let r, = \/K/n + K~ and 7!, = r,/'K. When K3log*n/n — 0 and

K¥3/2logn/n — 0, we have

n

sup > prlei —IIF (0 — 80) — UL (B — By) — Ri(B,6))
10—-00||<Cr;,,1B-B,lI<C/vn | i=1

11



_Zp‘l' € UT /6 /60) 1(16700))
+ZH;P(9 —60)(7 — I{e; < 0})
i=1

—EZp” IIF (6 — 60) — UF (B~ Bo) — Fi(8.6))

+EZPT €i UT 13 /80) 1(13700))

= p(K Lnr2).

Proof of Lemma [1} The proof is similar to that of Lemma [I] and Lemma [5} With
abuse of notation, let M,;(3,0) = ile; — IIT (6 — 6) — UL (B — B,) — Ri(B,0)| —

alei

— UX(B - By) — Ri(B.60)| + (TIF (6 — o) + Ri(3,0))(1/2 — I{e; < 0}), and

M,(8) = 21", Myi(B,8), where R;(8,8) = Ri(3,0) — Ri(8,0p). We have by casy
calculations |R;(8,0)| < C/K3/nr!, and 1| R?(8,0) < CK3(r))?, which leads to

< |II(0 — 60o) + Ri(B,0)| - I{|e;| < |IIT (8 — 60) + Ri(B,0)| + |UF (B — By) + Ri(B,00)|}
< C\/Er;,
E|Mni(B,0)> < CKEKr)((r))?),
and

Zéi(ﬂ 0)(1/2 — I{e; < 0}) = 0p((n/K)r7).

Using a fine covering as in Lemma [l and Lemma [5| with Bernstein’s inequality, the

left hand side in the statement of the current lemma can be shown to be of order
O, (maX{K?’/Qr;Llogn, VK32 (r )3logn}) = 0,((n/K)r2) by the more stringent con-
ditions on K. m

12



Lemma 9.
sup > Epr(e; =TI (6 — 60) — UL (B - By) — Ri(B,6))
106 <Cr, |B-BylI<C/vn| i
-3 Epeles - UF(@ )~ R(B.00) - 3 TOWLXi) (g gy)mw.ax (6 - )

- Z FOO[W;, X)IIF (6 — 60) (U (B — By) + Ri(B,00))| = op((n/K)r?).

Proof. The proof is similar to that of Lemma [6] with the difference being that since
we do not use orthogonalization here some terms are no longer ignorable as appeared
in the statement of the current lemma. Similar to the calculations in Lemma [ we

have

ZE'OT — 0 90) 1(,6—,60) - ZEPT - 0 00) 2(/6700))

/’ 1(9_00)+U1 /8_180)+Ri(/370)
I1,(0—-60)+R:(3.600)

= Y TOMR) Lo oot (e - 0) + B2(3.0) + 28:(5,0)11T (6 - )

F(t’WZ’, Xz) — F(O‘Wi, Xi)dt

2(TL(6 — 60) + [:(3,0)) (UT (8 — Bo) + Ri(B,00)) } (1 + 0,(1)).

Using |R;(83,0)| < C\/K3/nr!, and 37| R2(3,0) < CK3(r),)?, all terms above in-
volving R;(8,8) are o,((n/K)r2), which proves the Lemma. O
Proof of Theorem Bl Now define

2 (6 — 00)ILII (6 — 6y)

6* := argmin
rank(@)<r

+ Z FO[W, XTI (6 — 60) (U (B — By) + Ri(B,60))
- ZHiT(H —0o)(1 — I{e; < 0})
and

iaXi
0™ = arg minz M(O — 00)ILII (6 — 6y)
9 5 2

13



+ Z F(OIW;, X)ILF (8 — 80) (U (B — Bo) + Ri(8,60))

(2

= DT (O — 60)(m — I{e; < 0})

(the latter does not have rank constraint). We have obviously
0™ — 0y = (II'TTI) "} (ITe - I'TU(B — 3,) — II'TR), (23)

where T' = diag{f(0|W1,X1),..., f(0[W,, X))}, R = (R1(8,60),...,R.(8,00))"
and € = (1 — I{e1 <0},...,7 — I{e, <O}T.
We note that the expression on the right hand side in the definition of 8* and 0**

can actually be written as

1

5(0 — 0*)T(II'TII) (0 — 6**) + terms not involving 6.
For a general x, let

0" (x) = argmin (6 — x)T(IT"TTI)(6 — x).
rank(@)<r

Then by our definition of 8%, * can thus be regarded as a function of 8**, denoted by
0*(0**). Since O has rank bounded by 7, we can write @9 = DoE{ for a p x r matrix
Dy and a K x r matrix Eyg. The Jacobian of this parametrization of 6 is defined to

be
B 00
d(vect (D), vec™(E)) |p_p, 5=k,

By Proposition 3.1 in [Shapiro| (1986)), the Jacobian matrix for the function 6*(.) is

Jg= 96" (x) — A(ATII'TTIA) - AT I,
6X x:e**

where (.)~ denotes the Moore-Penrose inverse.
Next we show the asymptotic normality of B(x)TO;* = (e;®B())T6**, where e; is
the unit vector with j-th entry 1 and others 0. For the term (e;@B(z))T(TITTTI) ',
its obviously its conditional variance is 7(1—7)(e;@B(x)) T (ITTTIT) " Y(IITTII)(IT"TTI) ! (e;®

14



B(z)) < K/n. One can verify that the Lindeberg-Feller condition holds and thus we
get
(e; @ B(z))T(II'rII) 1€

4 N(0,1),
(r(1 = 7)(e; ® B(z))"(II'TH) - (IT"I)(IT'TH) ! (e; ® B(x)))

1/2

using arguments similar to that used in Theorem 3.1 of Zhou et al| (1998). When

1B — Boll = O(1/y/n), we have
(ej ® B(x))H(II'TII) " 'TI'TU(B - B,)
= Op(ll(ej ® B(x)) " (II'TI) "I [U][[|8 — Boll)

= Oz Vi 72) = 072,

Furthermore, write R = Ry + Ry where Ry = (R11(8,60),..., R.1(8,00))T and
Ry = (R12(B,60), - - ., Rn2(8,600))". [Ri1][* = Op(1/n) is sufficiently small such that

it directly leads to

(e; ® B(z))N(II'TII) 'II"TR,
= 0,2 = 0,1 2.

n

On the other hand, by our definition of @y, II"TR, has mean zero, and thus

E[|(e; ® B(z))T(II"TI) ' TR, %]
B 1 K

= Op(m) = Op(;)-

Thus the dominating term in (e; @ B(z))T(6** — 8p) is (e; @ B(z)) " (IT'T'TI)~'TIe and

(e; @ B(z))T (6™ — 6o)
(7(1 — 7)(e; ® B(2))T(II'TII)~(IT"IT)(IT'T'TI) ' (e; ® B(x)))

7 — N(0,1).

Thinking 6 as a function of 8**, delta method implies that we also have asymptotic
normality for 6*:
(ej ® B(x))" (8" — 6)

<T(1 —7)(ej ® B(x))TJg(IT' TIL) L (IT"IT)(IT' TTI)~1J g (e; © B(x))

>1/2 — N(0,1).
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When Kn~1/(2d41) 5 oo, the bias in estimating g; is dominated by its standard devi-

ation, and thus

(ej ® B(2))10" — 85(=)

YR N(0,1).
(7(1 = 7)(e; ® B(2)) "I TI)~ (M) TI) ' 3§ (e; © B(x)))
Denote
Q(B,0) = —) T (6—6o)(r — I{e; <0})

i=1

+E Z pr (Y — Z X;BY (W[ B)6))
i=1 J

n
—EY pr(Yi— Y X;BT(W]p)6;).
i=1 j
For a small § > 0, using Lemma [§, we get

n

> (Vi =) Xi;BT(W]B)6;))
i=1 j

sup
100" ||<é(n—1/24K—4-1/2) | B-B,<C/v/n

= (Vi =Y XiBT(WIB)67) — [Q(B,6) — Q(B,0%)]| = 0,((n/K)r2).

i=1 7

Since Q(83, 0) is approximately quadratic, we have that when [|@ — 8*|| = §(n~'/2 +
K—d—1/2)

1Q(83,0) — Q(B,0%)| > Cn||0 — 6% — 0,((n/K)r2) > 0.

This yields

lim P { inf an pr(Y; — Z Xz‘jBT(Wz‘TB)ej)

noe | 10-0"(|=5(n" 124K —4-12),| BB I<C/vn i 7

> pr(Yi— ZXUBWW?ﬁ)e;f)} =1
i=1 j
Thus

P{0 - 6% = 6(n~ /2 4 K412},
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converges to zero and we deduce that ||§ — 0% = 0p(n"1/? + K=971/2) which implies
(ej ® B(z))T8 has the same asymptotic distribution as (ej ® B(x))To*. O
Proof of Theorem [4] In the proof, the true rank of the matrix @ is denoted by 1o,
while we use r to denote a generic value for rank that can vary.

For any given r, let ®,. be the minimizer of

min  E[p,(Y - XTOB(W}3,)].
rank(©)<r

Denote the estimator of ®, as ©,, which minimizes >oip(Yi— XZT(-)B(W;FBf)) also

with the rank constraint. In the following, we consider two cases to finish the proof.
Case 1. (r < rg, underfitted model) We first prove

Elp-(Y — XT©,B(W'5))] - E[p;(Y — XT©B(W"5))] (24)
is bounded away from zero. By Knight’s identity, we have

pr(Y — XTO,B(Wy)) — p,(¥Y — XT@,B(WTS,))

XT(®, — ©)B(WTBy)[I{e <5} — 7]+ fF O OBV re <544y - Ife < sar,
B(WT )|

XT(@, —00)B(WT3))[I{e <0} — 7] + XT(®, — ©0)B(W'S3,)[I{c <6} — I{e <0}]
4 (XIO=OBWI B 1 <541y~ I{e < 8Ydt,

(25)

where § = XTOB(WT3,) —m and m = g (W' 3,)X is the 7-th conditional quantile
of Y given W and X.

The first term in obviously has mean zero. By taking an iterated expectation
conditioning on W, X first, the second term in satisfies

E{X"(©, — ©9)B(W'B)[I{e < 6} — I{e < 0}]} = O(||©, — @[ K~ %).

For the third term in (25)), note that conditionally on X and W, by (A2), we can find
a neighborhood around zero on which the conditional density value of e is positive.

Thus we have

E

XT(O,-00)BWT3)
/ [[{e <0+t} —I{e < d}|dt

0
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XT(©,-©y)BWTS,)
E/ (F(5+ W, X) — F(5|W, X)]dt
0

> CE[X'(©, - ©)B(W'5,)}?] > C||©, — 6.

By assumption (B), when r < rg, [|®, — ©¢|| is bounded away from zero, and thus
expectation of the third term in dominates those of other terms and as a result
we have .

By following the proof of Theorem [I} even with underfitted models, we still have
10, — ©,| = Op(ry), where r,, = \/K/n + K~ We can also get, following the proof
of Lemmas [I] and

n N N n
> _pr(Yi = X[O:B(WIB)) = > pr(Yi = X[ O, B(W, ) = Op(nr7).  (26)
i=1 =1

For the SIC, using (26)), we can write

SIC(r) — SIC(ro)
e (1 L Sipr(Yi- XTO,B(Wf'B;))/n -3, pr(Yi - X?emB(W?ﬂm/n) o (Klogn)
o (Y — XTO,,B(WIB)))/n
( Z pr(Yi = X[ ©,B(W/By))/n =3, p-(Yi = X ©,,B(W/SBy))/n + Op(ry: ))
Z’i pr (Y — X;FQTOB(Wz‘TIBO )/""‘Op(""%)
(Klogn) .

Applying the law of large number, we have that

= log

> p-(Yi = XTO,B(W]By))/n— 3, p-(Yi — X[ ©,,B(W]By))/n
and

> eV~ XPO, B(W By))/n

are both bounded away from zero, which leads to that

P{SIC(r) > SIC(rg)} — 1 for any r <. (27)

Case 2. (r > rg, overfitted model) By the same arguments as in (26), we have
SIC(r) — SIC(ro)

18



~ log (1 L Zipr(Yim X?@TB(Winif)))/nA— > pr(Yi - XiT(:)TOB(W;PBf)))/n>
i pr(Yi = X0, B(W]By)))/n
logn

+(r—ro)lp+ K —r— To)%

= log (1 L 2 (Yi = XTOB(WIBy))/n = 5, pr(Yi = XTO,, B(WTBy))/m + op<r,%>)
> pr(Yi = XT©,, B(W]By)) /n + Oy(r2)
logn

+(r—ro)lp+ K —r— ro)%.

In the overfitting case, we note that ©, = ©,,, which implies

K 1
SIC(r) — SIC(ro) = Op (n) +(r—ro)(p+ K —r— To)(;inn,
and thus
P{SIC(r) > SIC(r¢9)} — 1 for any r > r. (28)

O
Proof of Theorem First, we can show the existence of a 7,-consistent local
minimizer for the penalized optimization problem . Using Lemma (1| similar to the
proof of Theorem (1} we can show that for [|@ — ©q| + |3 — Byl| = Lry, with L > 0
sufficiently large,

>_pr(Yi = XTOB(WB) > 3 pr (Vi = X[ ©oB(W] 5y)

with probability approaching one.

Considering the penalty terms, for j < ¢, with ||@; —0y;|| < Lry, using the concrete
form of the SCAD penalty, we have px(|[€0;]|a;) = pA([00jlla,) since A = o(1) and both
|0;]] and ||@¢;|| are bounded away from zero. On the other hand, when j > ¢, we have

PA(l051la;) = pA(ll@0;]/a,) = 0. Combining the two cases above, we get
nY pa(105lla,) = n > palll0o;la,)-
J J
Thus, we get that, uniformly for ||@ — 8q|| = Lr,, with L sufficiently large,

Y (Yi=XTOBW] ) +n) pa(l05lla,) > D pr(Yi = XTOB(WI By)) + 1) pa(l605]a,)-
i j i j
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This implies the existence of a r,-consistent local minimizer.
The next step is to show that this r,-consistent local minimizer, denoted as (B, 5),
satisfies part (i) of Theorem We prove this fact by contradition. If (i) is not

true, we can assume éj* =% 0 for some j* > q. We define 0" to be the same as 6,

~x

but we replace 5j* by 6;. = 0. Due to the check loss function is convex, we have

pr(x) = pr(y) > (1 — I{y < 0})(z — y), implying that

> o (Y - XTOBW]B) - Y p.(v; - XTO B(W]3))

- (r— I{Y; < X]OB(W/B)}) X;;B(W/B)"6;-

1

= =~ e < 0)X,B(W!B)d

v

S e < 0) — 1o < XTOB(WEA) — m}) X BWB)"6,..
Z (20)

The first term above can be bounded as 3, (7—I{e; < 0})X;;B(WFB)8;- = O,(vnK)|0;-]|.
For the second term above, let M, be any positive sequence diverging to infinity, we
have, since | XTOB(WT3)—m;| = O,(VEKr,), P(XFOB(WTB)—m,| > M,VEr,) —

0, and

E[ 2

Y (I{e; <0} = I{e; < XTOB(W]B) — mi}) Xi- B(W/ B)

7

X} OB(WB) — mi| < M,vVEr,}|

IN
&

2
(Z [I{e; < MuyVEr,} — I{e; < —MyVKry} - IB(W?5)|>

= B} H{-MVKr, < e; < MyVEr,} - [|BW!B)|?

—i—ZE[I{—Mn\/frn <e < Mn\/ﬁrn}l{—Mn\/?rn <ey < Mn\/?rn}
i
IBWIB)IIBWB)I|

IN

C(nM,VEKr, +n>M2Kr2)||0;+],
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and thus the second term of is Op(nVK rn)Ha]* ||. Besides, considering the differ-
ence of the penalty, we have
nY_ pa(l0;lla,) —n ) pa(ll0;lla,) = noa(16;-la,) = nA[6;+]la;,  (30)
J J

where the last equality used the fact that py(|x|) = A|z| when |z| < A. Putting together

and , we get

S oe (Vi - XTOBWIB) + 1> mal85lla,) > > p- (Vi = XTOB(WIB) +1 > pa(l6;]la,)
7 7 1 i

with probability approaching one. This leads to a contradiction.

Finally, to show part (ii) of the theorem, we note that given part (i) holds, restricted
to a r,-neighborhood, the penalty n» 7_, p>\(H6jHAj) remains a constant. Thus the
local minimizer without a penalty is also a local minimizer of the objective function
with a penalty. Then asymptotic properties we want to prove directly follows from
Theorem [ O

Finally, since the proof of Theorem [6]is similar to that of Theorem [ we choose to

omit the details here.
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