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A Conversion of truncated Gaussian parame-

ters

Let T be a truncated Gaussian distribution, T > 0, with Gaussian parameters

m̃ and s̃ and observables m and s (best guess and uncertainty), and let

u = s/m and ũ = m̃/s̃. Let φ(y) and Φ(y) denote the probability density

function and the cumulative distribution function of the standard normal

distribution.

According to Greene (2008), the connection between the Gaussian pa-

rameters and the observables is:

1



m = m̃+ s̃
φ (−ũ)

1− Φ (−ũ)
; (A.1)

s2 = s̃2

(
1− φ (−ũ)

1− Φ (−ũ)

(
ũ+

φ (−ũ)

1− Φ (−ũ)

))
. (A.2)

In the previous expression the ratio φ(−ũ)/(1− Φ(−ũ)) is known as the

inverse Mills ratio. Expressions with di�erent degrees of accuracy for Φ(−ũ)

can be found in Abramowitz and Stegun (1964). Equations. A.1 and A.2 are

no longer accurate when ũ < −5 (corresponding to u > 0.98), and in this

region, a better approximation is given by:

m =
s̃2

m̃

(
−1 + 1.97777 (1− u) + 6.8 (1− u)2) ; (A.3)

s = m

(
1− 0.014172

(
ũ+
√

16.8 + ũ2
)2
)
. (A.4)

The author is unaware of any analytical formula which expresses the

Gaussian parameters as a function of observables. By inspection, the follow-

ing set of conversion functions was obtained. If u ≤ 0.3, then m̃ = m and

s̃ = s. If u > 0.3, then m̃ = mgtpm(u), while:

s̃ =



s√
gtps (u)

if 0.3 < u ≤ 0.8;

−s gtpm(u)√
gtpm(u)gtpr (u)

if u > 0.8.

The conversion functions are:

2



i cmi cgi csi cri

1 0.937492 0.468838 0.546626 0.83179

2 1.78863 0.118555 0.439319 0.617251

3 7.13173 0.00235939 1.83447 6.3836

4 5.42261

Table 1: Coe�cients of conversion between observable and Gaussian param-

eters.

gtpm(u) = 1− 1

1− ue
−(1−u)(cm4 +cm3 |u−cm1 |

cm2 ) +
cg3
cg2
φ

(
u− cg1
cg2

)
; (A.5)

gtps (u) = (1− u)
cs3
cs2
φ

(
u− cs1
cs2

)
; (A.6)

gtpr (u) = (1− u)
cr3
cr2
φ

(
u− cr1
cr2

)
− 1. (A.7)

Parameters c∗i are reported in Table 1. Equations. A.1-A.7 allow the con-

version from observables to parameters and vice-versa, keeping the relative

error between initial and �nal observables below 0.5% in the whole range

0 < u < 1.

B Multivariate MEP solution

The derivation of the analytical solution of correlation priors constrained by

Eq. 1.1 when all uncertainties of both disaggregate and aggregate data are

known is as follows. The Lagrangian reads:
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L =

∫
Ω

dq p(q) ln (p(q)) +

∫ ∞
0

dq0 p(q0) ln (p(q0)) (B.1)

+ λ

(∫
Ω

dq p(q)− 1

)
+ λ0

(∫ ∞
0

dq0 p(q0)− 1

)
+

n∑
i=0

αi (E[ti]−mi) +
n∑

i=0

βi
(
E[t2i ]− E[ti]

2 − s2
i

)
+ β

(
n∑

i=1

(
E[t2i ]− E[ti]

2 − s2
i

)
−
(
E[t20]− E[t0]2 − s2

0

)
+ 2

n∑
i=2

i−1∑
j=1

(∫
Ω

dq p(q)qiqj −mimj

))
.

In Eq. B.1 the expression
∫

Ω
dq is a shorthand for the product

∏n
i=1

∫∞
0
dqi.

Each qi is the realization of the random variable ti. The �rst term on the

right hand side of Eq. B.1 is the entropy of the joint probability distribution

of the disaggregate data and the second term is the probability of the ag-

gregate datum. The second line contains the normalization constraints. The

third line contains the best guess and uncertainty constraints (recall that, for

the time being, we assume they are known). The �fth and sixth lines contain

the constraint on second-order moments, Eq. 3.2.

Minimization of Eq. B.1 with respect to p(q) yields:

0 = −(ln p(q) + 1) + λ+
n∑

i=1

αiqi +
n∑

i=1

βiq
2
i + 2β

n∑
i=2

i−1∑
j=1

qiqj + C.

The C's in the previous and subsequent expressions denote appropriately

chosen constants. The previous expression can be rewritten in the form:

p(q) = C exp

(
n∑

i=1

βiq
2
i + 2

n∑
i=2

i−1∑
j=1

βqiqj +
n∑

i=1

αiqi

)
. (B.2)
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Notice that the exponent in Eq. B.2 is a second-degree polynomial whose

coe�cients are Lagrange multipliers. The exponent of the probability density

function of the multivariate Gaussian is also a second-degree polynomial:

p(q) = C exp

(
−1

2
(q− m̃)′S̃−1(q− m̃)

)
,

which can be expanded as:

p(q) = C1 exp

(
−

n∑
i=1

(s̃−1)ii
2

q2
i − 2

n∑
i=2

i−1∑
j=1

(s̃−1)ij
2

qiqj (B.3)

+2
n∑

i=1

(
n∑

j=1

(s̃−1)ij
2

m̃j

)
qi + C2

)
.

In the previous expression (s̃−1)ij is the (i, j) entry of the inverse co-

variance matrix S̃−1. The coe�cients which precede either q2
i or qi are

not important, since all best guesses and uncertainties are assumed to be

known. Comparison between the term preceding product qiqj in Eq. B.2 and

in Eq. B.3 leads to the solution to determine prior correlations: all prior

inverse covariances are identical. If the covariance matrix is expanded as

S̃ = diag(̃s)R̃(diag s̃), where diag is a diagonal matrix, s̃ is the uncertainty

vector and R̃ is the correlation matrix, then the constraint can be simpli�ed

to Eq. 3.6.

If the uncertainty of the aggregate datum is unknown, then in the second

term of the third line of Eq. B.1 the iterator should start at 1 rather than 0,

removing the constraint on aggregate uncertainty. Minimization of Eq. B.1

with respect to p(q0) now yields:
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0 = −(ln p(q0) + 1) + λ0 + α0q0 − βq2
0.

Recalling the form of the univariate Gaussian distribution, Eq. 2.4, the

prior aggregate uncertainty is given by Eq. 3.7.

C Correlation and entropy

The e�ect of correlations on the joint probabililty of the disaggregate data,∑n
i=1 ti, is as follows. The entropy of a multivariate Gaussian is (Cover and

Thomas, 1991):

L1 =
1

2

(
n log(2πe) + 2

n∑
i=1

log(si) + log(det(R))

)
. (C.1)

Thus, the con�guration of correlations which maximizes entropy is also

that which maximizes the determinant of the correlation matrix. For sim-

plicity, consider that all correlations are identical, rij = r. If this is the case,

it is possible to apply Sylvester's theorem (Akritas et al., 1996; Saled and

Said, 2008):

det(X + uv′) = det(X) det(1 + v′X−1u),

where X is a matrix and both u and v are column vectors. If e denotes a

column vector of ones and R is expressed as (1 − r)I + (
√
re)(
√
re)′, the

theorem implies that:
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det(R) = det((1− r)I) det

(
1 + n

r

1− r

)
= (1− r)n−1(1 + (n− 1)r).

Substituting this information in Eq. C.1 leads to:

L1 =
1

2
((n− 1) log(1− r) + log(1 + (n− 1)r) + . . .) ,

where . . . are terms independent of r. The correlation which minimizes en-

tropy is found by setting the derivative of entropy with respect to r equal to

zero:

dL1

dr
=
n− 1

2

( −1

1− r +
1

1 + (n− 1)r

)
= 0,

from where it follows that r = 0. This result is not surprising: the more

uncorrelated a set of variables is, the larger is the set of possible combinations.

The link between the correlations among disaggregate data and the un-

certainty of the aggregate datum is as follows. If the latter is described by a

nontruncated Gaussian, s0/m0 < 0.3, its entropy is:

L0 = log(s0) +
1

2
log(2πe).

If the aggregate datum is described by an exponential, s0/m0 = 1, its

entropy is:

L0 = log(s0) + 1.

7



In the intermediate case, 0.3 < s0/m0 < 1, no analytical solution exists

but the following numerical approximation yields an error which is no larger

than 2%:

L0 = log(s0) +

(
1− s0

m0

)3
1

2
log(2πe) +

(
s0

m0

)3

.

According to Eq. 3.2 the aggregate uncertainty is a monotonically in-

creasing function of correlations, ∂s0/∂rij > 0. Because the entropy of the

aggregate datum, L0, is itself a monotonically increasing function of aggre-

gate uncertainty, ∂L0/∂s0 > 0, it follows that the set of correlations which

maximizes the entropy of the aggregate datum is one, r = 1.

D Qualitative patterns

The following general patterns can be observed, concerning the behaviour of

disaggregate correlations as a function of disaggregate uncertainties:

1. In absolute terms, the correlation between a pair of larger uncertainties

is larger than the correlation between a pair of smaller uncertainties,

i.e., if s1 > s2 > s3 then |r12| > |r13|.

2. If aggregate uncertainty is maximal, s0 = smax, then all disaggregate

data are perfectly correlated, i.e., rij = 1 with i > 0 and j > 0.

3. If aggregate uncertainty is larger than the zero-correlation uncertainty,

s0 > szero, then all correlations are positive, i.e., rij > 0 with i > 0 and

j > 0.
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4. If aggregate uncertainty is minimal, s0 = smin, and minimal uncertainty

is positive, smin > 0, then the largest disaggregate datum is perfectly

anti-correlated with all other data, and the other data are perfectly

correlated, i.e., if s1 > si with i > 1, then r1i = −1 and rij = 1 with

j > 1.

5. If aggregate uncertainty is much smaller than the zero-correlation un-

certainty and the largest disaggregate datum is much larger than the

remainder disaggregate data where i > 1, then the correlation be-

tween the largest disaggregate datum and the remainder are negative,

r1i < 0, whereas the correlations among the remainder are positive,

rij > 0 with j > 1 and s1 being the largest disaggregate uncertainty.

Naturally, what de�nes �much smaller� and �much larger� depends on

the particular con�guration of uncertainties.

6. In all other cases in which aggregate uncertainty is smaller than the

zero correlation uncertainty, s0 < szero, all correlations are negative,

rij < 0 with i > 0 and j > 0.

E Data balancing

The best guess estimates of the empirical application were balanced using

the following algorithm.

Initial best guesses and relative uncertainties were arranged in vectors

m(0) and u, respectively, and accounting identities were arranged in matrix

G where Gij = −1 if in accounting identity i entry j is the aggregate datum,

Gij = 1 if entry j is a disaggregate datum and Gij = 0 otherwise. Addition-
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ally, f is a disclosure �ag vector which is fi = 1 if the data point is disclosed

and fi = 0 otherwise.

Nondisclosed data is adjusted while disclosed data remains �xed. A set

of constraints and truncated aggregation matrix are obtained as:

k = G (f#m) ;

G∗ = G diag(i− f),

where # is entry-wise (Hadamard) product and i is a vector of ones. Iteration

then proceeds as:

α(i) = − (G∗m(i) + k)÷ diag (G∗ diag(u#m(i))(G∗)′) ;

m(i+ 1) = m(i) + c(i) diag(u#m(i))(G∗)′α(i),

where ÷ is entry-wise (Hadamard) division and c(i) is largest real number in

the range (0, 1) such that:

max {|mj(i+ 1)−mj(i)|/mj(i)}j < cmax,

where cmax = 0.1 is the maximum allowed relative displacement.

The data balancing process �nishes when the largest error per constraint

falls below the threshold of ε = 0.1 jobs, max {|dj(i)|}j < ε, where the error

of every constraint is obtained as:

d(i) = G∗m(i) + k.
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Figure 1: Absolute relative distance between best guess estimates, using

di�erent choices of prior (original or scaled) and balancing method (original

or uniform).

F Comparison of processing procedures

In order to assess the robustness of the empirical �ndings several variations

were on the processing procedure described in Section 4.2 were performed.

Besides the original prior con�guration of best guesses, an alternative

con�guration was considered in which every best guess prior was scaled down

by a factor of 0.958. This alternative prior was chosen because it was observed

that using the original prior the prior discrepancies in accounting identities

were positive on average. That is, the average nondisclosed best guess was

being over-estimated. The above mentioned factor was chosen such as to

minimize the average discrepancy in accounting identities.

Besides the original iterative weighted least squares balancing algorithm,

in which relative uncertainties were used as weights, an alternative balanc-
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Figure 2: Absolute distance between correlation estimates, using di�erent

choices of prior (original or scaled) and balancing method (original or uni-

form).

ing method was considered. This alternative balancing method was still an

iterative least squares method but now it was ordinary rather than weighted.

That is, all weighting adustments were considered to be identical, irrespective

of the relative uncertainty of the datum.

Figure 1 shows the absolute relative distances between the best guess

estimates used in Section 4 and those that are obtained using the di�erent

combinations of the original or scaled prior and original or uniform weighed

balancing. This �gure shows that most absolute relative distances fall below

the relative uncertainty of the data.

Figure 2 shows the absolute distances between the correlation estimates

obtained in Section 4 and those that would be obtained using the di�erent

combinations of the original or scaled prior and original or uniform weighed

balancing. This �gure shows that most absolute distances are below 0.1. The
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only region of the state space where distances are systematically larger is in

the positive range from 0.2 to 0.8.

In general, the original data is more similar to data using the scaled prior

and the original balancing than to data using uniform weights in balancing.
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