Supplementary Materials to Hidden Markov Model in Multiple Testing on Dependent Count Data

(Received 00 Month 20XX; final version received 00 Month 20XX)

1. Results of Case 3 in Section 4.2.2

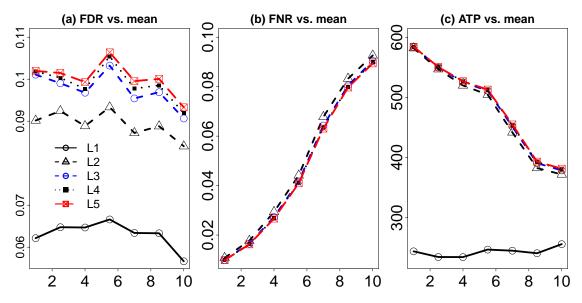


Figure 1. Comparison of FDR, FNR and ATP under different components using FB test procedure. a_{11} fixed at 0.8 and non-null distribution is $f_1 = 0.4 * \text{Poisson}(\mu_{11}) + 0.3 * \text{Poisson}(20) + 0.3 * \text{Poisson}(25)$ with μ_{11} varying from 1 to 10: FDR, FNR and ATP vs μ_{11} .

Table 1. Model selection: $L = 3$ cas

	Fitted Model				
Method	L=1	L=2	L=3	L=4	L=5
$\begin{array}{c} \log p_{BS}(\mathbf{X} M_L) \\ \log p_{IS}(\mathbf{X} M_L) \\ \log p_{RI}(\mathbf{X} M_L) \\ \log p_{HM}(\mathbf{X} M_L) \\ \log p_{HM_2}(\mathbf{X} M_L) \end{array}$		$\begin{array}{c} 328 \ (98\%) \\ 323 \ (97\%) \\ 328 \ (98\%) \\ 40 \ (12\%) \\ 68 \ (20\%) \end{array}$	$\begin{array}{c} 6 \ (2\%) \\ 11 \ (3\%) \\ 6 \ (2\%) \\ 141 \ (42\%) \\ 156 \ (47\%) \end{array}$	- 79 (24%) 80 (24%)	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $
BIC_L	90~(26%)	256 (73%)	4 (1%)	_	_

^a Non-null distribution is $f_1 = 0.4*$ Poisson $(\mu_{11})+0.3*$ Poisson(20)+0.3*Poisson(25) with μ_{11} varying from 1 to 10. The true number of components is L = 3.