Supporting Information

for

Remote control of the reversible assembly/disassembly of supramolecular aggregates

Nikita Mittal, Indrajit Paul, Susnata Pramanik, Michael Schmittel*

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Str. 2, 57068 Siegen, Germany E-mail: <u>schmittel@chemie.uni-siegen.de</u>

Table of Contents

1	Synthesis	S2
	General Information	S2
	Synthetic procedures	S3
2	Regulation of Supramolecular Assemblies by Signaling	S 8
3	¹ H & ¹³ C NMR Spectra	S11
4	ESI-MS Spectra	S23
5	UV-vis Data	S25
6	DOSY NMR	S27
7	References	S27

Abbreviations:

DCM : dichloromethane

1 Synthesis

General Information

All commercial reagents (compound 7, from Alfa Aesar) were used without further purification. Solvents were dried using the appropriate desiccants and distilled prior to use. ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400 MHz using the deuterated solvent as the lock and residual protiated solvent as the internal reference (CD₂Cl₂: $\delta_{H} = 5.32$ ppm and $\delta_{C} = 53.8$ ppm). The following abbreviations were utilized to describe peak patterns: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, br = broad, bs = broad singlet, bd = broad doublet and m = multiplet. The numbering of the carbon atoms in the molecular formulae (*vide infra*) is used only for the assignments of the NMR signals and thus is not necessarily in accordance with IUPAC nomenclature. Electrospray ionization mass spectra (ESI-MS) were recorded on a Thermo-Quest LCQ Deca. UV-vis spectra were recorded on a Cary Win 50 (298 K) spectrometer. Melting points were measured on a Büchi SMP-20 instrument. Infrared spectra were recorded using a Varian 1000 FT-IR instrument. Elemental analysis was done on the EA 3000 CHNS. Ligands 1,¹ 3,² 4,² 5,³ 6,⁴ 8,⁵ 9⁶ were synthesized according to known procedures.

Chart 1: Chemical structures of compounds 1-9.

Synthetic Procedures

Synthesis of ligand 2

3-Ethynyl-2,9-dimesityl-1,10-phenanthroline (8, 50.0 mg, 113 µmol) and 1,4-bis(decyloxy)-2,5diiodobenzene (13, 36.4 mg, 56.7 µmol) were dissolved in a mixture of dry DMF (10 mL) and dry Et₃N (10 mL). The solution was trice subjected to freeze-pump-thaw cycles for removing atmospheric oxygen. Then, Pd(PPh₃)₄ (6.55 mg, 5.67 μ mol) was added into the mixture under N₂ atmosphere and subjected to heating at 80 °C for overnight. The reaction mixture was then cooled and solvents were evaporated under reduced pressure. The crude mixture was purified by column chromatography eluting with 5% ethyl acetate in *n*-hexane on silica gel ($R_f = 0.37, 5\%$ ethyl acetate in *n*-hexane) to furnish a yellow solid in 60% yield. Mp >250 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ 8.47 (s, 2H, 4'-H), 8.32 (d, ³J = 8.0 Hz, 2H, 7'-H), 7.91 (d, ³J = 8.8 Hz, 2H, [5'/6']-H), 7.86 (d, ${}^{3}J$ = 8.8 Hz, 2H, [6'/5']-H), 7.56 (d, ${}^{3}J$ = 8.0 Hz, 2H, 8'-H), 6.98 (s, 4H, [9'/10']-H), 6.95 (s, 4H, [10'/9']-H), 6.37 (s, 2H, p-H), 3.85 (t, ${}^{3}J$ = 6.4 Hz, 4H, q-H), 2.35 (s, 6H, [12'/14']-H), 2.33 (s, 6H, [14'/12']-H), 2.05 (s, 12H, [11'/13']-H), 2.04 (s, 12H, [13'/11']-H), 1.84-1.77 (m, 4H, r-H), 1.59-1.22 (m, 28H, -(CH₂)₇-H), 0.82 (t, ${}^{3}J$ = 7.2 Hz, 6H, s-H); ${}^{13}C$ NMR (100 MHz, CD₂Cl₂) δ 161.9, 160.9, 153.4, 146.4, 145.4, 138.8, 138.4, 137.8, 137.6, 137.6, 136.4, 136.4, 136.1, 128.6, 128.2, 127.9, 127.3, 127.3, 126.0, 125.1, 120.2, 117.5, 114.1, 92.5, 91.9, 69.8, 32.3, 30.2, 30.0, 29.9, 29.8, 29.6, 26.5, 23.0, 21.4, 21.2, 20.4, 20.1, 14.2; ESI-MS: m/z (%) 1267.8 (100) [M+H]⁺; Anal. Calcd. for C₉₀H₉₈N₄O₂: C, 85.27; H, 7.79; N, 4.42; found: C, 84.91; H, 7.75; N, 4.31.

Synthesis⁷ of complex [Cu(1)]⁺

[Cu(CH₃CN)₄]PF₆ (123 μg, 0.329 μmol) and molecular switch **1** (360 μg, 0.329 μmol) were taken in a NMR tube directly and dissolved in 500 μL of CD₂Cl₂. The resultant mixture was subjected to analytical characterization without any purification. Yield: Quantitative; ¹H NMR (400 MHz, 298 K, CD₂Cl₂): δ = 8.65 (d, ³*J* = 8.0 Hz, 1 H, 7/4-H), 8.63 (d, ³*J* = 8.0 Hz, 1 H, 4/7-H), 8.19 (s, 2 H, 5-, 6-H), 8.03 (dd, ³*J* = 4.6 Hz, ⁴*J* = 1.2 Hz, 1 H, a-H), 7.80 (td, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 1 H, c-H), 7.77 (d, ³*J* = 8.4 Hz, 2 H, 3-, 8-H), 7.66-7.72 (m, 3 H, d-, m-, p-H), 7.60-7.64 (m, 3 H, g-, j-, f-H), 7.51 (s, 4 H, k-, 1-H), 7.46-7.48 (m, 2 H, n-, o-H), 7.40-7.42 (m, 2 H, h-, i-H), 7.31 (ddd, ³*J* = 8.0 Hz, ³*J* = 4.8 Hz, ⁴*J* = 1.2 Hz, 1 H, b-H), 7.29 (d, ³*J* = 8.4 Hz, 1 H, e-H), 6.43 (s, 1 H, 10/9-H), 6.35 (s, 1 H, 9/10-H), 4.92 (bs, 1 H, Fc-H), 4.54 (bs, 1 H, Fc-H), 3.89 (bs, 5 H, Fc-H), 3.67 (bs, 1 H, Fc-H), 3.32 (bs, 1 H, Fc-H), 2.17 (s, 3 H, duMe-H), 1.65 (s, 3 H, mesMe-H), 1.53 (s, 3 H, duMe-H) ppm.

Synthesis⁷ of complex [Zn(1)₂]²⁺

Zn(OTf)₂ (271 µg, 0.746 µmol) and molecular switch **1** (816 µg, 0.746 µmol) were placed in a 25 mL flask and refluxed in 15 mL of CH₂Cl₂/CH₃CN = 3:1 for 30 min. After removal of the solvent under reduced pressure the resultant mixture was subjected to analytical characterization without any purification. Yield: Quantitative; ¹H NMR (400 MHz, 298 K, CD₂Cl₂: CD₃CN (3:1)): δ = 9.12 (d, ³*J* = 8.4 Hz, 1 H, 7/4-H), 8.92 (d, ³*J* = 8.4 Hz, 1 H, 4/7-H), 8.71 (d, ³*J* = 5.2 Hz, 1 H, a-H), 8.45 (d, ³*J* = 8.8 Hz, 1 H, [5/6]-H), 8.39 (d, ³*J* = 8.8 Hz, 1 H, [6/5]-H), 8.20 (td, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 1 H, c-H), 8.17 (d, ³*J* = 8.4 Hz, 1 H, [3/8]-H), 8.02 (d, ³*J* = 8.0 Hz, 1 H, d-H), 7.93 (d, ³*J* = 8.4 Hz, 1 H, [8/3]-H), 7.89 (d, ³*J* = 8.4 Hz, 1 H, f-H), 7.81-7.83 (m, 1 H, p-H), 7.74 (ddd, ³*J* = 7.6 Hz, ³*J* = 5.2 Hz, ⁴*J* = 1.2 Hz, 1 H, b-H), 7.67-7.63 (m, 3 H, g-, j-, m-H), 7.62 (s, 4 H, k-, 1-H), 7.58 (d, ³*J* = 8.4 Hz, 1 H, [9/10]-H), 5.48 (bs, 1 H, Fc-H), 4.37 (bs, 1 H, Fc-H), 3.98 (bs, 5 H, Fc-H), 3.84 (bs, 1 H, Fc-H), 3.35 (bs, 1 H, Fc-H), 4.37 (bs, 1 H, Fc-H), 1.89 (s, 3 H, duMe-H), 1.86 (s, 6 H, duMe-H), 1.83 (s, 3 H, mesMe-H), 1.71 (s, 3 H, duMe-H), 1.53 (s, 3 H, mesMe-H) ppm.

Synthesis of rectangle R [Cu₄(2)₂(4)₂]²⁺

Ligand **2** (667 µg, 0.526 µmol), ligand **4** (341 µg, 0.526 µmol) and $[Cu(CH_3CN)_4]PF_6$ (392 µg, 1.05 µmol) were placed in a 25 mL flask and refluxed in 10 mL of CH₂Cl₂ for 10 min. After removal of the solvent under reduced pressure the resultant mixture was subjected to analytical characterization without any purification. Yield: Quantitative; ¹H NMR (400 MHz, 298 K, CD₂Cl₂): δ = 9.52 (s, 4 H, d'-H), 8.75 (s, 4 H, 4'-H), 8.68 (d, ³*J* = 8.0 Hz, 4 H, 7'-H), 8.20-8.11 (m, 16 H, a', b', 5' & 6']-H), 7.90 (d, ³*J* = 8.0 Hz, 4 H, 8'-H), 7.75 (d, ³*J* = 8.0 Hz, 4 H, c'-H), 7.14 (s, 4 H, e'-H), 6.62 (s, 8 H, [9'/10']-H), 6.59 (s, 8 H, [10'/9']-H), 6.35 (s, 4 H, p-H), 4.06 (t, ³*J* = 6.4 Hz, 8 H, f'-H), 3.71 (t, ³*J* = 6.4 Hz, 8 H, q-H), 2.07 (s, 12 H, [12'/14']-H), 2.05 (s, 12 H, [14'/12']-H), 1.93 (s, 24 H, [11'/13']-H), 1.92 (s, 24 H, [13'/11']-H), 1.85-1.78 (m, 8 H, r-H), 1.67-1.61 (m, 8 H, g'-H), 1.54-1.17 (m, 112 H, -(CH₂)₇&-(CH₂)₇-H), 0.84-0.80 (m, 24 H, s& h'-H). ESI-MS: m/z (%) = 1022.1 (100) $[Cu_4(2)_2(4)_2]^{4+}$, 1411.2 (40) $[Cu_4(2)_2(4)_2](PF_6)^{3+}$.

Synthesis of prism P $[Cu_6(3)_2(4)_3]^{6+}$

Ligand **3** (667 µg, 0.526 µmol), ligand **4** (341 µg, 0.526 µmol) and $[Cu(CH_3CN)_4]PF_6$ (392 µg, 1.05 µmol) were placed in a 25 mL flask and refluxed in 10 mL of CH₂Cl₂ for 10 min. After removal of the solvent under reduced pressure the resultant mixture was subjected to analytical characterization without any purification. Yield: Quantitative; ¹H NMR (400 MHz, 298 K, CD₂Cl₂): δ = 9.57 (brs, 6 H, d'-H), 8.77 (s, 6 H, 4"-H), 8.70 (d, ³*J* = 8.4 Hz, 6 H, 7"-H), 8.22 (brs, 18 H, a', 5" & 6"-H), 8.13 (brd, ³*J* = 8.0 Hz, 6 H, b'-H), 7.91 (d, ³*J* = 8.4 Hz, 6 H, 8"-H), 7.81 (d, ³*J* = 8.0 Hz, 6 H, c'-H), 7.11 (s, 6 H, e'-H), 6.63 (brs, 30 H, p"-, 9"- &10"-H), 4.03 (t, ³*J* = 6.4 Hz, 12 H, f'-H), 2.14 (s, 18 H, [12'/14']-H), 2.07 (s, 18 H, [14'/12']-H), 1.94 (s, 36 H, [11'/13']-H), 1.88 (s, 36 H, [13'/11']-H), 1.81-1.75 (m, 12 H, g'-H), 1.53-1.40 (m, 12 H, 3×CH₂-H), 1.27-1.12 (m, 72 H, -(CH₂)₆-H), 0.78 (t, ³*J* = 7.2 Hz, 18 H, h'-H). ESI-MS: *m/z* (%) = 1350.9 (100) [Cu₆(**3**)₂(**4**)₃](PF₆)₂⁴⁺, 1850.3 (30) [Cu₆(**3**)₂(**4**)₂](PF₆)₃³⁺.

2 Regulation of Supramolecular Assemblies by Signaling

Assembly and disassembly of rectangle R by nanoswitch 1

Preparation of state I:

[Cu(CH₃CN)₄]PF₆ (271 μ g, 0.727 μ mol) was added to the solution of nanoswitch **1** (795 μ g, 0.727 μ mol), ligand **2** (461 μ g, 0.364 μ mol) and ligand **4** (236 μ g, 0.364 μ mol) in CD₂Cl₂ (0.5 mL) in an NMR tube. The mixture was sonicated for 2-3 min to afford a clear reddish orange solution. ¹H NMR analysis of the mixture clearly showed that Cu⁺ was bound to nanoswitch **1** while ligand **2** and ligand **4** remained free in the solution (see Figures S12 and S13).

Preparation of state II:

Zn(OTf)₂ (171 µg, 0.471 µmol) dissolved in 1.0 mL of CH₃CN was added into the solution of nanoswitch **1** (515 µg, 0.471 µmol) in 9.0 mL of CH₂Cl₂. After stirring for 2-3 min, ligand **2** (299 µg, 0.235 µmol), ligand **4** (153 µg, 0.235 µmol) and [Cu(CH₃CN)₄]PF₆ (176 µg, 0.471 µmol) were added into the same flask. After heating for 30 more min at 60 °C, the solvents were evaporated under reduced pressure and the sample was subjected to ¹H NMR measurement in CD₂Cl₂ without any further purification. Analysis of ¹H NMR confirmed the formation of state II, i.e. $4 \times [Zn(1)](OTf)_2 + [Cu_4(2)_2(4)_2](PF_6)_4$ (see Figures S14 and S15).

Insitu Switching studies (Fig. S16):

In an NMR tube, nanoswitch **1** (660 μ g, 0.604 μ mol), ligand **2** (383 μ g, 0.302 μ mol), ligand **4** (196 μ g, 0.302 μ mol) and [Cu(CH₃CN)₄]PF₆ (225 μ g, 0.604 μ mol) were dissolved in 500 μ L of CD₂Cl₂. After formation of a clear solution the sample was subjected to NMR measurement (see Figure S16d).

After the measurement, $Zn(OTf)_2$ (219 µg, 0.604 µmol) dissolved in 200 µL acetonitrile was added to the sample and was subjected to heating at 60 °C for 30 min. The NMR measurement was done for the sample without any further purification (see Figure S16e).

To check the reversibility of the system, finally hexacyclen (156 μ g, 0.604 μ mol) was added into the same sample that was heated at 60 °C for 10 min (in a thermostat). Thereafter, the sample was cooled to room temperature and the ¹H NMR spectrum was recorded (See Figure S16f).

Assembly and disassembly of Prism P by Nanoswitch 1

P= [Cu₆(**3**)₂(**4**)₃]⁶⁺

In an NMR tube nanoswitch, **1** (568 μ g, 0.520 μ mol), ligand **3** (241 μ g, 0.173 μ mol), ligand **4** (168 μ g, 0.260 μ mol) and [Cu(CH₃CN)₄]PF₆ (194 μ g, 0.520 μ mol) were dissolved in 500 μ L of CD₂Cl₂. The ensuing clear solution was subjected to NMR measurement (see Figure S21d).

After the measurement, $Zn(OTf)_2$ (189 µg, 0.520 µmol), dissolved in 200 µL acetonitrile, was added to the sample that was subjected to heating at 60 °C for 30 min. The NMR measurement was taken without any further purification (see Figure S21e).

To check the reversibility of the system, finally hexacyclen (134 μ g, 0.520 μ mol) was added into the same sample that was heated at 60 °C for 10 min (in a thermostat). Thereafter, the sample was cooled to room temperature and the ¹H NMR spectrum was recorded (See Figure S21f).

3 ¹H & ¹³C NMR Spectra

Figure S1: ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of compound **2**. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S2: ¹³C NMR spectrum (100 MHz, CD_2Cl_2 , 298 K) of compound **2**. An expanded part of the aromatic region is shown at the top.

Figure S3: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of complex $C1 = [Cu(5)(6)]PF_6$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S4: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of complex $C2 = [Zn(5)(6)](OTf)_2$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S5: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of complex C3 = [Cu(5)(7)]PF₆. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S6: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of the mixture of ligand 5, 6, 7 and $[Cu(CH_3CN)_4]PF_6$ in 2:1:1:1 ratio to form complex $C1 = [Cu(5)(6)]^+$ with 1 equiv. of ligand 5 and 7 free in the solution.

Figure S7: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of mixture of ligand **5**, **6**, **7**, $[Cu(CH_3CN)_4]PF_6$ and $Zn(OTf)_2$ in 2:1:1:1:1 ratio to form complex $C2 = [Zn(5)(6)]^{2+}$ and $C3 = [Cu(5)(7)]^+$.

Figure S8: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of complex [Cu(1)]PF₆. An expanded part of the aromatic region is shown at the top with a few characteristic protons assigned.

Figure S9: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of complex [Zn(1)](OTf)₂. An expanded part of the aromatic region is shown at the top with a few characteristic protons assigned.

Figure S10: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of 2D rectangle **R** = $[Cu_4(2)_2(4)_2](PF_6)_4$. An expanded part of the aromatic region is shown at the top with few characteristic protons assigned.

Figure S11: Partial ¹H NMR spectra for comparison (400 MHz, CD₂Cl₂, 298 K) of (a) 2D macrocycle $\mathbf{R} = [Cu_4(2)_2(4)_2]^{4+}$, (b) ligand 2, (c) ligand 4 and (d) prototypical complex C3 = $[Cu(5)(7)]^+$.

Figure S12: ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of prism **P**= [$Cu_6(3)_2(4)_3$](PF₆)₆. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S13: Partial ¹H NMR spectra for comparison (400 MHz, CD₂Cl₂, 298 K) of (a) prism $\mathbf{P} = [Cu_6(\mathbf{3})_2(\mathbf{4})_3]^{6+}$, (b) ligand **3**, (c) ligand **4** and (d) prototypical complex $\mathbf{C3} = [Cu(\mathbf{5})(7)]^+$.

Figure S14: ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of State I = $2 \times [Cu(1)]^+ + 2 + 4$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S15: Partial ¹H NMR spectra for comparison (400 MHz, CD_2Cl_2 , 298 K) of (a) State I, (b) $[Cu(1)]^+$, (c) ligand 2 and (d) ligand 4.

Figure S16: ¹H NMR spectra (400 MHz, CD_2Cl_2 , 298 K) of State II = 4 × $[Zn(1)]^{2+}$ + $[Cu_4(2)_2(4)_2]^{4+}$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S17: Partial ¹H NMR spectra for comparison (400 MHz, CD₂Cl₂, 298 K) of (a) State II, (b) $[Cu_2(2)_2(4)_2]^{4+}$, (c) $[Zn(1)]^{2+}$.

Figure S18: ¹H NMR (400 MHz, 298 K, CD₂Cl₂) showing the *in-situ* reversible assembly and disassembly of rectangle **R** by nanoswitch **1**. (a) **R** = $[Cu_4(2)_2(4)_2](PF_6)_4$; (b) $[Zn(1)]^{2+}$; (c) $[Cu(1)]^+$; (d) nanoswitch **1**, ligand **2**, **4** and $[Cu(CH_3CN)_4]PF_6$ were mixed in 4:2:2:4 ratio affording state I; (e) addition of 4 equiv. Zn(OTf)₂ to state I depicted in spectrum (a) generated state II, i.e. $[Zn(1)]^{2+} + [Cu_4(2)_2(4)_2]^{4+}$; (f) addition of 4 equiv. of hexacyclen to remove Zn²⁺, regenerated state I along with complex $[Zn(hexacyclen)]^{2+}$.

Figure S19: ¹H NMR spectra (400 MHz, CD₂Cl₂, 298 K) of State I' = $6 \times [Cu(1)]^+ + 2 \times 3 + 3 \times 4$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S 20: Partial ¹H NMR spectra for comparison (400 MHz, CD_2Cl_2 , 298 K) of (a) State I', (b) $[Cu(1)]^+$, (c) ligand **3** and (d) ligand **4**.

Figure S21: ¹H NMR spectra (400 MHz, CD_2Cl_2 , 298 K) of State II' = 4 × $[Zn(1)]^{2+}$ + $[Cu_6(3)_2(4)_3]^{6+}$. An expanded part of the aromatic region is shown at the top with characteristic protons assigned.

Figure S22: Partial ¹H NMR spectra for comparison (400 MHz, CD_2Cl_2 , 298 K) of (a) State II', (b) $[Cu_3(3)_2(4)_3]^{6+}$, (c) $[Zn(1)]^{2+}$.

Figure S23: ¹H NMR (400 MHz, 298 K, CD₂Cl₂) showing *in-situ* reversible assembly and disassembly of prism **P** by nanoswitch **1**. (a) $P = [Cu_6(3)_2(4)_3](PF_6)_6$; (b) $[Zn(1)]^{2+}$; (c) $[Cu(1)]^+$; (d) nanoswitch **1**, ligand **3**, **4** and $[Cu(CH_3CN)_4]PF_6$ were mixed in 6:2:3:6 ratio affording state I'; (e) addition of 6 equiv. Zn(OTf)₂ to state I' depicted in spectrum (a) generated state II', i.e. $[Zn(1)]^{2+} + [Cu_6(3)_2(4)_3]^{6+}$; (f) addition of 4 equiv. of hexacyclen to remove Zn²⁺, regenerated state I' along with complex $[Zn(hexacyclen)]^{2+}$.

4 ESI-MS spectra

Figure S24: ESI-MS spectrum of 2D rectangle $\mathbf{R} = [Cu_4(2)_2(4)_2](PF_6)_4$ in CH₂Cl₂ as well as experimental (black lines) and calculated isotopic distributions (red lines) for the peaks associated with $[Cu_4(2)_2(4)_2](PF_6)^{3+}$.

Figure S25: ESI-MS spectrum of prism $\mathbf{P} = [Cu_6(3)_2(4)_3](PF_6)_6$ in CH₂Cl₂ as well as experimental (black lines) and calculated isotopic distributions (red lines) for the peak associated with $[Cu_6(3)_2(4)_3](PF_6)_3^{3+}$.

Figure S26: ESI-MS spectrum of State II, i.e. $[Zn(1)]^{2+}$ + Rectangle $\mathbf{R} = [Cu_4(2)_2(4)_2](PF_6)_4$ in CH₂Cl₂ as well as experimental (black lines) and calculated isotopic distributions (red lines) for the peaks associated with $[Cu_4(2)_2(4)_2](PF_6)^{3+}$ and $[Zn(1)]^{2+}$.

Figure S27: ESI-MS spectrum of State II', i.e., $[Zn(1)]^{2+}$ + Prism **P** = $[Cu_6(3)_2(4)_3](PF_6)_6$ in CH₂Cl₂.

5 UV-vis Data

Figure S28. UV-vis spectra of complexes $[Cu(1)]^+$ and $[Zn(1)]^{2+}$ in CH₂Cl₂ (10⁻⁵ M) at 298 K.

Figure S29. UV-vis spectra taken during the kinetic study of $[Cu(1)]^+$ upon addition of $Zn(OTf)_2$ to afford $[Zn(1)]^{2+}$ in CH₂Cl₂ (10⁻⁵ M) at 298 K.

Figure S30. UV-vis spectra taken during the kinetic study (at 1×10^{-5} M) of ([Cu(1)]⁺+2+4) (= State I) upon addition of Zn(OTf)₂ to furnish ([Zn(1)]²⁺ + **R**) in CH₂Cl₂ at 298 K.

Figure S31. UV-vis spectra taken during the kinetic study of $([Zn(1)]^{2+} + \mathbf{R})$ (=State II) upon addition of hexacyclen to furnish $([Cu(1)]^{+}+2+4)$ (=State I) in CH₂Cl₂ (at 1 × 10⁻⁵ M) at 298 K.

5 DOSY NMR

Figure S32: DOSY-NMR spectrum (600 MHz, CD_2Cl_2 , 298 K) of rectangle $\mathbf{R} = [Cu_4(2)_2(4)_2](PF_6)_4$ showing a single diffusion coefficient: $D = 4.6 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$.

References

- 1 Schmittel, M.; Pramanik, S.; De, S. Chem. Commun. 2012, 48, 11730-11732.
- 2 De, S.; Pramanik, S.; Schmittel, M. Dalton Trans. 2014, 43, 10977-10982.
- 3 Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1996, 118, 11166.
- 4 Hedbern, F. L.; Rosenberg, H. Tetrahedron Lett. 1969, 10, 4011.
- 5 Schmittel, M.; Michel, C.; Wiegrefe, A.; Kalsani, V. Synthesis 2001, 10, 1561.
- 6 Singh, R.; Meena J. S.; Wua C-S.; Ko, F-H. Phys. Chem. Chem. Phys., 2015, 17, 5227-5235.
- 7 Goswami, A.; Pramanik, S.; Schmittel, M. Chem. Commun. 2018, 54, 3955-3958.