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We first present the mathematical justification of the approximate robust principal
component analysis (PCA) in Section 1. The validity of our prior structure is next
addressed in Section 2. Propositions 3.1 and 4.1 from our paper are proved in Section 3.
The list of the explanatory variables considered in the real data analysis in Section 6
of our paper is provided in Section 4.

1. Mathematical justification of the approximate robust PCA

See Section 4.1 of our paper for the definition of notation. Given that the LPTN
matches the normal distribution everywhere except in the tails, the limiting posterior
of (Z̃q, L̃q, Ãq, η) based on the exact robust PCA is similar to that arising from the
traditional PCA model with normal errors based on C∗, as the outliers moves away
from the general trend. This means that the exact robust PCA applied to C leads to
essentially the same singular value decomposition as a traditional PCA applied to C∗

(in the limit). The approximate robust PCA method relies on this equivalence.
The first step in performing an approximate robust PCA is to obtain C by stan-

dardising the columns of the original data set. Location and scale estimates µ̂j and
σ̂j are thus used to standardise Column j, j = 1, . . . , p. Relying on a robust location-
scale model as in [2], with an LPTN error distribution and ρ := 0.95, ensures that
(µ̂j , σ̂j) −→ (µ̂−Oj , σ̂−Oj ), where (µ̂−Oj , σ̂−Oj ) are estimates based on nonoutliers only.
Note that the robust location-scale model is the linear regression model with only the
intercept. For large n, we also have (µ̂−Oj , σ̂−Oj ) ≈ (µ̂∗j , σ̂

∗
j ), where (µ̂∗j , σ̂

∗
j ) are the sam-

ple mean and standard deviation obtained from C∗, which is based on the normality
of errors and in which outliers are replaced by their vertical projection. Denote by cOij
the outlying values; they are excluded for the estimation of (µ̂−Oj , σ̂−Oj ) and replaced

by their vertical projection, denoted by c∗ij , for the estimation of (µ̂∗j , σ̂
∗
j ). Provided

that n is large enough, the impact of those points on the sample mean and standard
deviation will indeed be negligible; furthermore, it was previously argued that esti-
mates obtained under LPTN and normal error distributions are similar. The resulting
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matrices C and C∗ are the same in the limit, except on lines containing outliers.
The second step in performing the approximate robust PCA consists in computing

robust correlations between all pairs of columns in C. We know that the correlation
between the standardised columns j1 and j2 of C∗ is β̂Nj1,j2 , the OLS slope estimate.
We are interested in comparing the robust slope estimator (applied to columns of the

matrix C) to β̂Nj1,j2 . When using a robust regression model as in [3] with an LPTN

error distribution and ρ := 0.95, we find β̂j1,j2 −→ β̂−Oj1,j2
, where β̂−Oj1,j2

is the robust

slope estimate obtained using nonoutliers only. Again, for large n, we find β̂−Oj1,j2
≈

β̂Nj1,j2 . The robust correlation matrix obtained from C is thus asymptotically equal
to the correlation matrix obtained from C∗. Its diagonal elements are equal to 1; for
simplicity, we set the upper diagonal entries to β̂j1,j2 , where Column j2 plays the role
of the dependent variable; we then make the matrix symmetrical.

The PCs Ẑq are ultimately computed using Cv̂j , with v̂j being the j-th eigenvector
of the robust correlation matrix of C.

2. Validity of our prior structure

Relying on improper priors such as π(σk,βk | k) = ck/σk may lead to inconsistencies
in model selection (see [1]). For instance, one could select different constants ck in
different models so as to yield the desired conclusions. In this section, we show that
the Jeffreys-Lindley paradox does not arise in our PCR context under the normal
distribution assumption. It is thus expected to not arise either under the robust LPTN
distribution, given its similarity to the normal.

Consider Models s and t, where Model s is nested in Model t. The ratio of the
posterior probabilities of these two models is given by (see Proposition 3.1 in our
paper)

π(t | y)

π(s | y)
=

Γ((n− ds)/2− (dt − ds)/2)

Γ((n− ds)/2)((n− ds)/2)−(dt−ds)/2
n−(dt−ds)/2

(
‖y − ŷs‖2/(n− 1)

‖y − ŷt‖2/(n− 1)

)n/2

× πdt/2

πds/2

((n− ds)/2)−(dt−ds)/2

n−(dt−ds)/2

(
‖y − ŷt‖2/(n− 1)

)dt/2

(‖y − ŷs‖2/(n− 1))ds/2

π(t)

π(s)
.

(1)

The difference between the Bayesian information criteria (BIC, [6]) of Models t and s
is given by

BICt − BICs = n log
(
‖y − ŷt‖2/n

)
+ (dt + 1) log n

− n log
(
‖y − ŷs‖2/n

)
− (ds + 1) log n

= n log

(
‖y − ŷt‖2/n
‖y − ŷs‖2/n

)
+ (dt − ds) log n.

Given that the first ratio on the right hand side of (1) converges to 1 as n −→∞, we
have that exp{−(BICt − BICs)/2} asymptotically behaves like the first part on the

right hand side of (1). The terms
(
‖y − ŷk‖2/(n− 1)

)dk/2
in (1) converge towards a

constant (in n) and are thus dominated. The other terms in (1) are either constant in
terms of n or dominated as well. Therefore, π(t|y)/π(s|y) and exp{−(BICt−BICs)/2}
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share the same asymptotic behaviour. This will be sufficient to prove that the prior
structure does not prevent the Bayesian variable selection procedure to be consistent,
in the same sense as [1]. If the “true” model is among the models considered, then
its posterior probability converges to 1 as n increases. Further technical details are
required for a rigorous proof. Empirical evidences also point towards the validity of
our claim.

It would be interesting to investigate the asymptotic behaviour in the more general
context of traditional linear regression. The fact that the regressors are standardised
and linearly independent plays a role in the sketch of the proof presented above. It
would however be surprising if a similar prior structure, but with slightly correlated
standardised regressors, led to inconsistencies.

In practice (with finite samples), one may set the prior π(k) to be proportional to

π−dk/2 times a prior opinion about
(
‖y − ŷk‖2/(n− 1)

)−dk/2
, to cancel the effect of

these two terms in (1). In the numerical analyses, we set π(k) ∝ 1 because we do not
have relevant information. Note that the robust approach proposed in this paper can
be used with any informative prior such as those in [5].

3. Proofs

Proof of Proposition 3.1. The proof is essentially a computation using that f :=
N (0, 1) and the structure of the principal components. First,

π(k, σk,βk | y) ∝ f(y | k, σk,βk)π(σk,βk | k)π(k)

∝ f(y | k, σk,βk)(1/σk)π(k).

The likelihood function for a given model is

f(y | k, σk,βk) =

n∏
i=1

1

σk
√

2π
exp

{
− 1

2σ2
k

(yi − xT
i,kβk)2

}

=
1

σnk (2π)n/2
exp

{
− 1

2σ2
k

n∑
i=1

(yi − xT
i,kβk)2

}
.

We now analyse the sum in the exponential:

n∑
i=1

(yi − xT
i,kβk)2 =

n∑
i=1

y2
i − 2

n∑
i=1

yi

dk∑
j=1

xiIj,kβj,k +

n∑
i=1

 dk∑
j=1

xiIj,kβj,k

2

= n− 1− 2

dk∑
j=1

βj,k

n∑
i=1

yixiIj,k +

n∑
i=1

 dk∑
j=1

xiIj,kβj,k

2

,

using that
∑n

i=1 y
2
i = n− 1. We also have

n∑
i=1

 dk∑
j=1

xiIj,kβj,k

2

=

n∑
i=1

 dk∑
j=1

(xiIj,kβj,k)2 +

dk∑
j,s=1(j 6=s)

xiIj,kβj,kxiIs,kβs,k


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=

dk∑
j=1

β2
j,k

n∑
i=1

x2
iIj,k ,

using
∑n

i=1 xijxis = 0 for all j, s ∈ {2, . . . , d} with j 6= s, x11 = . . . = xn1 = 1,
(1/n)

∑n
i=1 xij = 0 for all j ∈ {2, . . . , d}. Consequently,

n∑
i=1

(yi − xT
i,kβk)2 = n− 1− 2

dk∑
j=1

βj,k

n∑
i=1

yixiIj,k +

dk∑
j=1

β2
j,k

n∑
i=1

x2
iIj,k

= n− 1− 1(k ≥ 2)2

dk∑
j=2

βj,k

n∑
i=1

yixiIj,k + nβ2
1,k

+ 1(k ≥ 2)(n− 1)

dk∑
j=2

β2
j,k,

using again x11 = . . . = xn1 = 1,
∑n

i=1 yi = 0 and
∑n

i=1 x
2
ij = n − 1 for all j ∈

{2, . . . , d}. We also have

1(k ≥ 2)

(n− 1)

dk∑
j=2

β2
j,k − 2

dk∑
j=2

βj,k

n∑
i=1

yixiIj,k


= 1(k ≥ 2)(n− 1)

dk∑
j=2

(
β2
j,k − 2βj,k

∑n
i=1 yixiIj,k
n− 1

)

= 1(k ≥ 2)(n− 1)

dk∑
j=2

(
βj,k −

∑n
i=1 xiIj,kyi

n− 1

)2

− 1(k ≥ 2)(n− 1)

dk∑
j=2

(∑n
i=1 xiIj,kyi

n− 1

)2

.

Putting this together leads to:

π(k, σk,βk | y)

∝ π(k)(2π)dk/2 1

σn−dk+1
k

exp

−n− 1

2σ2
k

1− 1(k ≥ 2)
∑

j∈Ik\{1}

(∑n
i=1 xijyi
n− 1

)2


× 1

σk
√

2π
exp

{
− n

2σ2
k

β2
1,k

}

×

1(k = 1) + 1(k ≥ 2)

dk∏
j=2

1

σk
√

2π
exp

{
−n− 1

2σ2
k

(
βj,k −

∑n
i=1 xiIj,kyi

n− 1

)2
} .
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We multiply and divide by the appropriate terms. The only remaining thing to show
is that

n− 1

1− 1(k ≥ 2)
∑

j∈Ik\{1}

(∑n
i=1 xijyi
n− 1

)2
 = ‖y − ŷk‖22.

Firstly, n− 1 = ‖y‖22. Also,

‖y‖22 = ‖y − ŷk + ŷk‖22
= ‖y − ŷk‖22 + (y − ŷk)T ŷk + ŷT

k (y − ŷk) + ŷT
k ŷk.

We know that (y− ŷk)T ŷk = ŷT
k (y− ŷk) = 0 because y− ŷk is the vector of residuals

which is orthogonal to ŷk. Finally,

ŷT
k ŷk = (Xkβ̂k)TXkβ̂k = β̂

T

k XT
k Xkβ̂k = (n− 1)‖β̂k‖22

= (n− 1)1(k ≥ 2)
∑

j∈Ik\{1}

(∑n
i=1 xijyi
n− 1

)2

,

where Xk is the design matrix associated with Model k.

Proof of Proposition 2.2. As explained in [4], it suffices to separately verify that
the probability to go from a set A to a set B is equal to the probability to go from B to
A when updating the parameters and when switching models, for accepted movements
and for any appropriate A,B.

When updating the parameters, the probability to go from a set A to a set B is
given by

∫
A
π(k, σk,βk | y)g(1)

∫
B

1+dk∏
i=1

ϕi(wi | k, (σk,βk)i, `k)

×
(

1 ∧ (1/w1)f(y | k,wk)

(1/σk)f(y | k, σk,βk)

)
dwk d(σk,βk).

Using Fubini’s theorem, this probability is equal to

∫
B
π(k,wk | y)g(1)

∫
A

1+dk∏
i=1

ϕi((σk,βk)i | k,wi, `k)

×
(

1 ∧ (1/σk)f(y | k, σk,βk)

(1/w1)f(y | k,wk)

)
d(σk,βk) dwk,

which is the probability to go from B to A. Note that this is valid for all k ∈ {1, . . . ,
Kmax}.

The probability to switch from Model k ∈ {1, . . . ,Kmax− 1}, where the parameters
are in the set A, to Model k + 1, where the parameters are in the set A′ ×B (the set
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A′ is a modified version of A to account for the addition of ck+1), is given by∫
A
π(k, σk,βk | y)g(2)

∫
B
qk+1(uk+1)

×
(

1 ∧ π(k + 1)f(y | k + 1, (σk,βk) + ck+1, uk+1)

π(k)f(y | k, σk,βk)qk+1(uk+1)

)
duk+1 d(σk,βk).

After the change of variables (σk+1,βk+1) = ((σk,βk) + ck+1, uk+1), we have∫
A′×B

π(k, (σk+1,β
−
k+1)− ck+1 | y)g(2)qk+1(βdk+1,k+1)

×

(
1 ∧

π(k + 1)f(y | k + 1, σk+1,βk+1)

π(k)f(y | k, (σk+1,β
−
k+1)− ck+1)qk+1(βdk+1,k+1)

)
d(σk+1,βk+1).

This last probability is equal to∫
A′×B

π(k + 1, σk+1,βk+1 | y)g(3)

×

(
1 ∧

π(k)f(y | k, (σk+1,β
−
k+1)− ck+1)qk+1(βdk+1,k+1)

π(k + 1)f(y | k + 1, σk+1,βk+1)

)
d(σk+1,βk+1),

which is the probability to switch from Model k + 1, where the parameters are in the
set A′ ×B, to Model k, where the parameters are in the set A.

Therefore, the Markov chain {(K,σK ,βK)(m) : m ∈ N} satisfies the reversibility
condition with respect to the posterior.
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4. List of the explanatory variables used in Section 6

Name Ticker symbol

Artis Real Estate Investment Trust AX-UN.TO
Asanko Gold Inc. AKG.TO
Bonterra Energy Corp. BNE.TO
Canadian Imperial Bank Of Commerce CM.TO
CI Financial Corp. CIX.TO
Celestica Inc. Subordinate Voting Shares CLS.TO
DHX Media Ltd. DHX-B.TO
Dominion Diamond Corporation DDC.TO
Gildan Activewear Inc. GIL.TO
Husky Energy Inc. HSE.TO
iPath Bloomberg Sugar Subindex SGG
iShares MSCI Japan EWJ
iShares 20+ Year Treasury Bond TLT
Laurentian Bank of Canada LB.TO
Parkland Fuel Corporation PKI.TO
United States Oil Fund LP USO
Vermilion Energy Inc. VET.TO
Volume of the S&P 500 N/A

Table 1. Names of the companies, funds, and financial indicators used as explanatory variables in the analysis

in Section 6 of our paper, with their ticker symbol (if available)
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