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In this supplementary material, we provide the proof for the main results (Section
and all the technical lemmas (Section [S2).

S1 Proofs of Main Results

In this section, we present detailed proofs for the main results. To distinguish from the
constants appeared in the previous sections, we shall use the capital letters C' and ¢ to

denote generic positive constants that may take different values at each appearance.

S1.1 Proof of Proposition

We firstly show the upper bound. Observe that

eceE

2
<E (Z Lo (1P = P+ 1Q. - Qe|)>

eck

E<D<p>Q) _D(PaQ))Q =K (ZLe <’Pe _Qe’ - ‘Pe_QeD)

<R (D(P, P)2+ D(0, Q)2>



Thus, it is sufficient to obtain an upper bound for IED(P, P)%. Decomposing E <D(P, P)2)

into bias and variance parts yields
. . 2 .
E (D(P, P)2) - <ED(P, P)) + Var (D(P, P)) .

Since nP, ~ Poi(nP,) and Lemma |§|7
P, P,
ZLEOP P]) <23 L, ( Ay ) <2MZ<P Ay n)
eck eck
To analyze the variance, we have
Var <D(I5, P)) =Y I2Var (\1—1 - Pe]> + Y L., Le,Cov (!1551 — PP, - P€2\> .
eckE e1,ea€ll

Hereafter, we write e; € 7(ep) if e € [p,v] for all v € 7(e;). Since two edges on tree T share
descendants if and only if one edge is descendant of other edge. In other word, 7(e’) C 7(e)

if and only if €’ € 7(e). Application of Lemma [l 1| suggests that

(
P,
S nl 6167(62)
Cov (1P = Puli P = Pul) § < P2 ey e ()
=0 otherwise
\

This implies that

Var (D(P, P)) < Z L Z <3

eeE e1€7(e2)

Putting bias and variance together yields

E(D(P,P)?) <C <ZP/\\/7>2+%2

for some constant C'. This implies

A A P d2
2 ‘e e
E(D(P,Q) —~ D(P,Q))* < C (ZaWﬂ) (Z@e a2 ) !
eckE
Next, we show the lower bound. Let v be the leaf with the largest d(p,v) on a tree T,

i.e. d(p,v) =d. Let P, be a distribution on tree 7" with probability 1/2 at v and 1/2 at root
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p,ie. p,=p,=1/2 and Q; = P,. P, is a distribution by putting probability 1/2 + € at v
and 1/2 — € at p and Q2 = P;. By construction, we could know that

D(P;,Q1) =0 and D(Py,Qs) = de.

The Kullback-Leibler divergence between observations of (T, P, Q1) and (T, Py, Q2) is

KL(P(T,PI,QI)||P(T,P2,Qz)) =n {5 log (1 + 26) + 2 log (1 — 26):|

4ne®

<
— 1 —4¢2

Choosing €2 = 1/n and applying Theorem 2.2 in [Tsybakov] (2009) yields

A 2 d?
inf sup E (D — D(P, Q)> > c—.
D (T,P1,Q1),(T,P2,Q2) n

S1.2 Proof of Proposition

Proof. For each edge e € E (w), we can prove that there is at most one children edge of e
belonging to E (w). Otherwise, suppose there are two children edge of e belonging to E(w),
naming them e; and e;. Then, we could know that ZUGT(el) Ty, ZUET(SQ) x, > w/2. Since e
and e, are not on the paths to root p of each other, Lemma [4 suggests that 7(e1) N7(e2) = 0.
This suggests that >, ) To = (X ,cr(er) o) + (Dver(en) To) > w, Which contradicts that
e e E(w).
Next, let
E'(w) = {6 € E(w) : no children edge of e is in E(w)} :

For each € € E'(w), we define its ancestor in E(w)
EP(w) :={e€ E(w):ecb,p], Yo e}

As ZUET(e) x, is nondecreasing along [p, 0], we can conclude that E? is connected. We can
conclude that EY(w) is actually a path as there is at most one children edge of e belonging
to E(w) for any e € E(w). Therefore, we can know that
Ew)= |J E(w).
ecE! (w)
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Now, we prove Ef (w) N EZ (w) =0,V é; # é;. Suppose there exists some é; and é; such
that EZ (w)NE? (w) # 0. Let ¢’ be an edge in E? (w)NEE (w). Since every node in E(w) has
at most one parent and at most children in E(w). We can conclude that EZ (w) = EZ (w)
and thus é; = ;. With the same arguments, we could also prove that no edge from Eé’l (w)

is predecessor of edge in EZ (w). This implies
T(e1) N7(ez) =0,

if e; € B (w) and ey € EZ (w) for any é; # é;.
By definition, we can know that S = |E'(w)|. Because é, # & € E'(w) implies 7(¢;) N

7(é3) = 0, we have

> Y msw

scE' veT(€)

AS ) er@) To > w/2 for € € E(w), we can conclude that wS < 2. O

S1.3 Proof of Theorem [1

We define the following events

921
By = {PE+Q6 < zaoen Ogn,VeeEg},
n

[2¢q logn 1
:{|Pe_Qe’§ IT<\/P Q) 23—1—1— e—|—Qe_2 VGEE}

={P.<Q. or Q.<P.,VeeckE.}.

and

Based on Bj, j =0,...,J and B’, we can define event

= (Q Bj> B

By Lemma 2| all the analysis can be conducted conditioned on B as P(B) > 1 — 5s/n®/19,

Define the following events

By = {{(Pe,Qe)}eeEo c Io}, B = {{Pe  Qubecn, € fj}



and
~ J ~
— ﬂ B
j=1
Lemma [T] suggests that

- 1
P(BB) > Sloen

n

if we choose ¢; > 40. Hereafter, we conduct the analysis conditioned on B B.
Define the following random variables
Lj:ZLe(‘pe_Qe|_’Pe_Qe‘>a j:()av‘]
GEEj

and

L=3 L (1= Q- P~ Q).

BGEC

Thus,

B (Dusr - DIP.Q))
J 2
<3k (LgﬂBﬂB> 38 <Z LJ’) Ipns | +3E (L/QI[BQB> + M\;{#.
j=1

Here we use the fact that D(P,Q),f?MET < dM for any P and () and Cauchy-Schwarz
inequality. We now bound above three terms one by one.

Firstly, we bound E (L%]IBQB>- Let F[((l)(x,y) be an approximated K-polynomial of
|z — y| within [0, 2¢; log n/n]? such that

VT /Y 20110gn+ 1 (20110gn

2=yl = F y)| <

K n K2\ n )’W’ye[O’?Cllogn/n].

The existence of F I({l )($, y) has been shown in Lemma Write

Z FO (ky, ko)

k1,ka=

and the coefficients f()(ky, ky) can be bounded by C*(2¢; logn/n)'~*1~*2 for some constant
C. On event B, we have

Z L. <pk1Qk2 _ Plek2>

ecFEy

76¢, 1 kithe
gsz,/z.gmoan(w) C0<kiky <K
n




Thus,

> Lo (FO(P. Q) - @@))‘

Z Le Z f (k1, ko) (peleI;? _Pe’leigz)

ecky kl ko=0

K 1—k1—ko k1+k2
~ 2cq11 76cq 1
<y QdMOK,/QMOgan(Cl_OM) (C_Og”)
n n

k1,k2=0

d(38C) K K?log*n
v '

On event B[ B, we have

IA

<C

|L0| = ZLE <|pe_Qe| - |P6_Qe|>‘
ecFEy
S ZL (lP Qe| - (PeaQe) ( (PeaQe) F(l)(Pe,Qe> ( (P67Qe) |Pe_Qe|>‘
ecEy
< QZL <\/P + Q. [2c1 logn <2cllogn)> +Cd(386’)fj/[ﬁ(21og2n_
ecEy

As K = cylogn for small enough constant ¢y, Lemma [12] suggests

2
2 4
csdlog™ n
sup E (LZ]I ) < sup E L./ P +C _
O N L (T,PQ)EOs.d) 7 Cznlog" nl/2=e2 log 38C

2

IN

nlogn nl/2—calog38C

d+2 4
C’( slog(2 /S)—i-C' dlog™ n >

IN

C(slog(2d+2/8) L@ )

nlogn nl=v
Here v = 2¢, log 38C.
2 :
Next, we bound E ((Z}]1 Lj) ]IBQB)' For each j, let F}?vﬂ)(x) be a K-polynomial of

|z| within [—+/4c; logn/2in, \/4c; logn/2in] such that

4cq ]
sup o] - FE)(@)| < /<5t

[—\/4(:1 log n/21n,\/461 logn/29n] - K 2

The existence of such polynomial has been discussed in Lemma [21] If we write

K
2wy = fON (k)
k=0



then the coefficients f*4) (k) can be bounded by C*(4¢; logn/2/n)'~* for some constant C.

On event B, we have

o 48¢, logn \ ¥/
3L ((Pe—Qe) —(P.— Q) ) < 4dM/105; log n ( Ser Og”) , 0<E<K.
eEEj
This suggests that

Lo (FEV(P. = Q) = FE) (P - Q.)

eck

<.

Lefjf@’”(k) (.= Q)" = (P Q.))

<
c€E; k=0
K 1/2—k/2 k/2
4cqy ] 48¢ 1
<3 4dMCK /108, logn( a F’g”> <Cl—°g”)
— 2n 2n
K
<Cd(120) Klogn'
i \/ﬁ

Here we use S; < 2/+2. On event B[ B, we have

J
DL <D0 LA P - Q)
J=1 i GEEJ‘
< Lo (1A = FP(A) + FE A = FE (P = Qo) + FED (P = Qo) — P~ Q)
i CEEJ‘
4ey logn d(12C)¥ K logn
< 2 L. +C
Here A, := P. — Q.. On event BN B, we also know that P, + Q. > 2-0*) when e € E;.
Thus,

Z

Jj=

8ci (P, +Q logn (12C)X K logn
<Z 2" L. <K\/ i )+C 7

eckE;



Together with choice of K and Lemma [12] we have

7 2
sup )]E (ZQ) ]IBﬂB
j=1

(T,P,Q)€O(s,d
c1 dlog®n
<|4 su LA/ P, +C .
< ( (T7P7Q)€p@(svd)€€ZE conlogn nl/2—czlog12C
2

<C slog(29+2/s) N dlog®n ]

n log n nl/?*Cg log12C
<c <slog(2d+2/s) N cliz ) .

nlogn nt=7

Finally, we bound the last term E <L’2]I BN B)- As P, — Qe is unbiased

>2

estimator on event

BN B when e € E,. With the same arguments in proof of Proposition , we have

E(L’Q]I ~)<d_2
BNB) =

We now put three terms together.

n

o 2 d+2 2 2
sup E<DMET—D(P,Q)) SC’(Slog(Q /S)+ d )+d

(T,P,Q)€6(s,d) nlogn nl=

Because logn < Clog(s/d), we can choose ¢y small enough so that

~ 2 1 2d+2
sup E <DMET — D(P, Q)) < CM.
(T,P,Q)€B(s,d) nlogn

S1.4 Proof of Theorem [2

16d?M?logn

n4

We now prove lower bound slog(2¢72/s)/nlogn. To the end, we provide a lower bound

when () is known, i.e. we have infinite number of sample from (). The minimax risk when

@ is known can be defined as

R*(s,d,Q)=inf  sup  E(D— D(P,Q))
D (T,P,Q)G@(s,d,Q)

where

O(s,d, Q) == {9 = (T,P,Q): T € Tl(s,d),P e MW,}.



Clearly,
R*(s,d) > sup R*(s,d, Q).
Q

Thus, the rest of proof aims to find the hardest case ) and show a lower bound of R*(s, d, Q).

2

O(s,d,Q,¢€) == {9 =(T,P,Q):T € T(s,d),P e M|V|(e)}.

Let M(€) be an vector set

va_l

veV

Mi(e) == {P :

and

The minimax rate under Poisson model can be generalized accordingly

R*(s,d,Q,¢€) := inf sup E(f) — D(P,Q))>.
D (T,P,Q)€O(s,d,Q,€)

Lemma |5 suggests that it is sufficient to provide a lower bound of R*(s, d, @, €) where € is
specified later.

To show a lower bound of R*(s, d, Q, €), we adopt the method of two fuzzy hypothesis in
Tsybakov| (2009)). Our strategy is first to construct a least favorable tree and then construct
two prior probability measures for P and (). Our construction of least favorable tree relies
on two elementary tree: full binary tree and chain tree. A full binary tree is a tree in which
every non-leaf node has exactly two children. A typical example is shown in Figure A
full binary tree with depth d has 2%+ — 1 nodes and 2¢ leaves. A chain tree is a binary tree
in which right children of non-leaf node is a leaf. An example of chain tree can be found in
Figure [2 A chain tree with depth d has 2d — 1 nodes and d leaves.

Now we construct the least favorable tree Ty(ky, ko) for some constant k; and ko. The
top part of Ty(ky, ko) is a complete binary tree T; with depth k. At each leaf of T, we
link a chain tree with depth k,. There are totally 2¥' chain tree attached to 7}, naming
them as Ty;, i = 1,...,2". An example of Ty(ki, k2) is shown in Figure . We choose
ki = |logy(s/log(29%%/s))] and ko = [log(2%72?/s)]. Choices of k; and k, suggests that
ky + ko < d and 2F(ky + 2) < s. Clearly, each subtree Ty; has only two leaves with
depth ky + k2 and name the left one of them as vy;. Let V; be a collection of vy,, i.e.

Vo = {vos, 1 <i < 2M}. Observe that |V| = 251,
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Figure 1: Full Binary Tree

¢ o

Figure 2: Chain Tree

Depth &y

Depth k‘g

UO,le - ‘/E) —>

Figure 3: Least Favorable Tree Ty(k1, k2)
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Now, we construct the probability distribution on Ty (&1, ko). The probability distribution
Q = @, = @, put probability ¢ = 2% at each node in V{ and 0 at other nodes, i.e.

q veW
Gv = .
0 veV\l

We fix the distribution @ and construct the two prior probability measures g, p, on dis-

tribution P. We assume the prior distribution on each node are independent, i.e.
po=[]me. and  py =] pe
veV veV

Similar with construction of ), we assume p, is always 0 when v ¢ V; and the prior distri-

butions are the same when v € V), i.e.

pi  veEW
Miy = , 1=1,2

o) veVAW

where d(g) is a probability distribution with probability 1 being 0. Suppose v and 1, are
two distributions in Lemma 22] and f(z) = ¢ + zA. Then we define py and py as p;(A) =
vi(f7*(A)). Then u; and po are a pair of distributions on [¢ — A, ¢ + )] such that

/ tn (dt) = / tus(dt) = g,

/t’ml(dt) = /t"”ug(dt), k=2,... K
and
A
[ 1= alatat) = [ 16~ almait) = e
Under prior probability measures g, p,, we have

A SA
A= E,UqD(P? Q) - EHQD(Pv Q) = Ck22k1? = C?

and

Epu, (va) =Epu, (va> = 1.

veV veV
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As the support of p; and p, are larger than My|(e), we consider the following subset

Bi:{P: > -1

veV
Hoeffding inequality and McDiarmid inequality (see, e.g. [Boucheron et al., 2013) suggests
Ct?
]P)I"l’i ( > t) < 2exp (—2k1)\2)

Ct? Ct?
Pu, (|D(P,Q) —Eyu, D(P,Q)| > t) < 2exp ~gnie <2exp | ——|.

A
SE,lD(P,Q)_ENiD(P,QNSZ}, 1=1,2.

that

va_l

veV

and

Choosing € = A/4d yields

Cs
pi(Bi) > 1 —4dexp (_KT/@) :

Let m; and w5 be a pair of prior distribution measures conditioned on By and B,

‘ _ pi(ANB;)
mi(4) = pi(Bi)

When the prior distribution is m; or p;, we define P, and Py as corresponding marginal
distribution of observed data. Then, Lemma [7| implies
TV (Pry, Pry) STV (Pry, P ) + TV (P, Ppa,) + TV (Pry, P, )

W K+1
(K +1)

C WA
S € n

< 8exp | — N\ G S

p( K2k2> q(K +1)

We are ready to use prior distribution measures m; and 72 and Lemma [6] to lower bound

<1—py(Br) +1— py(Bs) + 2507 (

R*(s,d, Q, €). Lemma |§| suggests that

A A
inf sup Py (|D—D<P, AE c3—>
D 0€0(s,d,Qse) K

1 C 2 Wi\
s s eAvn

S _

> 1 —8exp ( e log(zd—i-?/s)) + log(24+2/s) ( q(K + 1))
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Now we choose A and K. We only need to show lower bound when

slog(242/s) - &
nlogn — n’

When s/ log(2%72/s) < log®n, let

K =ci1+/logn and )\:cm/ )
sn

We can obtain
R*(s,d,Q,e) >c (

When s/log(2472/s) > log® n, we choose

slog(24+2/s)
nlogn

ko 1
K =clogn 2081

Small enough ¢; and ¢, suggests that

R*(s,d,Q,e) >c <

We can complete proof by applying Lemma [5]

slog(242/s) )

nlogn

S1.5 Proof of Theorem [3

We first prove the upper bound. Proposition [If and Lemma [12| suggest that suggests
2
/ 6 1 9d+2
PeM, n

(s log(2%%/s) dZ)

n n

So we have

sup  E(D(P.Q) - D(P,Q)* < C

(T,P,Q)EBO(s,d)

Now, let’s turn to the lower bound. Because of Jensen’s inequality,

( (p Q) ( ))22 (ZL6E<|p€_Q€|_|P€_Q€|>> .

eck

Application of conditional Jensen’s inequality and Lemma [J] suggests

Pseuj\l/)lsE <]]56 — Qe\ —|P. — Qe’) > E (|Qe — Qe|>

Qe
> 2 (0ny2).
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So we have
. Q.
sup E(D(P,Q) - D(P, (;L ( ; ))

Taking supreme with respect to @) € My, Lemma (12| implies

s E(D(P.0) - D(P,Q)? > 0218/

(T,P,Q)€O(s,d)

With lower bound in Proposition I} we could know that

A slog(29+2/s)  d?
s E(D(P,Q) - D(R,Q)P = ¢ (TEEL) ),
(T,P,Q)€O(s,d) n n
Because d? < slog(2%72/s), we prove
slog(24+2/s)

sup  E(D(P,Q) - D(P,Q))* <

(T,P,Q)€0(s,d) n

S1.6 Proof of Theorem [4]

We firstly show the bias of classical plugin estimator can be bounded by d/n. By Lemma ,

e|® — |P. — Q.|

E(Da(P,Q)) = Da(P.Q)| < Y L.

Pe e
<cy Ll
eER n

<c?
n

Next, we show the variance of Da(lf’, Q) is always bounded by d?/n. To the end, we

would like to apply Lemma [17] directly. Putting bias and variance together yields
A d?
E(DQ(P7Q) - DQ(PJ Q))2 S C_
n

We omit the proof of lower bound as it can be proven in the exactly same way in Proposi-

tion [l

S1.7 Proof of Theorem [5G

We now show the upper bound and lower bound of MET when 0 < o < 1.
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S1.7.1 Upper bound

We follow the same notation and proof pipeline in proof of Theorem [} Following the

arguments there yields

2—« o (od+2 2
5 ~ s~ %log® (2974 /s) d
E <LO]IBHB> = ( (nlogn)« T

J 2 2— a (oyd+2 2
s~ *log™ (2972 /s) d
Li| I~ <C )
(Z ) ona ) < (i 7=
J=1
The main difference is the definition of L' and the way to bound it. More concretely, L' can

be defined as

and

V=3 Lo (UalPer, Qer) = 1P — Q7).

eckE.
To get a bound for E <L’2]IBm B>7 we work on the bias and variance separately. We firstly
work on bias. As
E(L1BOB) =3 Le (BUL(Por, Qer) — 1P~ Q7).
66 c
an application of Lemma [I13] and Lemma [12] yields
(P, + Q.)*/? P, +Q
LBB)<C Y L ( o e e
( B[ ;; o2 log—o/2 e

5(2—a)/2 loga/2(2d+2/s)
- (nlogn)e/?

Next, we work on the variance of L’. Observe

Var(L') = Z L2Var (U, < Pe 1 Qe 1 ) + Z L. L.,Cov (U (P61 1 Qel 1), U (Pe2 1, Qe2 1))

ecFE. e1,e0€b,

<23 Lo | LoVar (Ua(Pes, Qo)) + D2 LeCov (Ua(Payy Qern), Un( P, Q) |

eckE. e’eP(e)
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we apply Lemma

Pe e _
Var(L') §2C< Z L6|Pe - Qe|a_1%Q Z Le’|Pe’ - Q6/|a !

e€Ee ¢'€P(e)
VP, 4+ Q.

+ 3 LelPo— Qe vE Qe > LolPo = Qul*™'/Pu + Qo

= nlog T ere)

:20<T1 + TQ)

Here P(e) = {¢’ € E. : ¢ € [p,v],Vv such that e € [p,v]}. In other words, P(e) is all parent
edges. We bound 77 and T5 with different strategies. In particular,

T <Y L ( (7.0 1ogn>(a VRAQ g (cluzl +@e/>logn)<a”/2

n

n
ecE, e’€P(e)

(at1)/2 (a—1)/2
<CZ P +Qe) dM((Pe+Qe)10gn)

“plat1)/2 log(a+1)/2 n

SCZLe (P€+Q€)

n®log®n

st log®(29%2/s)d
n®log®n ‘

<C

Next, we work on T5. Clearly, an application of Lemma (12| suggests

(ZlP Qe[ VW)Q

ek,

T <

nlog n

2
C (P. + Q) logn\“?
nlog®n (Z ( fer i
eckE,.

n

S %an (Z (Pe + Qe)a/2>

na IOg BEEC

C
S T()}Qfa loga(2d+2/8)
nlog” “n

VAN

Putting T}, T and E (L’|B N B) together yields

82704 IOga (2d+2/8)
(nlogn)®

E(L?Ip05) < C

When we choose ¢y small enough to make 1 — v > «, we show that

g2« loga(2d+2/s)

E(D — D, (P,Q))?*<
( MET,« a( 7Q)) —C (nlogn)a
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S1.7.2 Lower bound

Next, we show the lower bound. We follow the pipeline in proof of Theorem . Let To(kq, k2)
still be the least favorable tree with k; = [log,(s/log(2%%2/s))| and ky = |log(29+%/s)]. We
also put uniform probability in Vj for ¢; and () and 0 other nodes. We still construct
distribution P with prior distribution g, and p,. In particular, by Lemma 2T} and Lemma[22]
p1 and gy are a pair of distributions on [¢ — A, ¢ + A] such that

/ tp (dt) = / tua(dt) =g,

/tk,ul(dt) = /tk,UQ(dt), 1=2,....K

[ =t~ [l altan = ()

Under these two prior measures p; and p,, we have

and

Ay =B, Da(P,Q) — By, Du(P,Q) = cs <%>“ .

With the same arguments in proof of Theorem 2, we have

K+1
s2\2 Cs 22 25 exy/n
R (s,d) > 1-8exp|——— |+ — | ——
> S |10 (S ka( ¢K+n)

We choose K and )\ as

K =cilogn and A= Cy .

By choice of K and A, we have

K+1
SAZ2 (s kg )? 23( ex/n > ! s

= and — = )
KQakQ 10g1+a n k‘z q(K + 1) k’gncl

where C} = ¢1(1 + log co —log(c1)/2). If we choose ¢y small enough and ¢; large enough, we

have

g2~ loga(2d+2/s)
(nlogn)>

when n is large enough. Here, Cy = (co/c;)?*/4. This also suggests that R*(s,d) > Cs,

when (nlogn)® < s~®log®(2%+2/s).

R(Z(S? d) 2 02

Y

17



S1.8 Proof of Theorem

We now work on the case where 1 < o < 2.

S1.8.1 Upper bound

Performance of MET when r(s,d,n) < T(«) The proof is the same with previous case
(0 < a < 1) except the way to bound variance of L'. To bound the variance, we adopt
Efron-Stein inequality, which is also used in Lemma [17, More specifically, if we follow the
notation in Lemma we apply Efron-Stein inequality with respect to p,; and ¢,;. For
arbitrary vy € V, P’ is the sample where p,, is replaced independent copy p, . For any
e € E. such that vy € 7(e), an application of Lemma [16] yields

~ A p’Uo 1
]E(an(Pe,laQeJ) - ( e, 1’ QE 1)) <_ + na+c1/4) ’

n

The Efron-Stein inequality suggests that

/ o [ Do+ Qu 2 d? s d?
Var(L') < C (Zd ( —+ na+cl/4)> <C (% e ) SO

veV

Therefore, if we choose ¢y small enough to make 1 —~ > «, putting all terms together yields

. ( 1oga<2d+2/s>) |

~ 2
E(DMET@ - Doc(Pa Q)) (TL log n)a

Performance of plugin estimator when r(s,d,n) > T(a) We follow the similar strat-

egy in Proposition |1l Since |z|% is a convex function, we have
b

£ (Du(P.Q) - Du(P,Q)) —E<ZL (12 = Q" =P = Qul° ))
<E (32@ (12 = P +1Q. - QJ“))

eckE

< 18E (Da(ﬁ, P)? + D.(O, Q)2> .

Thus, it is enough to show an upper bound for EDQ(P, P)%. To the end, we work on the

bias and variance separately. First, we work on the bias

a a/2
:ZL€E<|P€_P6’O[)SZLe(E|p6_Pe|2) /QSZLe(%) .
eck eck

ecE
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Here, we use the Jensen’s inequality. Next, we apply Efron-Setein inequality to bound
variance as in Lemma [I7] With the same arguments there, we can get
. d?
Var(D, (P, P)) < C—.
n
By Lemma |12 putting bias and variance together yields

A A 2
swp B (Du(P,Q) = DalP.Q))
(T,P,Q)€O(s,d)

@/2y2 a/2y2 2
¢ s <<266EP6 P eer O +d>
(s,d)

_|_

ne n n

(T,P,Q)€O
2—a |y (9d+2 2
SC(S log™(2 /s)+d_>

n n

Because (o — 1)logn > (2 — «) log(s/d), we can conclude
d2

A A 2
swp B (Da(P,Q) = Da(P,Q)) <O
(T,P,Q)€O(s,d) n

S1.8.2 Lower bound

The lower bound of d?/n part can be proven in the exactly same way in Proposition . So,
we only focus the bias part when 1 < o < 2. It is sufficient to prove the lower bound when

g2—« loga(2d+2/s) d?
(nlogmn)® n’

(S1.1)

As in the last regimes, we could follow the exact steps in proof of Theorem [2| and obtain

K41
s2\2 Cs 22 25 exy/n
R!(s,d) > 1-8exp|———— ) +— | ———
(s,d) 9 | 2a p( K2k, ) ks ( q(K+1))

When (s/ky)>=® > n® log"**n, if choose

1
K =cilogn and A=y qogn,
n

then we have
g2~ 1Oga(2d+2/s)

RZ(& d) 2 C’2 (n 10g n)a

On the other hand, if (s/k)?™® < n® 'log' ™ n, we can choose
K =ci14/logn and A=y g.
n
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As (S1.1)) suggests that (s/k9)?~* > n* !log®n, we can know

g2« loga (2d+2/8)

RZ(S7 d) Z CQ (n log n)a

when ¢; and ¢y are chosen in the previous case.

S2 Auxiliary Results and Proofs

In this section, we present all the technical lemmas.

Lemma 1. Suppose for any e € Ey, (P.,Q.) satisfies n(P, + Q.) < 2¢ylogn. We further
assume n > |E|/log |E|. If K = clogn for some constant ¢ < ¢y, then

P(1EQber € ) 21— (522)

n

Furthermore, when K = clogn, |P. — Q.| < \/2c1(P. + Q.)logn/n and 2=U+) < P, + Q. <
2-U=2 for any e € E;, then
1
IP’<{P€ — Qulecn, € Ij) >1- - (52.3)
forg=1,...,J.

Proof. Before we show ([S2.2)), we first show that

k
P ( < dM+/2.5nl0g?n (@) ) >1— % (52.4)

To the end, we define Pél — min(P,1,38¢; logn/n) and event B := {Pél =P, VYec EO}.
As P. < 2¢ylogn/n and n > |E|/log |E|, applying Lemma [§| yields that

38¢; logn) S i
n - nd

> Le(PF — Hy(P.y))

ecEy

P(B)>1-> P (15671 >

A

In order to show that »_ . L.H(P.;) is a difference bounded function with respect to
each p,, we apply Lemma 30 in Han et al. (2018). More specifically, Lemma 30 in [Han et al.

k
0 < |Hg(x)] < (Qmax{x, %}) :

20

(2018)) suggests



Because perturbing any p, only results in change at most d terms in ) p Ler(Pél), we
can know that

76¢1 log n) K

n

S LeHW(PL) =Y LeHi(PL))

e€FEy ecEy

ng(

where ]5(2’ | 1s just replace some p, by p). After showing difference bounded function, we are

now ready to apply McDiarmid inequality (see, e.g. Boucheron et al., [2013))

¥ ( > Lo (Hu(Ply) ~E(HW(P)) > t) <o (e )

ecFy

With the similar arguments in proof of Lemma 18 in Han et al.| (2018), we have

k
E(H(EL) — P < 5 (—7661 log") |

e —

nd n

Since P (B;) > 1 —n"5 and |E| < nlogn, we can conclude that

. 76¢, 1 g 2
P (Z L. (Hk(PeJ) - Pf) > dM4/2.5nlog?n (%) ) >1- .
ecFEy

Applying the exact same argument to ). yields

A 76ci logn \ * 2
P (Z L, (Hk(Qe,l) - Q’g) > dMy/2.5n 108 n (1Tg> ) >1-

eckEy

On the event B;, we have

2¢;1 M . 76¢; 1 &
mP§<—g) and maXHb(Qe,l)g(w) |

ecFEy n ecEy n

for ki, ko = 0,..., K. Therefore, with probability at least 1 — 4n=2,

Z Le(Pele’e€2 - Hk1 (P€,1>Hk2 (Qe,l))|

ecEy

< k1 k2_ A

< (et |35 e -
€ 0

76¢; 1 kithe
<2dM/2.5n log? n (_g) |
n

Then, we complete proof of (S2.2)).

+ (max Hy, (Q61)>

eckEy

Z L (P — Hkl(pe,l))|

ecFEy
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Next, we aim to show (S2.3). We consider the event

. 5(P. + Q)1 A 5(F + Q)1
Bj:{|Pe,1_Pe|§\/( +Q)Ogn and ’Qe,l_Qe|§\/< +§)OgnveeEj}

n

Based on concentration inequality in Lemma [§] we have

2
B(B) > 1-—.

Hereafter, we conduct analysis conditioned on event B;. Recall that

P — Q. < \/201(P6+Qe)logn

n
Conditioned on event B;, we know that

n

Together with lemma [3] this suggests that

12¢1(P. 4+ Q.) log n) k/2
- .

Ge(Por, O0u1)] < (

As P. + Q. < 27072 this naturally leads to

48cy logn k/2
2in '

GulPun, Qua) - (P Q| <2
Proposition [2| suggests that £ can be decomposed S; subset of disjoint path. More con-
cretely, let Ejy, ..., Fj s, be these subsets of paths. Since each Ej; is a subset of a path, we
can know that |E;;| < d and, on event Bj,

S 48¢,1 k2
> Lo (G(Pur, Qe) = (P = Qo)) | < 2aM (Cl—"g”> . 1<i<s;

2in
eEEjyi

Thus, for each 1 < ¢ < 5}, we define a random variable

Zi= 3 Lo (GulPer, Qet) — (P. = Q)F)

GEEJ'J'

and its truncated version )

T  Z;>T

@Nz
Il

Zi -T1T<Z;<T,

\
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where T = 2dM (48¢; log n/2jn)k/2. As suggested by proposition , ]56171 and ]562,1 are
independent for any two edges e; and e, coming from different F;;. Thus, we can know that

(Z;, ZZ) are independent for different 7. An application of Hoeffding inequality yields
Sj

P Z (Zi — IE(ZQ) >t ] <exp (2;;2) :

=1

Now, we would like to show that [E(Z; — Z;)| is small following the similar arguments in

proof of Lemma 18 in Han et al. (2018]). Clearly,

[E(Z; — Z)| <E (|Zi B Zi“I(u%,l—Pe|,\Qe,1—Qe|>\/5<Pe+Qe>1ogn/n,eeEj,i)>

S M Z E (|Gk(Pe,17Qe,l)|]I(|ﬁe71_pe|7|Qeyl_Qe|> 5(p€+Qe)10gn/n)> .

EEEJ' i

We now bound E <|Gk( e1,@@1)|]I (Bor—Pul |Oer—Qu[> (PE+QE)10gn/n)> for different cases. If

we write A; = /48¢; logn/2/n, then

(’Gk( el:Qe 1)‘ el_Pe,QAeyl—Qp\/m))
2|m, —my| g . :
< Z Z (#) P (Pois(nP.) = m,) P (Pois(nQ.) = m,)

mp—nPe>/5nP. logn mg—nQe>+/5nQc logn

Lt sloen)
-t ~ [5logn
> (a0 )’ (1o o)
Ip.lq=0
51 Y\
<0 (1 exp [ —y /208"
S A WP n,
—2
91
Sn_loA;? (1 — exp (— ogn))
2n

gn*“’Af.

The other three cases including p@yl—Pe < \/5(136 + Q.)logn/nor Q&l —Q. < \/S(Pe + Q.)logn/n
can be treated similarly. Thus, we can conclude that

48¢; log n) k2

E(Z;, — Z;)| < 4dMn ™" :
(2 - 2)| < dann0 (0

Since Z; = ZZ on the event B;, we can have

5 k/2
48c; 1 1
P (| Z| < 2dM\/10S;logn (le—ogn) >1-—
n
=1

n
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The proof of is complete. O
Lemma 2. If we define the event B as in proof of Theorem/[1], then

P(B°) < 5|E|n~/10
Proof. We follow the similar strategy in Lemma 4 of [Jiao et al| (2018)). Because

J
P(B°) <> P(B)+P(B"), (S2.5)
7=0

we bound above terms separately. For By, we have

2c11 - A 1
P(B8> S ZP(Pe+Qe 2 ClTogn7Pe,0+Qe,0 < a Zgn> .

Since n(P.g + Q.0) follows a Poisson distribution with mean n(P, + Q.), we apply concen-

tration inequality in Lemma |8 and obtain

<n o/t

PO+Q6,0<

P(P6+Qe > QCllogn, 5 A cllogn)

An application of union bound suggests that
P(BS) < |Eln~/*,

For each B;, we have

]P)(B]C) SZ]P) ('Pe _Qe‘ > \/201(Pe+Qe)10gn,

Pe,O - Qe,O

n

1.1¢;1 - A
o [Hleilogn (,/pe,o N @e,o>>
n
P[P ! E P[P ! !
+Z +Qe_ YRR eO+QeO<2_ + +Q6_2+17 60+Q60>2]

Following the similar arguments in proof of Lemma 4 in |Jiao et al.| (2018]), we obtain the

< \/—1 Lo logn (\/ eo—i‘Qeo)) <dn/3,
n

As n( .0 + Qe o) follows a Poisson distribution, we have

bound for the first term

P <‘pe_Qe’ - \/201<P6+Q6) logn,

n

N

Pe,O - Qe,O




and
e e_2j 17 eO e,0 2] = .

Putting all these terms together yields
P(B) < 6|E|n~"/".

Finally, we work on the last term

P(B") <22P P.=Qc. Peg— Qeo >

<22P<P @e,\/f—@ /1lcllogn>

<4ZP ( l.lclPelogn>

4n
4|E|
— ncl/lo :

\/1.101(p60 + Qeo) IOg’I’L

eO_

Putting all above terms back into (S2.5)), we have

P(B°) < 5|E|n~/1°,

Lemma 3.

n

k
GL(P.Q) < (2IP—Q!+ * (ﬁwa))
Proof. We define

Gro(P fj(i) nnj;[0<P__>

=0
As proof of Lemma 19 in [Jiao et al. (2018)) suggests

K(P,Q) = Z( ) (P42 (P)(=1) " G, (p+)2(Q)-

=0

Lemma 30 in Han et al.| (2018)) implies

G 2P < <|P @|+\/4mnp>

25



and

k—m
|Grm,(Pr@)2(Q)] < <|P_Q’_|_ M) .

Thus, we could know that

k
Gu(P, Q)| Z( )er,<p+Q>/2<P>|\Gk_mmw(@n

m=0

ko( )(IP Ql+ W) (\P—Q|+ %)km
( )(|P Ql+ W) (|P Ql+ @)
el (P va))

IN

3
Il

Mpr

3
Il

<

VR

]

Lemma 4. For any pair of edges on tree e1,eo € E, T(e1) and T(ez) satisfy one and only

one of following relationships
o 7(e1)N7(ex) = 0;
o 7(e1) C 7(eq);
o 7(e2) C 7(eq).

Proof. If ey € [p,v] for all v € 7(eqg), then we can know that 7(e2) C 7(ep). Similarly,
T(e1) C 7(eq) if ey € [p,v] for all v € 7(e;). Supposing there exists v; € 7(ey) such that
ey & [p,v1] and vy € T(ez) such that e; € [p,vs], we can conclude that 7(e;) N 7(ez) = 0.
Otherwise, let v' € 7(e1) N 7(ez). Then, there are two paths connecting vy and vy: one is
through p and the other is through v’. This contradicts with the fact there is one and only

one path connect a pair of nodes on tree. O

Lemma 5. For any s,d,n,

1 -~
R;;/Q(S’d’ Q) Z §R;(S’d’ Q7€) _ d2€_n/8 _ d2€2.
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Proof. Given § > 0, suppose D is an estimator such that
sup  E(D—D(P,Q)) <4+ Ri(s,d, Q).
(T,P,Q)€6(s,d,Q)

Here, the sample are drawn from multinomial distribution with sample size n.

Fixing P € M,y/(¢), the sample X = (X,)cy are drawn from {Pois(np,)},cv. Here,
n =Y X, is “sample size”. Since X can be seen as a sample drawn from multinomial
conditioned on n/, X can also be regard as input of D. Let P = {Pv/ Dy Pv}vev. So, we
have

Ep(D — D(P,Q))* < 2Ep(D — D(P,Q))* +2(D(P,Q) — D(P,Q))".

Note

D(P7Q)_D(p7Q)SZL€<|p6_Q6|_|P€_Q€|)

eck
<MY |P.- Pl
eckE

SM2 Z]jepve

eckE

< dMe,

and

A~

Ep(D— D(P,Q))* <Y R;(s,d,QP(n' =m)+0

< R, (5,d,Q) + d’P(n' <n/2)+ 9

<R} jo(5,d,Q) + d*e B 4 6.
Since ¢ can be arbitrarily small,
Ep(D — D(P,Q))* < 2R}, 5(s,d, Q) + 2d°e™"/® 4 2d> M>¢”.
This immediately suggests that

Ri(s,d, Q. €) < 2R}, (s, d, Q) + 2d°e /5 + 2d° M€,
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Lemma 6 (Tsybakov| (2009)). Suppose m; i = 1,2 are two prior distributions on param-
eter space ©, F(0) is a functional on parameter space and P;s are corresponding marginal

distributions of observed data. Suppose there exists c € R, d >0, 0 < 31, By < 1 such that
m(F0)<c)>1-p and ma(F(0) > c+2§) > 1— Bs.

If TV (P, Py) <y <1, then

. 1—n—3—
inf sup Py (|F' — F(0)] > 0) > n= o 61.
F 9co 2

Here TV (P, 1Py) is total variation distance defined as
TV(]P)I, PQ) = Sljp ’Pl (A) - P2<A>’

Lemma 7 (Jiao et al| (2018))). Suppose Uy and Uy are two random variables supported on
[ng — n\,ng + nA], where ¢ > X\ > 0. Suppose E(U}) = E(UJ]), 0 < j < L. Denote the
marginal distribution of X where X|n ~ Pois(n), n ~ U; as Fy. If L+ 1> (2e\)/q, then

e)\\/ﬁ ) L+1

TV(F, F) <2 (
q(L+1)

Lemma 8 (Mitzenmacher and Upfal (2005)). If X ~ Pois()), the for any 6 > 0, we have

o0

P(X > (1+6)\) <exp (— 3

and

P(X < (1—0)\) < exp (—‘%A) .

Lemma 9 (Jiao et al.| (2018)). Suppose np ~ Poi(np). Then,
1 p A p
— ANy = <Elp—p|l <2 Nyl =
7 yfz) sz (onyf7)

Var (|p —pl) <

and

SELS

Lemma 10. Ifx,y > 0 and 0 < a < 1, then

(e}

2% =y < |z —y|*
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Proof. Without loss of generality, we assume x > y and write z = z — y > 0.1t is sufficient
to show

(y+2)" <2+

We can assume y > z for simplicity as y and z are exchangeable in above inequality. Thus,
(y+2)* —y* = a1z < az® < 2%
Here ¢ is some number between 2z and y. O]

Lemma 11. Suppose np; ~ Poi(np;), i = 1,2 and p; and py are independent. Then,

3|3

Cov (|p1 + P2 — p1 — pal, [P1 — p1]) <
Proof. Write A = p; — p; and B = py — po. Then

Cov (|A+ B|,|A|) = E(J]A* + AB|) — E|A + B|E|A]
<E(|B| - |A+ B|)E|A| + E(4?)
< E(4%),

where we use the fact that E|B| < E|A + B|, see the exact analytic expression of E(X — \)
for Poisson random variable X ~ Poi()) in Diaconis and Zabell (1991). Property of poisson

distribution suggests that
E(A%) =E(p —p)® <

SHS

]

Lemma 12. Suppose the branch length L. = 1. For any tree T" with height d and 0 < av < 1,

we have

sup Z P* < Cs' ™ log® (2912 /5s)

PeMs ek
for some constant C. Furthermore, there exists some T € T (s,d) such that
sup Z P* > cs' 7 1og® (2912 /5s)

PeM; eckE
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Proof. We define U; = {e : d(p,v) > i,Ye € [p,v]}, i = 1,...,d. Because the tree is binary
tree, |U;| < 2°. By the definition of U;, we know that 7(ey) N7(ey) = 0 if ey, eo € U;. Since
> ecv, Pe < 1 and |U;| < 2°, Holder inequality yields

i<y ()

eel i=1 \e€clU;
d -
< Z (Z Pa 1/a> <Z 11/ (1- a)
=1 ecU; ecU;
d

SZ’UZ"lfa

=1

< Z Qiﬂ|Ui|1_a_ﬁ

i>1

for some 0 < 8 < 1 — « which is specified later. By Holder’s inequality again,

a+p 1-a-p
Z 2iﬂ|Ui|1_a_B < <Z 2z’ﬁ/(a+ﬁ)> (Z |Uz|>

1<i<d 1<i<d 1<i<d
d/(o a+p
9 _ 9Bd/(a+p) (o
1 — 2B8/(a+8)

a+f d\ B
< ; 2_ 81—04
=\ 9p/ers) — 1 5

Choosing 8 = a/log(2/s) yields

1 a+p 2d B o
(—25/(a+,13) — 1) <;> < Clog®(297%/s).

Thus, we can conclude that

Z P* < Cs'*log® (2912 /5s).

eck

We now prove the converse side. Suppose T is Ty(k1, ko) in lower bound proof and k,
ko are chosen in the same way. When we put uniform probability in Vj, then we complete

proof. O]

Lemma 13. Suppose nP ~ Pois(nP) and nQ ~ Pois(nQ). Assume |P—Q| > \/c(P + Q)logn/n
and P+ @ > clogn/n. Then, for any 0 < a < 2,

£ (0.0P.0) - _c( (P + Q) +P+Q)

2—a/2 n ne—4

n/2log
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for some constant C'.
Proof. Write A =P —-Q, S =P+Q,A=P—Q, f]:p—l—Qandf:In(P,Q). We only
focus the situation A > 0 in the rest of proof and other case can be treated similarly. As
A A a(l —a), « SN
Un(P.Q) = A1 + DA p-2g)

we do Taylor expansion for |A|* and |A[*~2. More concretely, the Taylor expansion of |A|®

at A can be written as

A A —1
Ts(|A* A) =|A1* + oA 7HA - A) + %

Jole=D=2) \gq

A*2HA — A)?

Then, the residue of above Taylor expansion is denoted by Rs(JA|*; A) = |A|* = T5(|A|*; A).
We know bound the residue term at different regimes. When A > 0, the residue term can

be represented in integral form

. 1 (A .
Rs3(JA|* A) = E/A Ci(a)(A — u)3ua_4du,

where Cy(a) = a(a — 1)(a — 2)(a — 3). In particular, when A > A/2, we have

mara) < A (2) G- an

If 0 < A < A/2, then

A
|Rs(|A*; A)| < Gila) / (A% — 3A%u + 3Au? — v )udu

6 Ja
< Cléa) (23f2a (Aa72 o Aan) + é(Aa _ Aa))
< Ci(a)(a+ 1)Aa.

3a(2 — a)

On the other hand, if A < 0, we could work on |A|* —T3(JA|*; A) directly. If A > —A, then
|Rs(|A]%; A)] < 10A°.

When A < —A, we have

~ 3
A A
[R5(JA[*; A)] < 10A" (Z) .
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Thus, the expectation of |R3(|A|*; A)| can be decomposed as

E(Rs(1A1% M) =E( Ra(1A1% M)A > A/2)) + E( (A1 A)IA < ~A))
+E(Ry(JA[*; A)I(-A < A < A/2))

a—4
g% (%) E(A — A)* + 10A“PE(APIA < —A))

+10A°P(A < A/2)

2 DIRE) 3 )72 41
g—Cl(O‘)Aa“* R TN ol
3.2 ns n? ne

Similarly, we can write |A|*"25] as
|A|“728T = Ty (JA]*72, A)ST + Ry (|A|*2 A,

where Ti(JA[*2A) = |A]*2 + (a — 2)|A]*3(A — A) and Ri(JA]*"%4A) = [A]*2 -
Ty (JA|*~2; A). Bounding R (|A|*"2; A) in different regimes, we can have
A . A\ 32 )32 41
E(|Ri(|A1*"%A)BI]) < 3 (—) (—2 + —) + 10A°“22(n>—+
2 n n ne

Putting two Taylor expansion together yields

1

5 A 1. . ey e
E(Ua(P,Q)) = [P = Q| < 5522 + E(IRy(1A1% A)) + -E( i (A1 % A)1))

1 12 2% 432 (nX)7/2
< _Aan _Aa74 = o PAXTL
~ 3n? +2°‘ (n3+ n2)+ ne
yo/2 5
- pa/2 10g2—a/2 n + ne—4
Here, we use |A| > /clognY/n and ¥ > clogn/n. O

Lemma 14. Suppose nP ~ Pois(nP) and nQ ~ Pois(n@). If0 < P,Q < 1 and a > 2, then

E(1P-QF) ~IP- Q| <t Y
for some constant C.
Proof. If a = 2, then we can directly calculate
E(1P-ar) - 1p-op|=T2%
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When a > 2, |z|* is twice differential continuous function on [—1,1]. Thus, we can have
Taylor expansion

afa = Lfte + (1= t)ylo-2

ly* = |=[* + afz|*Hy —2) + (y —)*

for some ¢ € (0,1). This suggests that

ala —
< = 7
- 2

E(1P-Q")-1P-QF

We now complete proof. O

Lemma 15. Suppose nP; ~ Pois(nP)) and nQ; ~ Pois(nQ;) for i = 1,2. We also assume
1P — Qi) > /(P + Qi) logn/n and P, + Q; > clogn/n. Then, for any 0 < a < 2,
> n V212 1 )

n  nlog’n n/?4

Cov <Ua(P17Q1)7 Ua(Pl + P, Q1 + Qz)) < ClA At (

where X; = Z;ZI(PJ +Q;), A = Z;ZI(P] — Q;) and C is some constant. In particular,
. (=1
Var (Ua(P17Q1)> < ClA P72 (71 + W) :

Proof. We write Us,; = Ua(Zj’:l Pj’Zj’:l Qz)a A; = Z;:l(pj - @j)7 % = Z;:l(ﬁj + QJ)
and [; = In(Z;:l ]5j, 22:1 Qz) for : = 1,2. In particular, we only focus on the cases A; > 0
for i = 1,2. We represent U, ; in Taylor expansion
o o 1—
Uns = A" + 0l A A = A) + R A A + 2=
where Ry(|A;|% A) = |A* = [|A]* + ] Ao HA; — A)]. If we write
o 1— o A A
Ris = R4 80 + QLA jo2s
2n
then the covariance between U, ; and U, can be decomposed as
COV(UOCJ, Ua72) = <|A1|a_1COV(A1, RLQ) + |A2|a_1COV(A2, R171)>

+ aQ\AlAglafl\/ar(Al) -+ COV(RLl, Rl’g).

We now bound above terms one by one. Firstly, we work on Cov(Al, Ry 5). We rewrite R o

as

i] _f A all — «
;2>+R2(|A2|Q;A2)+¥

Ro(|A2|a_2; Az)izfz-

ala—1 "
Rig = ¥|A2|a_2 <(A2 - A2)2 - o
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Thus, we have

COV(Al, R1,2> :M

. Sl
|A2’a72COV (Al, (AQ — AQ)Q =2 2)
. Ao a(l — a)
+ Cov <A1,R2(|A2] ;A2)> TG
a(l —a)

COV <A1, R0(|A2|a72; AQ)ing)

SCOV (Al, RQ(lAQ’a; AQ)) + Cov <A1, Ro(’A2|a_2; Ag)igig)

We could further expand Ry(|A|*; A,) by Taylor expansion

AN, AYTAYE Y2
2 + 3
n n

Cov (Al, R2(|A2|O‘; Ag)) <C ( ) + Cov <A1,R4(|A2|a; Az))

By the similar bound technique in proof of Lemma |13, we have

(

Ag_5(A2 — AQ)B AQ > AQ/Q

[Ra(| o] As)] < { 10AS Ay < Ay < Ay)2

1OAS(A2/A2)4 AQ < —=A

Thus,

; ; NI
Van( Ry ) < BB A ) < 0 (2020 A8

n5 ncf4

This suggests that

R . Aa_32 ) Aa—42 2 Aa_521/225/2 A2
COV<A1732(|A2|Q;A2)>§C< e e

n2 n3 n3 ne/2—4

IA

a— a—1x21/2521/2 o

nlogn nlogn ne/2—4

Similarly, we could also obtain

. R o Aa—lzl Aa—121/221/2 A2
Cov(Ar, Ry(|As]*72 NS0 1) < C | =2 CE—— 2.
ov(Ar, Ro(|Ag|*% Ag)Xals) ( logn + log?n nel?

Therefore, we can know

A ASTIE, ARV A
COV(Al,RLg) § C ( 2 . + 2 ! 2 2

nlogn nlog®n ne/2—4

With the same strategy, we can show
; ; VEL ((nas fea, A AFISL | AY
COV(AQ, Rl,l) = COV(Al, R1’1> S C n2 Al 2? —+ nc/2_4 S C nlogn + TLC/2
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and

Aa 22 Aa Aa—QE A2
Cov(Ry1, Ri2) SC[ 2 <Aa SRV + ) e S} <A§3 3+ 2 )

no/2 n5/2 ne/2—4

(A AQ)Q 222 — o Aa
e A3 S+ — C/“ AS 3,/2§’+—n6/§_4

(A A)13 Ag ]

nlogn ne/2—4

<c|

Putting all these terms together yields

2 N 1
COV(Ua’l,UOé’Q) < C‘A1A2’ail [_1 i 1242 ]

n  nlogin = n¢/24
We complete the proof. O
Lemma 16. Suppose nP, ~ Pois(nP,) fori=1,2,3 and nQ ~ Pois(nQ). Assume Py = Pj,
P+P—-Q > \/cl(Pl + P+ Q)logn/2n and P + Py + @ > cilogn/2n. Then, when

l<a<?2,

R A A . L~ A\2 P 1
E<Ua(P1+P2>Q)_U0l<P1+P3’Q)> SC’<W2—{_noﬂrc1/4>'

Proof. In this proof, we also adopt the following notations: A = P+ P,—Q, ¥ = P+ P,+Q,
Alzpl—i‘pg—é Azzpl—i‘pg—é 21—P1+P2+Qand22 P1+P3+Q We also
define I, = I,(P, + P2, ) and I, = I, (P1 + P3, Q) The definitions of Ua(Pl + PZ, Q) and

(Pl + P5, Q) suggest that

(F
Q)
(Ua P+ By, ) Ua(P1+p37Q))2

1—a) [/« I R )2
<E ( W % (1A o280, — |A2|a—22212>)
n
1— A " <) . < )2
<9F (% (1Ao7, — yAzy“zQJQ)) +2E (JA]° = |Aq17) .
We now bound the above two terms separately. As |z|* is a Lipschitz function, we have
. . 2 . N2 P,
E <|A1|‘“ - |A2|°‘> < CE <A1 - A2> <02,
n
It is sufficient to bound the first term. For the first terms, observe that
. . . N2
E (\Al\HElIl - \Ag\a-@z[g)
. . ) N2 . . . N2
<R (|A1|a—22111 - |A2|a—22112) 4 OF <|A2|a—22112 - |A2|‘“‘222]2)

=2(T1 + T5).
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Because |Ay|* 21, < (¢ logn/4n)*2,

4n n

. R . . A 2 1 2(&—2) P
T, = E <|A2|a—22112 - |A2|a—22212) <C <Cl Og”) =2

For T;, we define the event B := {Al,Ag > /ey lognX/An, 3, /2 < 3, < 2%, }. Thus,

R A R AN 2 N A N A 2
T, =E ((mly“zlll _ yAzszlfg) IB) +E ((\A1|“221[1 _ \AQ\HEJQ) IBC)

<C ci logny o3 y2p, +On2*°‘.
4n n nei/4

Here, we apply the Taylor expansion to obtain
[As|*™? = JA1|" 72 + (@ = 2)[tA; + (1 — 1) A% (Ay — Ay)
for 0 <t <1, when Ay, Ay > 0. Putting T} and T5 together yields

~ ~ ~ ~ ~ ~ 2
E (UalPr + P2, Q) — Ua(Pr + £5,Q))

2(a—2) a—3 2
§C§+C(cllogn) P2+C(cllogn2) EP2+C 1

n 4n n3 4n n3 noten/4
Py 1
SC’? + C—na+c1/4‘
The proof is complete. O]

Lemma 17. Suppose {PB.Qe}eeE are the empirical distribution of sample drawn from Poisson-

multinomial model. Then, for any o > 1, there exists a constant C' such that

Var <Da(p,Q)> < 0%2,

where d is the height of tree.

Proof. The basic idea of proof is to apply the Efron-Stein inequality (see Boucheron et al.,
2013). Because p, and §, are independent, the Efron-Stein inequality can be applied with
respect to them. For arbitrary vy € V/, Da(]f” , Q) is the distance between P’ and Q, where
Pu, is replaced independent copy p,, in P’. For any e € E such that vy € 7(e), we have

202y,

E(1Fe = Qel* = [P = Qe|")* < E(alpy —,,[)* < —
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Here, we appeal to the fact that |z|* is Lipschitz function with Lipschitz constant « on
[—1,1], i.e
||x|a_|y|04| SO[|I'—y|7 T,y € [_L]-]

Since there are at most d terms involving vy, thus

E(Du(P.Q) = DulP,Q)) < dM?* 37 E(P = Qul* ~ P - QI
vo€ET(e)

2
< (dM)2M.

n

By Efron-Stein inequality, we can know that

Var (Da(P,Q)) < 5 LS (amy? 220700 + ) Cd—2

n
veV

Then, we complete proof. ]

S2.1 Lemmas on Approximation Theory

To introduce lemmas on approximation theory, we need the following definitions. The first

order symmetric difference of a function f is defined as

Aif(x)zf(ﬁg)—f(x—g),

and the second order symmetric difference of a function f is defined as

ALf(x) = Ap(ALf(2) = [z +h) + flz = h) = 2f(2).

The rth order symmetric difference the can be defined as A? f(x) = Ay, (A}~ (z)). Denoted
by ¢(x) = y/z(1 — x), the rth order Ditzian-Totik modulus of smoothness of function f :
[0,1] — R is defined as

wi(f,t) = sup [|A4,f(#)]c
0<h<t

If f is a function defined on [0, 1]%, then rth order Ditzian-Totik modulus of smoothness can

be defined similarly

Wio,1)2 (f7 t) = sup |A:,h<p(xz)f(x) |7

i=1,2,0<h<t,z€[0,1]2
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where A, denotes the symmetric difference with respect to the i-th coordinate. The next
lemma shows the best polynomial approximation error can be upper bounded by Ditzian-

Totik modulus.

Lemma 18 (Ditzian and Totik| (2012), see also Jiao et al. (2018))). There exists a constant
M (r) > 0 such that for any function f € C[0,1],

Ex(f,00,1]) < M(rwy(f, K71, K>,

where Ex(f,I) denotes the distance of function f to the space of polynomials at most degree

K in the uniform norm || - || on set I. Moreover, if f(z): [0,1]> = R, we have
EK(f7 [07 1]2) S wa[)yl]?(f7 K_1)7 K > T,
where M s a constant independent from f and K.

Lemma 19. Suppose 0 < a < 2 and x,y € [0,1]. Then,

W[20,1}((\/E+ V)t < Ot and W[20,1](|\/5 —Vy|*t) < Ot
for some constant C'.

Proof. We first work on f(x,y) = (V& + /y)*. Since x and y exchangeable in f, it is

sufficient to show that

qa(t):=  sup (Vo +he() + vy + (Vo — he(e) + 5" —2(Ve + /)| < Ct°
0<h§t,(r,y)e[0,1]2

for some constant C', value of which could be different place from place. With Thoerem 4.1.1

Ditzian and Totik (2012), we can show that

a() <O sup (Vo hel2 5 (Ve = bl V) - 2V V)

0<h<t,z>4h2y€[0,1]

=C sup |(Vz + & ha'? + )" = (V1 — Eha'/? + /y)* |k

0<h<t,x>4h2,y€(0,1]

<C sup |(Vx + &hall2 + fy)* 2 |h?
0<h<t,xz>4h2y€(0,1]

<Ct°.
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Here, & and & are two constants between 0 and 1 and &3 is constant between —1 and 1.

Next, we work on f(z,y) = |\/z — /y|*. Define

IV + ha'/? — Jy|* + [V & — ha'l?2 — fy|

ga(t) := sup
0<h<t,(x,y)€0,1]2

To bound g5(t), we consider two cases. First, we assume x — hz'/? > y or x + ha'/? < y.

With the same arguments in bounding ¢;(¢), we can show

’|\/ac + ha'’2 — \Jy|* + |V — ha'/2 — \fy|®
Next, we assume x — hz'/? < y < x 4+ ha'/?. Then,
’|\/:c + ha'’2 — \Jy|* + |V — ha'/2 — \fy|

<4 <\/x + hal/2 — \/x — ha:l/?)a

<4h*.

y| < Ch“.

Thus, we can conclude that

gg(t) S ct”.
[l

Lemma 20. For any 0 < o < 2, there exists polynomial of degree at most 2K FM(z,y)
such that

Ma/2(l' _'_y)a/2 M

oo + KQQ)’ Y(z,y) € [0, M]?.

Y (2,) — |z —y|*| < C, (

for constant Cy. Furthermore, if

Fl(z,y) = Z f(n1,mg)x

n1,mn2=0

then the coefficients of f(ny,ny) are bounded by Cy(y/2 4+ 1)8K Ma—m—nz,

Proof. As |v —y|* = (Vo + /¥)*|Vx — /y|*, we approximate (\/z + /y)* and |\/z — /y|*
separately. More concretely, Lemma [18 and Lemma [19| suggest that there exist polynomials
Uk and Vi such that

C C:
sup  |Us(2,) = (Vo +/)*| < op and sup  |Vie(a,y) = [Va = ol*| < 2

(z,y)€l0,1]? (z,y)€[0,1]?
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for constants C; and Cy. Thus, we could use Ux Vi to approximate |z — y|®. Since

Uk (z,y)Vk(z,y) — [z — y[*|
=|Ux (2, 9)Vi(2,y) = Uk (2, ) V& — Vyl* + U (2, y)|[VE — /y|* — |z —y|°|
<|Uk (@, )|Vk(z,y) = Vo = Vyl*l + Vo = Vyl*|Uk (2,y) — (Ve + /5)°]
<z = Vyl*lUk(z,y) = (Vo + )| + (Ve + vy) Vi (2,y) — Ve — y|°
+|Uk(2,y) = (Vo + vy)*l|[Vk(z,y) — IV — yl°,

we can know

4(Cy + Cy)(z +y)/2 CC
sup  [Uscla, )Vicla,y) — |z — yio| < 24 igfx e, W
(z.9)€[0,1]2

By scaling © = M and y = yM,

o (3 3r) v (i ) =1

Therefore, we have already constructed a polynomial F4 (7, §) = MUy (/M ,5/M) Vi (2 /M, §/M).

sup

(7,5)€[0,M]2 Ke K2

Me/2( 7 ~\a/2 M
c( E+o" )

An application of Lemma 17 in Jiao et al.| (2018]) could yields the conclusion on coefficients

of FM. O

Lemma 21 (Timan| (2014)). If o > 0, there exists polynomial of degree at most K FM (x)
such that

M\“ M\“
Ci|l—=) < su FM(x)—|z|Y<Cy | =) .
() = e AV - et < ¢ ()

for constant Cy and Cs.

Lemma 22 (Cai and Low| (2011)). For any given even integer K > 0, there exist two

probability measures v1 and vy on [—1,1] that satisfy the following conditions:
e vy and vy are symmetric around 0;
o [tryy(dt) = [trua(dt), for k=0,1,...,K;
o [f(t)n(dt) — [ f(t)ra(dt) = 20k,

where 0k 1is the distance in the uniform norm on [—1,1] from function f(z) to the space of

polynomials of no more than degree K.
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