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In this supplementary material, we provide the proof for the main results (Section S1)

and all the technical lemmas (Section S2).

S1 Proofs of Main Results

In this section, we present detailed proofs for the main results. To distinguish from the

constants appeared in the previous sections, we shall use the capital letters C and c to

denote generic positive constants that may take different values at each appearance.

S1.1 Proof of Proposition 1

We firstly show the upper bound. Observe that

E(D(P̂ , Q̂)−D(P,Q))2 =E

(∑
e∈E

Le

(
|P̂e − Q̂e| − |Pe −Qe|

))2

≤E

(∑
e∈E

Le

(
|P̂e − Pe|+ |Q̂e −Qe|

))2

≤2E
(
D(P̂ , P )2 +D(Q̂, Q)2

)
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Thus, it is sufficient to obtain an upper bound for ED(P̂ , P )2. Decomposing E
(
D(P̂ , P )2

)
into bias and variance parts yields

E
(
D(P̂ , P )2

)
=
(
ED(P̂ , P )

)2

+ Var
(
D(P̂ , P )

)
.

Since nP̂e ∼ Poi(nPe) and Lemma 9,

ED(P̂ , P ) =
∑
e∈E

LeE
(
|P̂e − Pe|

)
≤ 2

∑
e∈E

Le

(
Pe ∧

√
Pe
n

)
≤ 2M

∑
e∈E

(
Pe ∧

√
Pe
n

)
.

To analyze the variance, we have

Var
(
D(P̂ , P )

)
=
∑
e∈E

L2
eVar

(
|P̂e − Pe|

)
+
∑

e1,e2∈E

Le1Le2Cov
(
|P̂e1 − Pe1|, |P̂e2 − Pe2|

)
.

Hereafter, we write e1 ∈ τ(e2) if e2 ∈ [ρ, v] for all v ∈ τ(e1). Since two edges on tree T share

descendants if and only if one edge is descendant of other edge. In other word, τ(e′) ⊂ τ(e)

if and only if e′ ∈ τ(e). Application of Lemma 11 suggests that

Cov
(
|P̂e1 − Pe1|, |P̂e2 − Pe2|

)

≤ Pe1

n
e1 ∈ τ(e2)

≤ Pe2

n
e2 ∈ τ(e1)

= 0 otherwise

.

This implies that

Var
(
D(P̂ , P )

)
≤

∑
e∈E

Pe
n

+ 2
∑

e1∈τ(e2)

Pe1
n

 ≤ 3d2

n

Putting bias and variance together yields

E
(
D(P̂ , P )2

)
≤ C

(∑
e∈E

Pe ∧
√
Pe
n

)2

+
d2

n


for some constant C. This implies

E(D(P̂ , Q̂)−D(P,Q))2 ≤ C

(∑
e∈E

Pe ∧
√
Pe
n

)2

+

(∑
e∈E

Qe ∧
√
Qe

n

)2

+
d2

n

 .

Next, we show the lower bound. Let v be the leaf with the largest d(ρ, v) on a tree T ,

i.e. d(ρ, v) = d. Let P1 be a distribution on tree T with probability 1/2 at v and 1/2 at root
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ρ, i.e. pv = pρ = 1/2 and Q1 = P1. P2 is a distribution by putting probability 1/2 + ε at v

and 1/2− ε at ρ and Q2 = P1. By construction, we could know that

D(P1, Q1) = 0 and D(P2, Q2) = dε.

The Kullback-Leibler divergence between observations of (T, P1, Q1) and (T, P2, Q2) is

KL(P n
(T,P1,Q1)||P n

(T,P2,Q2)) = n

[
1

2
log

(
1

1 + 2ε

)
+

1

2
log

(
1

1− 2ε

)]
≤ 4nε2

1− 4ε2

Choosing ε2 = 1/n and applying Theorem 2.2 in Tsybakov (2009) yields

inf
D̂

sup
(T,P1,Q1),(T,P2,Q2)

E
(
D̂ −D(P,Q)

)2

≥ c
d2

n
.

S1.2 Proof of Proposition 2

Proof. For each edge e ∈ Ẽ(w), we can prove that there is at most one children edge of e

belonging to Ẽ(w). Otherwise, suppose there are two children edge of e belonging to Ẽ(w),

naming them e1 and e2. Then, we could know that
∑

v∈τ(e1) xv,
∑

v∈τ(e2) xv > w/2. Since e1

and e2 are not on the paths to root ρ of each other, Lemma 4 suggests that τ(e1)∩τ(e2) = ∅.

This suggests that
∑

v∈τ(e) xv ≥ (
∑

v∈τ(e1) xv) + (
∑

v∈τ(e2) xv) > w, which contradicts that

e ∈ Ẽ(w).

Next, let

Ẽ ′(w) =
{
e ∈ Ẽ(w) : no children edge of e is in Ẽ(w)

}
.

For each ẽ ∈ Ẽ ′(w), we define its ancestor in Ẽ(w)

Ep
ẽ (w) := {e ∈ Ẽ(w) : e ∈ [ṽ, ρ], ∀ṽ ∈ τ(ẽ)}.

As
∑

v∈τ(e) xv is nondecreasing along [ρ, ṽ], we can conclude that Ep
ẽ is connected. We can

conclude that Ep
ẽ (w) is actually a path as there is at most one children edge of e belonging

to Ẽ(w) for any e ∈ Ẽ(w). Therefore, we can know that

Ẽ(w) =
⋃

ẽ∈Ẽ′(w)

Ep
ẽ (w).
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Now, we prove Ep
ẽ1

(w)∩Ep
ẽ2

(w) = ∅, ∀ ẽ1 6= ẽ2. Suppose there exists some ẽ1 and ẽ2 such

that Ep
ẽ1

(w)∩Ep
ẽ2

(w) 6= ∅. Let e′ be an edge in Ep
ẽ1

(w)∩Ep
ẽ2

(w). Since every node in Ẽ(w) has

at most one parent and at most children in Ẽ(w). We can conclude that Ep
ẽ1

(w) = Ep
ẽ2

(w)

and thus ẽ1 = ẽ2. With the same arguments, we could also prove that no edge from Ep
ẽ1

(w)

is predecessor of edge in Ep
ẽ2

(w). This implies

τ(e1) ∩ τ(e2) = ∅,

if e1 ∈ Ep
ẽ1

(w) and e2 ∈ Ep
ẽ2

(w) for any ẽ1 6= ẽ2.

By definition, we can know that S = |Ẽ ′(w)|. Because ẽ1 6= ẽ2 ∈ Ẽ ′(w) implies τ(ẽ1) ∩

τ(ẽ2) = ∅, we have ∑
ẽ∈Ẽ′

∑
v∈τ(ẽ)

xv ≤ W.

As
∑

v∈τ(ẽ) xv > w/2 for ẽ ∈ Ẽ(w), we can conclude that wS ≤ 2W .

S1.3 Proof of Theorem 1

We define the following events

B0 =

{
Pe +Qe ≤

2c1 log n

n
,∀ e ∈ E0

}
,

Bj =

{
|Pe −Qe| ≤

√
2c1 log n

n

(√
Pe +Qe

)
,

1

2j+1
≤ Pe +Qe ≤

1

2j−2
, ∀ e ∈ Ej

}
and

B′ = {Pe < Qe or Qe < Pe,∀ e ∈ Ec} .

Based on Bj, j = 0, . . . , J and B′, we can define event

B =

(
J⋂
j=0

Bj

)⋂
B′.

By Lemma 2, all the analysis can be conducted conditioned on B as P(B) ≥ 1− 5s/nc1/10.

Define the following events

B̃0 =

{
{(Pe, Qe)}e∈E0 ∈ I0

}
, B̃j =

{
{Pe −Qe}e∈Ej

∈ Ij
}
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and

B̃ =
J⋂
j=1

B̃j.

Lemma 1 suggests that

P
(
B
⋂

B̃
)
≥ 1− 8 log n

n4

if we choose c1 ≥ 40. Hereafter, we conduct the analysis conditioned on B
⋂
B̃.

Define the following random variables

Lj =
∑
e∈Ej

Le

(
|P̃e − Q̃e| − |Pe −Qe|

)
, j = 0, . . . , J

and

L′ =
∑
e∈Ec

Le

(
|P̂e − Q̂e| − |Pe −Qe|

)
.

Thus,

E
(
D̂MET −D(P,Q)

)2

≤3E
(
L2

0IB⋂
B̃

)
+ 3E

( J∑
j=1

Lj

)2

IB⋂
B̃

+ 3E
(
L′2IB⋂

B̃

)
+

16d2M2 log n

n4
.

Here we use the fact that D(P,Q), D̂MET ≤ dM for any P and Q and Cauchy-Schwarz

inequality. We now bound above three terms one by one.

Firstly, we bound E
(
L2

0IB⋂
B̃

)
. Let F

(1)
K (x, y) be an approximated K-polynomial of

|x− y| within [0, 2c1 log n/n]2 such that∣∣∣|x− y| − F (1)
K (x, y)

∣∣∣ ≤ √x+
√
y

K

√
2c1 log n

n
+

1

K2

(
2c1 log n

n

)
, ∀x, y ∈ [0, 2c1 log n/n].

The existence of F
(1)
K (x, y) has been shown in Lemma 20. Write

F
(1)
K (x, y) =

K∑
k1,k2=0

f (1)(k1, k2)xk1yk2

and the coefficients f (1)(k1, k2) can be bounded by C̃K(2c1 log n/n)1−k1−k2 for some constant

C̃. On event B̃, we have∣∣∣∣∣∑
e∈E0

Le

(
P̃ k1
e Q̃

k2
e − P k1

e Q
k2
e

)∣∣∣∣∣ ≤ 2dM

√
2.5n log2 n

(
76c1 log n

n

)k1+k2

, 0 ≤ k1, k2 ≤ K.
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Thus, ∣∣∣∣∣∑
e∈E0

Le

(
F

(1)
K (P̃e, Q̃e)− F (1)

K (Pe, Qe)
)∣∣∣∣∣

≤

∣∣∣∣∣∑
e∈E0

Le

K∑
k1,k2=0

f (1)(k1, k2)
(
P̃ k1
e Q̃

k2
e − P k1

e Q
k2
e

)∣∣∣∣∣
≤

K∑
k1,k2=0

2dMC̃K

√
2.5n log2 n

(
2c1 log n

n

)1−k1−k2 (76c1 log n

n

)k1+k2

≤Cd(38C̃)KK2 log2 n√
n

.

On event B
⋂
B̃, we have

|L0| =

∣∣∣∣∣∑
e∈E0

Le

(
|P̃e − Q̃e| − |Pe −Qe|

)∣∣∣∣∣
≤

∣∣∣∣∣∑
e∈E0

Le

(
|P̃e − Q̃e| − F (1)

K (P̃e, Q̃e) + F
(1)
K (P̃e, Q̃e)− F (1)

K (Pe, Qe) + F
(1)
K (Pe, Qe)− |Pe −Qe|

)∣∣∣∣∣
≤ 2

∑
e∈E0

Le

(√
Pe +Qe

K

√
2c1 log n

n
+

1

K2

(
2c1 log n

n

))
+ C

d(38C̃)KK2 log2 n√
n

.

As K = c2 log n for small enough constant c2, Lemma 12 suggests

sup
(T,P,Q)∈Θ(s,d)

E
(
L2

0IB⋂
B̃

)
≤

(
sup

(T,P,Q)∈Θ(s,d)

4
∑
e∈E0

Le
√
Pe

√
2c1

c2n log n
+ C

c2
2d log4 n

n1/2−c2 log 38C̃

)2

≤ C

(√
s log(2d+2/s)

n log n
+ C

d log4 n

n1/2−c2 log 38C̃

)2

≤ C

(
s log(2d+2/s)

n log n
+

d2

n1−γ

)
.

Here γ = 2c2 log 38C̃.

Next, we bound E
((∑J

j=1 Lj

)2

IB⋂
B̃

)
. For each j, let F

(2,j)
K (x) be a K-polynomial of

|x| within [−
√

4c1 log n/2jn,
√

4c1 log n/2jn] such that

sup
x∈[−
√

4c1 logn/2jn,
√

4c1 logn/2jn]

∣∣∣|x| − F (2,j)
K (x)

∣∣∣ ≤ 1

K

√
4c1 log n

2jn
.

The existence of such polynomial has been discussed in Lemma 21. If we write

F
(2,j)
K (x) =

K∑
k=0

f (2,j)(k)xk,
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then the coefficients f (2,j)(k) can be bounded by C̃K(4c1 log n/2jn)1−k for some constant C̃.

On event B̃, we have∣∣∣∣∣∣
∑
e∈Ej

Le

(
(P̃e − Q̃e)

k − (Pe −Qe)
k
)∣∣∣∣∣∣ ≤ 4dM

√
10Sj log n

(
48c1 log n

2jn

)k/2
, 0 ≤ k ≤ K.

This suggests that∣∣∣∣∣∣
∑
e∈Ej

Le

(
F

(2,j)
K (P̃e − Q̃e)− F (2,j)

K (Pe −Qe)
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
e∈Ej

Le

K∑
k=0

f (2,j)(k)
(

(P̃e − Q̃e)
k − (Pe −Qe)

k
)∣∣∣∣∣∣

≤
K∑
k=0

4dMC̃K
√

10Sj log n

(
4c1 log n

2jn

)1/2−k/2(
48c1 log n

2jn

)k/2
≤Cd(12C̃)KK log n√

n
.

Here we use Sj ≤ 2j+2. On event B
⋂
B̃, we have∣∣∣∣∣

J∑
j=1

Lj

∣∣∣∣∣ ≤∑
j

∣∣∣∣∣∣
∑
e∈Ej

Le (|∆e| − |Pe −Qe|)

∣∣∣∣∣∣
≤
∑
j

∣∣∣∣∣∣
∑
e∈Ej

Le

(
|∆e| − F (j)

K (∆e) + F
(2,j)
K (∆e)− F (2,j)

K (Pe −Qe) + F
(2,j)
K (Pe −Qe)− |Pe −Qe|

)∣∣∣∣∣∣
≤
∑
j

2
∑
e∈Ej

Le

(
1

K

√
4c1 log n

2jn

)
+ C

d(12C̃)KK log n√
n

 .

Here ∆e := P̃e − Q̃e. On event B
⋂
B̃, we also know that Pe + Qe ≥ 2−(j+1) when e ∈ Ej.

Thus, ∣∣∣∣∣
J∑
j=1

Lj

∣∣∣∣∣ ≤∑
j

2
∑
e∈Ej

Le

(
1

K

√
8c1(Pe +Qe) log n

n

)
+ C

d(12C̃)KK log n√
n

 .
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Together with choice of K and Lemma 12, we have

sup
(T,P,Q)∈Θ(s,d)

E

( J∑
j=1

Lj

)2

IB⋂
B̃


≤

(
4 sup

(T,P,Q)∈Θ(s,d)

∑
e∈Er

Le
√
Pe

√
c1

c2n log n
+ C

d log2 n

n1/2−c2 log 12C̃

)2

≤C

(√
s log(2d+2/s)

n log n
+

d log2 n

n1/2−c2 log 12C̃

)2

≤C
(
s log(2d+2/s)

n log n
+

d2

n1−γ

)
.

Finally, we bound the last term E
(
L′2IB⋂

B̃

)
. As P̂e− Q̂e is unbiased estimator on event

B
⋂
B̃ when e ∈ Ec. With the same arguments in proof of Proposition 1, we have

E
(
L′2IB⋂

B̃

)
≤ d2

n
.

We now put three terms together.

sup
(T,P,Q)∈Θ(s,d)

E
(
D̂MET −D(P,Q)

)2

≤ C

(
s log(2d+2/s)

n log n
+

d2

n1−γ

)
+
d2

n
+

16d2M2 log n

n4
.

Because log n ≤ C1 log(s/d), we can choose c2 small enough so that

sup
(T,P,Q)∈Θ(s,d)

E
(
D̂MET −D(P,Q)

)2

≤ C
s log(2d+2/s)

n log n
.

S1.4 Proof of Theorem 2

We now prove lower bound s log(2d+2/s)/n log n. To the end, we provide a lower bound

when Q is known, i.e. we have infinite number of sample from Q. The minimax risk when

Q is known can be defined as

R∗(s, d,Q) = inf
D̂

sup
(T,P,Q)∈Θ(s,d,Q)

E(D̂ −D(P,Q))2,

where

Θ(s, d,Q) :=

{
θ = (T, P,Q) : T ∈ T (s, d), P ∈M|V |

}
.
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Clearly,

R∗(s, d) ≥ sup
Q
R∗(s, d,Q).

Thus, the rest of proof aims to find the hardest case Q and show a lower bound of R∗(s, d,Q).

Let Ms(ε) be an vector set

Ms(ε) :=

{
P :

∣∣∣∣∣∑
v∈V

pv − 1

∣∣∣∣∣ ≤ ε

}
and

Θ(s, d,Q, ε) :=

{
θ = (T, P,Q) : T ∈ T (s, d), P ∈M|V |(ε)

}
.

The minimax rate under Poisson model can be generalized accordingly

R̃∗(s, d,Q, ε) := inf
D̂

sup
(T,P,Q)∈Θ(s,d,Q,ε)

E(D̂ −D(P,Q))2.

Lemma 5 suggests that it is sufficient to provide a lower bound of R̃∗(s, d,Q, ε) where ε is

specified later.

To show a lower bound of R̃∗(s, d,Q, ε), we adopt the method of two fuzzy hypothesis in

Tsybakov (2009). Our strategy is first to construct a least favorable tree and then construct

two prior probability measures for P and Q. Our construction of least favorable tree relies

on two elementary tree: full binary tree and chain tree. A full binary tree is a tree in which

every non-leaf node has exactly two children. A typical example is shown in Figure 1. A

full binary tree with depth d has 2d+1 − 1 nodes and 2d leaves. A chain tree is a binary tree

in which right children of non-leaf node is a leaf. An example of chain tree can be found in

Figure 2. A chain tree with depth d has 2d− 1 nodes and d leaves.

Now we construct the least favorable tree T0(k1, k2) for some constant k1 and k2. The

top part of T0(k1, k2) is a complete binary tree T1 with depth k1. At each leaf of T1, we

link a chain tree with depth k2. There are totally 2k1 chain tree attached to T1, naming

them as T2,i, i = 1, . . . , 2k1 . An example of T0(k1, k2) is shown in Figure 3. We choose

k1 = blog2(s/ log(2d+2/s))c and k2 = blog(2d+2/s)c. Choices of k1 and k2 suggests that

k1 + k2 ≤ d and 2k1(k2 + 2) ≤ s. Clearly, each subtree T2,i has only two leaves with

depth k1 + k2 and name the left one of them as v0,i. Let V0 be a collection of v0,i, i.e.

V0 = {v0,i, 1 ≤ i ≤ 2k1}. Observe that |V0| = 2k1 .

9



Figure 1: Full Binary Tree

Figure 2: Chain Tree

Depth k1

Depth k2

T1

T2,1 T2,2k1

v0,1 ∈ V0 v0,2k1 ∈ V0

Figure 3: Least Favorable Tree T0(k1, k2)
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Now, we construct the probability distribution on T0(k1, k2). The probability distribution

Q = Q1 = Q2 put probability q = 2−k1 at each node in V0 and 0 at other nodes, i.e.

qv =

q v ∈ V0

0 v ∈ V \ V0

.

We fix the distribution Q and construct the two prior probability measures µ1, µ2 on dis-

tribution P . We assume the prior distribution on each node are independent, i.e.

µ1 =
∏
v∈V

µ1,v and µ2 =
∏
v∈V

µ2,v.

Similar with construction of Q, we assume pv is always 0 when v /∈ V0 and the prior distri-

butions are the same when v ∈ V0, i.e.

µi,v =

µi v ∈ V0

δ(0) v ∈ V \ V0

, i = 1, 2

where δ(0) is a probability distribution with probability 1 being 0. Suppose ν1 and ν2 are

two distributions in Lemma 22 and f(x) = q + xλ. Then we define µ1 and µ2 as µi(A) =

νi(f
−1(A)). Then µ1 and µ2 are a pair of distributions on [q − λ, q + λ] such that∫

tµ1(dt) =

∫
tµ2(dt) = q,

∫
tkµ1(dt) =

∫
tkµ2(dt), k = 2, . . . , K

and ∫
|t− q|µ1(dt)−

∫
|t− q|µ2(dt) = c

λ

K
.

Under prior probability measures µ1, µ2, we have

∆ := Eµ1
D(P,Q)− Eµ2

D(P,Q) = ck22k1
λ

K
= c

sλ

K

and

Eµ1

(∑
v∈V

pv

)
= Eµ2

(∑
v∈V

pv

)
= 1.
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As the support of µ1 and µ2 are larger than M|V |(ε), we consider the following subset

Bi =

{
P :

∣∣∣∣∣∑
v∈V

pv − 1

∣∣∣∣∣ ≤ ε, |D(P,Q)− Eµi
D(P,Q)| ≤ ∆

4

}
, i = 1, 2.

Hoeffding inequality and McDiarmid inequality (see, e.g. Boucheron et al., 2013) suggests

that

Pµi

(∣∣∣∣∣∑
v∈V

pv − 1

∣∣∣∣∣ > t

)
≤ 2 exp

(
− Ct2

2k1λ2

)
and

Pµi

(∣∣D(P,Q)− Eµi
D(P,Q)

∣∣ > t
)
≤ 2 exp

(
− Ct2

2k1k2
2λ

2

)
≤ 2 exp

(
− Ct2

sk2λ2

)
.

Choosing ε = ∆/4d yields

µi(Bi) ≥ 1− 4 exp

(
− Cs

K2k2

)
.

Let π1 and π2 be a pair of prior distribution measures conditioned on B1 and B2

πi(A) =
µi(A ∩Bi)

µi(Bi)
.

When the prior distribution is πi or µi, we define Pπi and Pµi
as corresponding marginal

distribution of observed data. Then, Lemma 7 implies

TV (Pπ1 ,Pπ2) ≤ TV (Pπ1 ,Pµ1
) + TV (Pµ1

,Pµ2
) + TV (Pπ2 ,Pµ2

)

≤ 1− µ1(B1) + 1− µ2(B2) + 2k1+1

(
eλ
√
n√

q(K + 1)

)K+1

≤ 8 exp

(
− Cs

K2k2

)
+ 2k1+1

(
eλ
√
n√

q(K + 1)

)K+1

We are ready to use prior distribution measures π1 and π2 and Lemma 6 to lower bound

R̃∗(s, d,Q, ε). Lemma 6 suggests that

inf
D̂

sup
θ∈Θ(s,d,Q,ε)

Pθ
(
|D̂ −D(P,Q)| ≥ c

sλ

K

)

≥1

2

1− 8 exp

(
− Cs

K2 log(2d+2/s)

)
+

2s

log(2d+2/s)

(
eλ
√
n√

q(K + 1)

)K+1
 .

12



Now we choose λ and K. We only need to show lower bound when

s log(2d+2/s)

n log n
≥ d2

n
.

When s/ log(2d+2/s) < log2 n, let

K = c1

√
log n and λ = c2

√
k2

sn
.

We can obtain

R̃∗(s, d,Q, ε) ≥ c

(
s log(2d+2/s)

n log n

)
.

When s/ log(2d+2/s) ≥ log2 n, we choose

K = c1 log n and λ = c2

√
k2 log n

sn
.

Small enough c1 and c2 suggests that

R̃∗(s, d,Q, ε) ≥ c

(
s log(2d+2/s)

n log n

)
.

We can complete proof by applying Lemma 5.

S1.5 Proof of Theorem 3

We first prove the upper bound. Proposition 1 and Lemma 12 suggest that suggests

sup
P∈Ms

(∑
e∈E

Pe ∧
√
Pe
n

)2

≤ C
s log(2d+2/s)

n
.

So we have

sup
(T,P,Q)∈Θ(s,d)

E(D(P̂ , Q̂)−D(P,Q))2 ≤ C

(
s log(2d+2/s)

n
+
d2

n

)
Now, let’s turn to the lower bound. Because of Jensen’s inequality,

E(D(P̂ , Q̂)−D(P,Q))2 ≥

(∑
e∈E

LeE
(
|P̂e − Q̂e| − |Pe −Qe|

))2

.

Application of conditional Jensen’s inequality and Lemma 9 suggests

sup
P∈Ms

E
(
|P̂e − Q̂e| − |Pe −Qe|

)
≥ E

(
|Q̂e −Qe|

)
≥ 1√

2

(
Qe ∧

√
Qe

n

)
.

13



So we have

sup
P∈Ms

E(D(P̂ , Q̂)−D(P,Q))2 ≥ C

(∑
e∈E

Le

(
Qe ∧

√
Qe

n

))2

.

Taking supreme with respect to Q ∈Ms, Lemma 12 implies

sup
(T,P,Q)∈Θ(s,d)

E(D(P̂ , Q̂)−D(P,Q))2 ≥ C
s log(2d+2/s)

n

With lower bound in Proposition 1, we could know that

sup
(T,P,Q)∈Θ(s,d)

E(D(P̂ , Q̂)−D(P,Q))2 ≥ C

(
s log(2d+2/s)

n
+
d2

n

)
.

Because d2 ≤ s log(2d+2/s), we prove

sup
(T,P,Q)∈Θ(s,d)

E(D(P̂ , Q̂)−D(P,Q))2 � s log(2d+2/s)

n
.

S1.6 Proof of Theorem 4

We firstly show the bias of classical plugin estimator can be bounded by d/n. By Lemma 14,∣∣∣E(Dα(P̂ , Q̂))−Dα(P,Q)
∣∣∣ ≤∑

e∈E

Le

∣∣∣E|P̂e − Q̂e|α − |Pe −Qe|α
∣∣∣

≤ C
∑
e∈E

Le
Pe +Qe

n

≤ C
d

n
.

Next, we show the variance of Dα(P̂ , Q̂) is always bounded by d2/n. To the end, we

would like to apply Lemma 17 directly. Putting bias and variance together yields

E(Dα(P̂ , Q̂)−Dα(P,Q))2 ≤ C
d2

n
.

We omit the proof of lower bound as it can be proven in the exactly same way in Proposi-

tion 1.

S1.7 Proof of Theorem 5

We now show the upper bound and lower bound of MET when 0 < α < 1.

14



S1.7.1 Upper bound

We follow the same notation and proof pipeline in proof of Theorem 1. Following the

arguments there yields

E
(
L2

0IB⋂
B̃

)
≤ C

(
s2−α logα(2d+2/s)

(n log n)α
+

d2

n1−γ

)
and

E

( J∑
j=1

Lj

)2

IB⋂
B̃

 ≤ C

(
s2−α logα(2d+2/s)

(n log n)α
+

d2

n1−γ

)
.

The main difference is the definition of L′ and the way to bound it. More concretely, L′ can

be defined as

L′ =
∑
e∈Ec

Le

(
Uα(P̂e,1, Q̂e,1)− |Pe −Qe|α

)
.

To get a bound for E
(
L′2IB⋂

B̃

)
, we work on the bias and variance separately. We firstly

work on bias. As

E
(
L′|B

⋂
B̃
)

=
∑
e∈Ec

Le

(
EUα(P̂e,1, Q̂e,1)− |Pe −Qe|α

)
,

an application of Lemma 13 and Lemma 12 yields

E
(
L′|B

⋂
B̃
)
≤ C

∑
e∈Ec

Le

(
(Pe +Qe)

α/2

nα/2 log(4−α)/2 n
+
Pe +Qe

nc1−4

)

≤ C
s(2−α)/2 logα/2(2d+2/s)

(n log n)α/2
.

Next, we work on the variance of L′. Observe

Var(L′) =
∑
e∈Ec

L2
eVar

(
Uα(P̂e,1, Q̂e,1)

)
+

∑
e1,e2∈Ec

Le1Le2Cov
(
Uα(P̂e1,1, Q̂e1,1), Uα(P̂e2,1, Q̂e2,1)

)

≤ 2
∑
e∈Ec

Le

LeVar
(
Uα(P̂e,1, Q̂e,1)

)
+
∑

e′∈P(e)

Le′Cov
(
Uα(P̂e1,1, Q̂e1,1), Uα(P̂e2,1, Q̂e2,1)

) ,

15



we apply Lemma 15

Var(L′) ≤2C

(∑
e∈Ec

Le|Pe −Qe|α−1Pe +Qe

n

∑
e′∈P(e)

Le′|Pe′ −Qe′|α−1

+
∑
e∈Ec

Le|Pe −Qe|α−1

√
Pe +Qe

n log2 n

∑
e′∈P(e)

Le′|Pe′ −Qe′|α−1
√
Pe′ +Qe′

)

=:2C(T1 + T2)

Here P(e) = {e′ ∈ Ec : e′ ∈ [ρ, v],∀v such that e ∈ [ρ, v]}. In other words, P(e) is all parent

edges. We bound T1 and T2 with different strategies. In particular,

T1 ≤
∑
e∈Ec

Le

(
c1(Pe +Qe) log n

n

)(α−1)/2
Pe +Qe

n

∑
e′∈P(e)

Le′

(
c1(Pe′ +Qe′) log n

n

)(α−1)/2

≤C
∑
e∈Ec

Le
(Pe +Qe)

(α+1)/2

n(α+1)/2 log(α+1)/2 n
· dM

(
(Pe +Qe) log n

n

)(α−1)/2

≤C
∑
e∈Ec

Le
d(Pe +Qe)

α

nα logα n

≤Cs
1−α logα(2d+2/s)d

nα logα n
.

Next, we work on T2. Clearly, an application of Lemma 12 suggests

T2 ≤
C

n log2 n

(∑
e∈Ec

|Pe −Qe|α−1
√
Pe +Qe

)2

≤ C

n log2 n

(∑
e∈Ec

(
(Pe +Qe) log n

n

)(α−1)/2√
Pe +Qe

)2

≤ C

nα log3−α n

(∑
e∈Ec

(Pe +Qe)
α/2

)2

≤ C

nα log3−α n
s2−α logα(2d+2/s)

Putting T1, T2 and E
(
L′|B

⋂
B̃
)

together yields

E
(
L′2IB⋂

B̃

)
≤ C

s2−α logα(2d+2/s)

(n log n)α

When we choose c2 small enough to make 1− γ > α, we show that

E(D̂MET,α −Dα(P,Q))2 ≤ C
s2−α logα(2d+2/s)

(n log n)α
.
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S1.7.2 Lower bound

Next, we show the lower bound. We follow the pipeline in proof of Theorem 2. Let T0(k1, k2)

still be the least favorable tree with k1 = blogs(s/ log(2d+2/s))c and k2 = blog(2d+2/s)c. We

also put uniform probability in V0 for Q1 and Q2 and 0 other nodes. We still construct

distribution P with prior distribution µ1 and µ2. In particular, by Lemma 21 and Lemma 22

µ1 and µ2 are a pair of distributions on [q − λ, q + λ] such that∫
tµ1(dt) =

∫
tµ2(dt) = q,∫

tkµ1(dt) =

∫
tkµ2(dt), l = 2, . . . , K

and ∫
|t− q|αµ1(dt)−

∫
|t− q|αµ2(dt) = c

(
λ

K

)α
.

Under these two prior measures µ1 and µ2, we have

∆α := Eµ1
Dα(P,Q)− Eµ2

Dα(P,Q) = cs

(
λ

K

)α
.

With the same arguments in proof of Theorem 2, we have

R∗α(s, d) ≥ s2λ2α

2K2α

1− 8 exp

(
−Csλ

2α−2

K2αk2

)
+

2s

k2

(
eλ
√
n√

q(K + 1)

)K+1
 .

We choose K and λ as

K = c1 log n and λ = c2

√
q log n

n
.

By choice of K and λ, we have

sλ2α−2

K2αk2

� n1−α(s/k2)2−α

log1+α n
and

2s

k2

(
eλ
√
n√

q(K + 1)

)K+1

� s

k2nC1
,

where C1 = c1(1 + log c2 − log(c1)/2). If we choose c2 small enough and c1 large enough, we

have

R∗α(s, d) ≥ C2
s2−α logα(2d+2/s)

(n log n)α
,

when n is large enough. Here, C2 = (c2/c1)2α/4. This also suggests that R∗(s, d) ≥ C2,

when (n log n)α ≤ s2−α logα(2d+2/s).
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S1.8 Proof of Theorem 6

We now work on the case where 1 < α < 2.

S1.8.1 Upper bound

Performance of MET when r(s, d, n) < T (α) The proof is the same with previous case

(0 < α < 1) except the way to bound variance of L′. To bound the variance, we adopt

Efron-Stein inequality, which is also used in Lemma 17. More specifically, if we follow the

notation in Lemma 17, we apply Efron-Stein inequality with respect to p̂v,1 and q̂v,1. For

arbitrary v0 ∈ V , P̂ ′ is the sample where p̂v0 is replaced independent copy p̂′v0 . For any

e ∈ Ec such that v0 ∈ τ(e), an application of Lemma 16 yields

E(Uα(P̂e,1, Q̂e,1)− Uα(P̂ ′e,1, Q̂e,1))2 ≤ C

(
pv0
n

+
1

nα+c1/4

)
.

The Efron-Stein inequality suggests that

Var(L′) ≤ C

(∑
v∈V

d2

(
pv + qv
n

+
2

nα+c1/4

))
≤ C

(
d2

n
+

s

nα+c1/4

)
≤ C

d2

n
.

Therefore, if we choose c2 small enough to make 1− γ > α, putting all terms together yields

E(D̂MET,α −Dα(P,Q))2 ≤ C

(
s2−α logα(2d+2/s)

(n log n)α

)
.

Performance of plugin estimator when r(s, d, n) ≥ T (α) We follow the similar strat-

egy in Proposition 1. Since |x|α is a convex function, we have

E
(
Dα(P̂ , Q̂)−Dα(P,Q)

)2

= E

(∑
e∈E

Le

(
|P̂e − Q̂e|α − |Pe −Qe|α

))2

≤ E

(
3
∑
e∈E

Le

(
|P̂e − Pe|α + |Q̂e −Qe|α

))2

≤ 18E
(
Dα(P̂ , P )2 +Dα(Q̂, Q)2

)
.

Thus, it is enough to show an upper bound for EDα(P̂ , P )2. To the end, we work on the

bias and variance separately. First, we work on the bias

EDα(P̂ , P ) =
∑
e∈E

LeE
(
|P̂e − Pe|α

)
≤
∑
e∈E

Le

(
E|P̂e − Pe|2

)α/2
≤
∑
e∈E

Le

(
Pe
n

)α/2
.
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Here, we use the Jensen’s inequality. Next, we apply Efron-Setein inequality to bound

variance as in Lemma 17. With the same arguments there, we can get

Var(Dα(P̂ , P )) ≤ C
d2

n
.

By Lemma 12, putting bias and variance together yields

sup
(T,P,Q)∈Θ(s,d)

E
(
Dα(P̂ , Q̂)−Dα(P,Q)

)2

≤C sup
(T,P,Q)∈Θ(s,d)

(
(
∑

e∈E P
α/2
e )2

nα
+

(
∑

e∈E Q
α/2
e )2

nα
+
d2

n

)

≤C
(
s2−α logα(2d+2/s)

nα
+
d2

n

)
.

Because (α− 1) log n ≥ (2− α) log(s/d), we can conclude

sup
(T,P,Q)∈Θ(s,d)

E
(
Dα(P̂ , Q̂)−Dα(P,Q)

)2

≤ C
d2

n
.

S1.8.2 Lower bound

The lower bound of d2/n part can be proven in the exactly same way in Proposition 1. So,

we only focus the bias part when 1 < α < 2. It is sufficient to prove the lower bound when

s2−α logα(2d+2/s)

(n log n)α
� d2

n
. (S1.1)

As in the last regimes, we could follow the exact steps in proof of Theorem 2 and obtain

R∗α(s, d) ≥ s2λ2α

2K2α

1− 8 exp

(
−Csλ

2α−2

K2αk2

)
+

2s

k2

(
eλ
√
n√

q(K + 1)

)K+1
 .

When (s/k2)2−α ≥ nα−1 log1+α n, if choose

K = c1 log n and λ = c2

√
q log n

n
,

then we have

R∗α(s, d) ≥ C2
s2−α logα(2d+2/s)

(n log n)α
.

On the other hand, if (s/k2)2−α < nα−1 log1+α n, we can choose

K = c1

√
log n and λ = c2

√
q

n
.
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As (S1.1) suggests that (s/k2)2−α � nα−1 logα n, we can know

R∗α(s, d) ≥ C2
s2−α logα(2d+2/s)

(n log n)α

when c1 and c2 are chosen in the previous case.

S2 Auxiliary Results and Proofs

In this section, we present all the technical lemmas.

Lemma 1. Suppose for any e ∈ E0, (Pe, Qe) satisfies n(Pe + Qe) ≤ 2c1 log n. We further

assume n ≥ |E|/ log |E|. If K = c log n for some constant c < c1, then

P
(
{(Pe, Qe)}e∈E0 ∈ I0

)
≥ 1− 1

n4
. (S2.2)

Furthermore, when K = c log n, |Pe−Qe| ≤
√

2c1(Pe +Qe) log n/n and 2−(j+1) ≤ Pe+Qe ≤

2−(j−2) for any e ∈ Ej, then

P
(
{Pe −Qe}e∈Ej

∈ Ij
)
≥ 1− 1

n4
(S2.3)

for j = 1, . . . , J .

Proof. Before we show (S2.2), we first show that

P

(∣∣∣∣∣∑
e∈E0

Le(P
k
e −Hk(P̂e,1))

∣∣∣∣∣ ≤ dM

√
2.5n log2 n

(
76c1 log n

n

)k)
≥ 1− 2

n5
. (S2.4)

To the end, we define P̂ ′e,1 = min(P̂e,1, 38c1 log n/n) and eventBt :=
{
P̂ ′e,1 = P̂e,1, ∀ e ∈ E0

}
.

As Pe ≤ 2c1 log n/n and n ≥ |E|/ log |E|, applying Lemma 8 yields that

P (Bt) ≥ 1−
∑
e

P
(
P̂e,1 >

38c1 log n

n

)
≥ 1− 1

n5
.

In order to show that
∑

e∈E0
LeHk(P̂

′
e,1) is a difference bounded function with respect to

each p̂v, we apply Lemma 30 in Han et al. (2018). More specifically, Lemma 30 in Han et al.

(2018) suggests

0 ≤ |Hk(x)| ≤

(
2 max

{
x,

√
4xk

n

})k

.

20



Because perturbing any p̂v only results in change at most d terms in
∑

e∈E0
LeHk(P̂

′
e,1), we

can know that ∣∣∣∣∣∑
e∈E0

LeHk(P̂
′
e,1)−

∑
e∈E0

LeHk(P̂
′′
e,1)

∣∣∣∣∣ ≤ dM

(
76c1 log n

n

)k
,

where P̂ ′′e,1 is just replace some p̂v by p̂′v. After showing difference bounded function, we are

now ready to apply McDiarmid inequality (see, e.g. Boucheron et al., 2013)

P

(∑
e∈E0

Le

(
Hk(P̂

′
e,1)− E(Hk(P̂

′
e,1))

)
> t

)
≤ exp

(
−2t2

d2M2|E|(76c1 log n/n)2k

)
.

With the similar arguments in proof of Lemma 18 in Han et al. (2018), we have∣∣∣E(Hk(P̂
′
e,1))− P k

e

∣∣∣ ≤ C

n5

(
76c1 log n

n

)k
.

Since P (Bt) ≥ 1− n−5 and |E| ≤ n log n, we can conclude that

P

(∑
e∈E0

Le

(
Hk(P̂e,1)− P k

e

)
> dM

√
2.5n log2 n

(
76c1 log n

n

)k)
≥ 1− 2

n5
.

Applying the exact same argument to Qe yields

P

(∑
e∈E0

Le

(
Hk(Q̂e,1)−Qk

e

)
> dM

√
2.5n log2 n

(
76c1 log n

n

)k)
≥ 1− 2

n5
.

On the event Bt, we have

max
e∈E0

P k1
e ≤

(
2c1 log n

n

)k1
and max

e∈E0

Hk2(Q̂e,1) ≤
(

76c1 log n

n

)k2
,

for k1, k2 = 0, . . . , K. Therefore, with probability at least 1− 4n−5,∣∣∣∣∣∑
e∈E0

Le(P
k1
e Q

k2
e −Hk1(P̂e,1)Hk2(Q̂e,1))

∣∣∣∣∣
≤
(

max
e∈E0

P k1
e

) ∣∣∣∣∣∑
e∈E0

Le(Q
k2
e −Hk2(Q̂e,1))

∣∣∣∣∣+

(
max
e∈E0

Hk2(Q̂e,1)

) ∣∣∣∣∣∑
e∈E0

Le(P
k1
e −Hk1(P̂e,1))

∣∣∣∣∣
≤2dM

√
2.5n log2 n

(
76c1 log n

n

)k1+k2

.

Then, we complete proof of (S2.2).
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Next, we aim to show (S2.3). We consider the event

Bj =

{
|P̂e,1 − Pe| ≤

√
5(Pe +Qe) log n

n
and |Q̂e,1 −Qe| ≤

√
5(Pe +Qe) log n

n
, e ∈ Ej

}
Based on concentration inequality in Lemma 8, we have

P(Bj) ≥ 1− 2

n5
.

Hereafter, we conduct analysis conditioned on event Bj. Recall that

|Pe −Qe| ≤
√

2c1(Pe +Qe) log n

n
.

Conditioned on event Bj, we know that

|P̂e,1 − Q̂e,1| ≤
√

3c1(Pe +Qe) log n

n
.

Together with lemma 3, this suggests that

|Gk(P̂e,1, Q̂e,1)| ≤
(

12c1(Pe +Qe) log n

n

)k/2
.

As Pe +Qe ≤ 2−(j−2), this naturally leads to∣∣∣Gk(P̂e,1, Q̂e,1)− (Pe −Qe)
k
∣∣∣ ≤ 2

(
48c1 log n

2jn

)k/2
.

Proposition 2 suggests that Ej can be decomposed Sj subset of disjoint path. More con-

cretely, let Ej,1, . . . , Ej,Sj
be these subsets of paths. Since each Ej,i is a subset of a path, we

can know that |Ej,i| ≤ d and, on event Bj,∣∣∣∣∣∣
∑
e∈Ej,i

Le

(
Gk(P̂e,1, Q̂e,1)− (Pe −Qe)

k
)∣∣∣∣∣∣ ≤ 2dM

(
48c1 log n

2jn

)k/2
, 1 ≤ i ≤ Sj.

Thus, for each 1 ≤ i ≤ Sj, we define a random variable

Zi =
∑
e∈Ej,i

Le

(
Gk(P̂e,1, Q̂e,1)− (Pe −Qe)

k
)

and its truncated version

Z̃i =


T Zi > T

Zi −T ≤ Zi ≤ T

−T Zi < −T

,
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where T = 2dM (48c1 log n/2jn)
k/2

. As suggested by proposition 2, P̂e1,1 and P̂e2,1 are

independent for any two edges e1 and e2 coming from different Ej,i. Thus, we can know that

(Zi, Z̃i) are independent for different i. An application of Hoeffding inequality yields

P

∣∣∣∣∣∣
Sj∑
i=1

(
Z̃i − E(Z̃i)

)∣∣∣∣∣∣ > t

 ≤ exp

(
−t2

2SjT 2

)
.

Now, we would like to show that |E(Zi − Z̃i)| is small following the similar arguments in

proof of Lemma 18 in Han et al. (2018). Clearly,

|E(Zi − Z̃i)| ≤ E
(
|Zi − Z̃i|I(|P̂e,1−Pe|,|Q̂e,1−Qe|>

√
5(Pe+Qe) logn/n,e∈Ej,i)

)
≤M

∑
e∈Ej,i

E
(
|Gk(P̂e,1, Q̂e,1)|I

(|P̂e,1−Pe|,|Q̂e,1−Qe|>
√

5(Pe+Qe) logn/n)

)
.

We now bound E
(
|Gk(P̂e,1, Q̂e,1)|I

(|P̂e,1−Pe|,|Q̂e,1−Qe|>
√

5(Pe+Qe) logn/n)

)
for different cases. If

we write ∆j =
√

48c1 log n/2jn, then

E
(
|Gk(P̂e,1, Q̂e,1)|I

(P̂e,1−Pe,Q̂e,1−Qe>
√

5(Pe+Qe) logn/n)

)
≤

∑
mp−nPe>

√
5nPe logn

∑
mq−nQe>

√
5nQe logn

(
2|mp −mq|

n

)k
P (Pois(nPe) = mp)P (Pois(nQe) = mq)

≤n−10

∞∑
lp,lq=0

(
∆j +

lp + lq
n

)k(
1−

√
5 log n

nPe

)l1+l2

≤n−10∆k
j

(
1− exp

(
−
√

5 log n

nPe
+

k

n∆j

))−2

≤n−10∆k
j

(
1− exp

(
−
√

2j log n

2n

))−2

≤n−10∆k
j .

The other three cases including P̂e,1−Pe <
√

5(Pe +Qe) log n/n or Q̂e,1−Qe <
√

5(Pe +Qe) log n/n

can be treated similarly. Thus, we can conclude that

|E(Zi − Z̃i)| ≤ 4dMn−10

(
48c1 log n

2jn

)k/2
.

Since Zi = Z̃i on the event Bj, we can have

P

∣∣∣∣∣∣
Sj∑
i=1

Zi

∣∣∣∣∣∣ ≤ 2dM
√

10Sj log n

(
48c1 log n

2jn

)k/2 ≥ 1− 1

n4
.
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The proof of (S2.3) is complete.

Lemma 2. If we define the event B as in proof of Theorem 1, then

P(Bc) ≤ 5|E|n−c1/10

Proof. We follow the similar strategy in Lemma 4 of Jiao et al. (2018). Because

P(Bc) ≤
J∑
j=0

P(Bc
j) + P(B′c), (S2.5)

we bound above terms separately. For B0, we have

P(Bc
0) ≤

∑
e

P
(
Pe +Qe ≥

2c1 log n

n
, P̂e,0 + Q̂e,0 <

c1 log n

n

)
.

Since n(P̂e,0 + Q̂e,0) follows a Poisson distribution with mean n(Pe +Qe), we apply concen-

tration inequality in Lemma 8 and obtain

P
(
Pe +Qe ≥

2c1 log n

n
, P̂e,0 + Q̂e,0 <

c1 log n

n

)
≤ n−c1/4.

An application of union bound suggests that

P(Bc
0) ≤ |E|n−c1/4.

For each Bj, we have

P(Bc
j) ≤

∑
e

P

(
|Pe −Qe| >

√
2c1(Pe +Qe) log n

n
,
∣∣∣P̂e,0 − Q̂e,0

∣∣∣ ≤√1.1c1 log n

n

(√
P̂e,0 + Q̂e,0

))

+
∑
e

P
(
Pe +Qe ≥

1

2j−2
, P̂e,0 + Q̂e,0 <

1

2j−1

)
+
∑
e

P
(
Pe +Qe ≤

1

2j+1
, P̂e,0 + Q̂e,0 >

1

2j

)
.

Following the similar arguments in proof of Lemma 4 in Jiao et al. (2018), we obtain the

bound for the first term

P

(
|Pe −Qe| >

√
2c1(Pe +Qe) log n

n
,
∣∣∣P̂e,0 − Q̂e,0

∣∣∣ ≤√1.1c1 log n

n

(√
P̂e,0 + Q̂e,0

))
≤ 4n−c1/3.

As n(P̂e,0 + Q̂e,0) follows a Poisson distribution, we have

P
(
Pe +Qe ≥

1

2j−2
, P̂e,0 + Q̂e,0 <

1

2j−1

)
≤ n−c1/4
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and

P
(
Pe +Qe ≤

1

2j+1
, P̂e,0 + Q̂e,0 >

1

2j

)
≤ n−c1/4.

Putting all these terms together yields

P(Bc
j) ≤ 6|E|n−c1/4.

Finally, we work on the last term

P(B′c) ≤
∑
e

2P

Pe = Qe, P̂e,0 − Q̂e,0 >

√
1.1c1(P̂e,0 + Q̂e,0) log n

n


≤ 2

∑
e

P

(
Pe = Qe,

√
P̂e,0 −

√
Q̂e,0 >

√
1.1c1 log n

2n

)

≤ 4
∑
e

P

(∣∣∣P̂e,0 − Pe∣∣∣ >√1.1c1Pe log n

4n

)

≤ 4|E|
nc1/10

.

Putting all above terms back into (S2.5), we have

P(Bc) ≤ 5|E|n−c1/10.

Lemma 3.

|Gk(P,Q)| ≤

(
2|P −Q|+

√
4k

n

(√
P +

√
Q
))k

Proof. We define

Gk,Q(P ) =
k∑

m=0

(
k

m

)
(−Q)k−m

m−1∏
m′=0

(
P − m′

n

)
.

As proof of Lemma 19 in Jiao et al. (2018) suggests

Gk(P,Q) =
k∑

m=0

(
k

m

)
Gm,(P+Q)/2(P )(−1)k−mGk−m,(P+Q)/2(Q).

Lemma 30 in Han et al. (2018) implies

|Gm,(P+Q)/2(P )| ≤

(
|P −Q|+

√
4mP

n

)m
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and

|Gk−m,(P+Q)/2(Q)| ≤

(
|P −Q|+

√
4(k −m)Q

n

)k−m

.

Thus, we could know that

|Gk(P,Q)| ≤
k∑

m=0

(
k

m

)
|Gm,(P+Q)/2(P )||Gk−m,(P+Q)/2(Q)|

≤
k∑

m=0

(
k

m

)(
|P −Q|+

√
4mP

n

)m(
|P −Q|+

√
4(k −m)Q

n

)k−m

≤
k∑

m=0

(
k

m

)(
|P −Q|+

√
4kP

n

)m(
|P −Q|+

√
4kQ

n

)k−m

≤

(
2|P −Q|+

√
4k

n

(√
P +

√
Q
))k

Lemma 4. For any pair of edges on tree e1, e2 ∈ E, τ(e1) and τ(e2) satisfy one and only

one of following relationships

• τ(e1) ∩ τ(e2) = ∅;

• τ(e1) ⊂ τ(e2);

• τ(e2) ⊂ τ(e1).

Proof. If e1 ∈ [ρ, v] for all v ∈ τ(e2), then we can know that τ(e2) ⊂ τ(e1). Similarly,

τ(e1) ⊂ τ(e2) if e2 ∈ [ρ, v] for all v ∈ τ(e1). Supposing there exists v1 ∈ τ(e1) such that

e2 /∈ [ρ, v1] and v2 ∈ τ(e2) such that e1 /∈ [ρ, v2], we can conclude that τ(e1) ∩ τ(e2) = ∅.

Otherwise, let v′ ∈ τ(e1) ∩ τ(e2). Then, there are two paths connecting v1 and v2: one is

through ρ and the other is through v′. This contradicts with the fact there is one and only

one path connect a pair of nodes on tree.

Lemma 5. For any s, d, n,

R∗n/2(s, d,Q) ≥ 1

2
R̃∗n(s, d,Q, ε)− d2e−n/8 − d2ε2.
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Proof. Given δ > 0, suppose D̂ is an estimator such that

sup
(T,P,Q)∈Θ(s,d,Q)

E(D̂ −D(P,Q)) ≤ δ +R∗n(s, d,Q).

Here, the sample are drawn from multinomial distribution with sample size n.

Fixing P ∈ M|V |(ε), the sample X = (Xv)v∈V are drawn from {Pois(npv)}v∈V . Here,

n′ =
∑

vXv is “sample size”. Since X can be seen as a sample drawn from multinomial

conditioned on n′, X can also be regard as input of D̂. Let P̃ = {pv/
∑

v pv}v∈V . So, we

have

EP (D̂ −D(P,Q))2 ≤ 2EP (D̂ −D(P̃ , Q))2 + 2(D(P,Q)−D(P̃ , Q))2.

Note

D(P,Q)−D(P̃ , Q) ≤
∑
e∈E

Le

(
|P̃e −Qe| − |Pe −Qe|

)
≤M

∑
e∈E

|P̃e − Pe|

≤M
∑
e∈E

Pe∑
v pv

ε

≤ dMε,

and

EP (D̂ −D(P̃ , Q))2 ≤
∑
m

R∗m(s, d,Q)P(n′ = m) + δ

≤ R∗n/2(s, d,Q) + d2P(n′ < n/2) + δ

≤ R∗n/2(s, d,Q) + d2e−n/8 + δ.

Since δ can be arbitrarily small,

EP (D̂ −D(P,Q))2 ≤ 2R∗n/2(s, d,Q) + 2d2e−n/8 + 2d2M2ε2.

This immediately suggests that

R̃∗n(s, d,Q, ε) ≤ 2R∗n/2(s, d,Q) + 2d2e−n/8 + 2d2M2ε2.
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Lemma 6 (Tsybakov (2009)). Suppose πi i = 1, 2 are two prior distributions on param-

eter space Θ, F (θ) is a functional on parameter space and Pis are corresponding marginal

distributions of observed data. Suppose there exists c ∈ R, δ > 0, 0 ≤ β1, β2 < 1 such that

π1(F (θ) ≤ c) ≥ 1− β1 and π2(F (θ) ≥ c+ 2δ) ≥ 1− β2.

If TV (P1,P2) ≤ η < 1, then

inf
F̂

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ δ) ≥ 1− η − β0 − β1

2
.

Here TV (P1,P2) is total variation distance defined as

TV (P1,P2) = sup
A
|P1(A)− P2(A)|.

Lemma 7 (Jiao et al. (2018)). Suppose U1 and U2 are two random variables supported on

[nq − nλ, nq + nλ], where q ≥ λ ≥ 0. Suppose E(U j
1 ) = E(U j

2 ), 0 ≤ j ≤ L. Denote the

marginal distribution of X where X|η ∼ Pois(η), η ∼ Ui as Fi. If L+ 1 ≥ (2eλ)/q, then

TV (F1, F2) ≤ 2

(
eλ
√
n√

q(L+ 1)

)L+1

.

Lemma 8 (Mitzenmacher and Upfal (2005)). If X ∼ Pois(λ), the for any δ > 0, we have

P(X ≥ (1 + δ)λ) ≤ exp

(
−(δ2 ∧ δ)λ

3

)
and

P(X ≤ (1− δ)λ) ≤ exp

(
−δ

2λ

2

)
.

Lemma 9 (Jiao et al. (2018)). Suppose np̂ ∼ Poi(np). Then,

1√
2

(
p ∧

√
p

n

)
≤ E|p̂− p| ≤ 2

(
p ∧

√
p

n

)
and

Var (|p̂− p|) ≤ p

n

Lemma 10. If x, y > 0 and 0 < α < 1, then

|xα − yα| < |x− y|α
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Proof. Without loss of generality, we assume x > y and write z = x − y > 0.It is sufficient

to show

(y + z)α < zα + yα.

We can assume y > z for simplicity as y and z are exchangeable in above inequality. Thus,

(y + z)α − yα = αξα−1z ≤ αzα < zα.

Here ξ is some number between z and y.

Lemma 11. Suppose np̂i ∼ Poi(npi), i = 1, 2 and p̂1 and p̂2 are independent. Then,

Cov (|p̂1 + p̂2 − p1 − p2|, |p̂1 − p1|) ≤
p1

n
.

Proof. Write A = p̂1 − p1 and B = p̂2 − p2. Then

Cov (|A+B|, |A|) = E(|A2 + AB|)− E|A+B|E|A|

≤ E (|B| − |A+B|)E|A|+ E(A2)

≤ E(A2),

where we use the fact that E|B| < E|A+B|, see the exact analytic expression of E(X − λ)

for Poisson random variable X ∼ Poi(λ) in Diaconis and Zabell (1991). Property of poisson

distribution suggests that

E(A2) = E(p̂1 − p1)2 ≤ p1

n
.

Lemma 12. Suppose the branch length Le = 1. For any tree T with height d and 0 < α < 1,

we have

sup
P∈Ms

∑
e∈E

Pα
e ≤ Cs1−α logα(2d+2/s)

for some constant C. Furthermore, there exists some T ∈ T (s, d) such that

sup
P∈Ms

∑
e∈E

Pα
e ≥ cs1−α logα(2d+2/s)
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Proof. We define Ui = {e : d(ρ, v) ≥ i, ∀e ∈ [ρ, v]}, i = 1, . . . , d. Because the tree is binary

tree, |Ui| ≤ 2i. By the definition of Ui, we know that τ(e1) ∩ τ(e2) = ∅ if e1, e2 ∈ Ui. Since∑
e∈Ui

Pe ≤ 1 and |Ui| ≤ 2i, Holder inequality yields

∑
e∈E

Pα
e ≤

d∑
i=1

(∑
e∈Ui

Pα
e

)

≤
d∑
i=1

(∑
e∈Ui

(Pα
e )1/α

)α(∑
e∈Ui

11/(1−α)

)1−α

≤
d∑
i=1

|Ui|1−α

≤
∑
i≥1

2iβ|Ui|1−α−β

for some 0 < β < 1− α which is specified later. By Holder’s inequality again,

∑
1≤i≤d

2iβ|Ui|1−α−β ≤

(∑
1≤i≤d

2iβ/(α+β)

)α+β (∑
1≤i≤d

|Ui|

)1−α−β

≤
(

2− 2βd/(α+β)

1− 2β/(α+β)

)α+β

s1−α−β

≤
(

1

2β/(α+β) − 1

)α+β (
2d

s

)β
s1−α

Choosing β = α/ log(2d/s) yields(
1

2β/(α+β) − 1

)α+β (
2d

s

)β
≤ C logα(2d+2/s).

Thus, we can conclude that ∑
e∈E

Pα
e ≤ Cs1−α logα(2d+2/s).

We now prove the converse side. Suppose T is T0(k1, k2) in lower bound proof and k1,

k2 are chosen in the same way. When we put uniform probability in V0, then we complete

proof.

Lemma 13. Suppose nP̂ ∼ Pois(nP ) and nQ̂ ∼ Pois(nQ). Assume |P−Q| >
√
c(P +Q) log n/n

and P +Q > c log n/n. Then, for any 0 < α < 2,∣∣∣E(Uα(P̂ , Q̂)
)
− |P −Q|α

∣∣∣ ≤ C

(
(P +Q)α/2

nα/2 log2−α/2 n
+
P +Q

nc−4

)
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for some constant C.

Proof. Write ∆ = P −Q, Σ = P + Q, ∆̂ = P̂ − Q̂, Σ̂ = P̂ + Q̂ and Î = In(P̂ , Q̂). We only

focus the situation ∆ > 0 in the rest of proof and other case can be treated similarly. As

Uα(P̂ , Q̂) = |∆̂|α +
α(1− α)

2n
|∆̂|α−2Σ̂Î ,

we do Taylor expansion for |∆̂|α and |∆̂|α−2. More concretely, the Taylor expansion of |∆̂|α

at ∆ can be written as

T3(|∆̂|α; ∆) =|∆|α + α|∆|α−1(∆̂−∆) +
α(α− 1)

2
∆α−2(∆̂−∆)2

+
α(α− 1)(α− 2)

6
∆α−3(∆̂−∆)3.

Then, the residue of above Taylor expansion is denoted by R3(|∆̂|α; ∆) = |∆̂|α−T3(|∆̂|α; ∆).

We know bound the residue term at different regimes. When ∆̂ ≥ 0, the residue term can

be represented in integral form

R3(|∆̂|α; ∆) =
1

6

∫ ∆̂

∆

C1(α)(∆̂− u)3uα−4du,

where C1(α) = α(α− 1)(α− 2)(α− 3). In particular, when ∆̂ > ∆/2, we have

|R3(|∆̂|α; ∆)| ≤ C1(α)

24

(
∆

2

)α−4

(∆̂−∆)4.

If 0 ≤ ∆̂ < ∆/2, then

|R3(|∆̂|α; ∆)| ≤ C1(α)

6

∫ ∆̂

∆

(∆̂3 − 3∆̂2u+ 3∆̂u2 − u3)uα−4du

≤ C1(α)

6

(
3∆̂2

2− α
(∆̂α−2 −∆α−2) +

1

α
(∆α − ∆̂α)

)

≤ C1(α)(α + 1)

3α(2− α)
∆α.

On the other hand, if ∆̂ < 0, we could work on |∆̂|α−T3(|∆̂|α; ∆) directly. If ∆̂ > −∆, then

|R3(|∆̂|α; ∆)| ≤ 10∆α.

When ∆̂ < −∆, we have

|R3(|∆̂|α; ∆)| ≤ 10∆α

(
∆̂

∆

)3

.
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Thus, the expectation of |R3(|∆̂|α; ∆)| can be decomposed as

E(|R3(|∆̂|α; ∆)|) =E(|R3(|∆̂|α; ∆)|I(∆̂ > ∆/2)) + E(|R3(|∆̂|α; ∆)|I(∆̂ < −∆))

+ E(|R3(|∆̂|α; ∆)|I(−∆ ≤ ∆̂ ≤ ∆/2))

≤C1(α)

24

(
∆

2

)α−4

E(∆̂−∆)4 + 10∆α−3E(|∆̂|3I(∆̂ < −∆))

+ 10∆αP(∆̂ ≤ ∆/2)

≤2C1(α)

3 · 2α
∆α−4

(
Σ

n3
+

3Σ2

n2

)
+ 10∆α (nΣ)7/2 + 1

nc
.

Similarly, we can write |∆̂|α−2Σ̂Î as

|∆̂|α−2Σ̂Î = T1(|∆̂|α−2; ∆)Σ̂Î +R1(|∆̂|α−2; ∆)Σ̂Î ,

where T1(|∆̂|α−2; ∆) = |∆|α−2 + (α − 2)|∆|α−3(∆̂ − ∆) and R1(|∆̂|α−2; ∆) = |∆̂|α−2 −

T1(|∆̂|α−2; ∆). Bounding R1(|∆̂|α−2; ∆) in different regimes, we can have

E(|R1(|∆̂|α−2; ∆)Σ̂Î|) ≤ 3

(
∆

2

)α−4(
Σ

n2
+

Σ2

n

)
.+ 10∆α−2Σ

(nΣ)3/2 + 1

nc

Putting two Taylor expansion together yields∣∣∣E(Uα(P̂ , Q̂)
)
− |P −Q|α

∣∣∣ ≤ 1

3n2
∆α−2 + E(|R3(|∆̂|α; ∆)|) +

1

8n
E(|R1(|∆̂|α−2; ∆)Σ̂Î|)

≤ 1

3n2
∆α−2 +

12

2α
∆α−4

(
2Σ

n3
+

4Σ2

n2

)
+ 22∆α (nΣ)7/2

nc

≤ C
Σα/2

nα/2 log2−α/2 n
+

Σ

nc−4

Here, we use |∆| >
√
c log nΣ/n and Σ > c log n/n.

Lemma 14. Suppose nP̂ ∼ Pois(nP ) and nQ̂ ∼ Pois(nQ). If 0 < P,Q < 1 and α ≥ 2, then∣∣∣E(|P̂ − Q̂|α)− |P −Q|α∣∣∣ ≤ C
P +Q

n

for some constant C.

Proof. If α = 2, then we can directly calculate∣∣∣E(|P̂ − Q̂|2)− |P −Q|2∣∣∣ =
P +Q

n
.
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When α > 2, |x|α is twice differential continuous function on [−1, 1]. Thus, we can have

Taylor expansion

|y|α = |x|α + α|x|α−1(y − x) +
α(α− 1)|tx+ (1− t)y|α−2

2
(y − x)2

for some t ∈ (0, 1). This suggests that∣∣∣E(|P̂ − Q̂|α)− |P −Q|α∣∣∣ ≤ α(α− 1)

2

(
E(P̂ − P )2 + E(Q̂−Q)2

)
≤ C

P +Q

n
.

We now complete proof.

Lemma 15. Suppose nP̂i ∼ Pois(nPi) and nQ̂i ∼ Pois(nQi) for i = 1, 2. We also assume

|Pi −Qi| >
√
c(Pi +Qi) log n/n and Pi +Qi > c log n/n. Then, for any 0 < α < 2,

Cov
(
Uα(P̂1, Q̂1), Uα(P̂1 + P̂2, Q̂1 + Q̂2)

)
≤ C|∆1∆2|α−1

(
Σ1

n
+

√
Σ1Σ2

n log2 n
+

1

nc/2−4

)
,

where Σi =
∑i

j=1(Pj +Qj), ∆i =
∑i

j=1(Pj −Qj) and C is some constant. In particular,

Var
(
Uα(P̂1, Q̂1)

)
≤ C|∆1|2α−2

(
Σ1

n
+

1

nc/2−4

)
.

Proof. We write Uα,i = Uα(
∑i

j=1 P̂j,
∑i

j=1 Q̂i), ∆̂i =
∑i

j=1(P̂j − Q̂j), Σ̂i =
∑i

j=1(P̂j + Q̂j)

and Îi = In(
∑i

j=1 P̂j,
∑i

j=1 Q̂i) for i = 1, 2. In particular, we only focus on the cases ∆i > 0

for i = 1, 2. We represent Uα,i in Taylor expansion

Uα,i = |∆i|α + α|∆i|α−1(∆̂i −∆i) +R1(|∆̂i|α; ∆i) +
α(1− α)

2n
|∆̂i|α−2Σ̂iÎi

where R1(|∆̂i|α; ∆i) = |∆̂i|α − [|∆i|α + α|∆i|α−1(∆̂i −∆i)]. If we write

R1,i = R1(|∆̂i|α; ∆i) +
α(1− α)

2n
|∆̂i|α−2Σ̂iÎi,

then the covariance between Uα,1 and Uα,2 can be decomposed as

Cov(Uα,1, Uα,2) =α
(
|∆1|α−1Cov(∆̂1, R1,2) + |∆2|α−1Cov(∆̂2, R1,1)

)
+ α2|∆1∆2|α−1Var(∆̂1) + Cov(R1,1, R1,2).

We now bound above terms one by one. Firstly, we work on Cov(∆̂1, R1,2). We rewrite R1,2

as

R1,2 =
α(α− 1)

2
|∆2|α−2

(
(∆̂2 −∆2)2 − Σ̂2Î2

n

)
+R2(|∆̂2|α; ∆2)+

α(1− α)

2n
R0(|∆̂2|α−2; ∆2)Σ̂2Î2.
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Thus, we have

Cov(∆̂1, R1,2) =
α(α− 1)

2
|∆2|α−2Cov

(
∆̂1, (∆̂2 −∆2)2 − Σ̂2Î2

n

)

+ Cov
(

∆̂1, R2(|∆̂2|α; ∆2)
)

+
α(1− α)

2n
Cov

(
∆̂1, R0(|∆̂2|α−2; ∆2)Σ̂2Î2

)
≤Cov

(
∆̂1, R2(|∆̂2|α; ∆2)

)
+
α(1− α)

2n
Cov

(
∆̂1, R0(|∆̂2|α−2; ∆2)Σ̂2Î2

)
We could further expand R2(|∆̂2|α; ∆2) by Taylor expansion

Cov
(

∆̂1, R2(|∆̂2|α; ∆2)
)
≤ C

(
∆α−3

2 Σ1Σ2

n2
+

∆α−4
2 Σ1Σ2

2

n3

)
+ Cov

(
∆̂1, R4(|∆̂2|α; ∆2)

)
By the similar bound technique in proof of Lemma 13, we have

|R4(|∆̂2|α; ∆2)| ≤


∆α−5

2 (∆̂2 −∆2)5 ∆̂2 > ∆2/2

10∆α
2 −∆2 < ∆̂2 < ∆2/2

10∆α
2 (∆̂2/∆2)4 ∆̂2 < −∆

Thus,

Var(R4(|∆̂2|α; ∆2)) ≤ E(R4(|∆̂2|α; ∆2)2) ≤ C

(
∆α−5

2 Σ5
2

n5
+

∆2α
2

nc−4

)
.

This suggests that

Cov
(

∆̂1, R2(|∆̂2|α; ∆2)
)
≤ C

(
∆α−3

2 Σ1Σ2

n2
+

∆α−4
2 Σ1Σ2

2

n3
+

∆α−5
2 Σ

1/2
1 Σ

5/2
2

n3
+

∆α
2

nc/2−4

)

≤ C

(
∆α−1

2 Σ1

n log n
+

∆α−1
2 Σ

1/2
1 Σ

1/2
2

n log2 n
+

∆α
2

nc/2−4

)
Similarly, we could also obtain

Cov(∆̂1, R0(|∆̂2|α−2; ∆2)Σ̂2Î2) ≤ C

(
∆α−1

2 Σ1

log n
+

∆α−1
2 Σ

1/2
1 Σ

1/2
2

log2 n
+

∆α
2

nc/2

)
.

Therefore, we can know

Cov(∆̂1, R1,2) ≤ C

(
∆α−1

2 Σ1

n log n
+

∆α−1
2 Σ

1/2
1 Σ

1/2
2

n log2 n
+

∆α
2

nc/2−4

)
.

With the same strategy, we can show

Cov(∆̂2, R1,1) = Cov(∆̂1, R1,1) ≤ C

√
Σ1

n2

(
∆α−3

1

√
Σ3

1 +
∆α

1

nc/2−4

)
≤ C

(
∆α−1

1 Σ1

n log n
+

∆α
1

nc/2

)
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and

Cov(R1,1, R1,2) ≤C
[

∆α−2
2 Σ2

n5/2

(
∆α−3

1

√
Σ3

1 +
∆α

1

nc/2−4

)
+

∆α−2
1 Σ1

n5/2

(
∆α−3

2

√
Σ3

2 +
∆α

2

nc/2−4

)
+

(∆1∆2)α−2Σ2
1

n2
+

1

n3

(
∆α−3

1

√
Σ3

1 +
∆α

1

nc/2−4

)(
∆α−3

2

√
Σ3

2 +
∆α

2

nc/2−4

)]
≤C

[
(∆1∆2)α−1Σ1

n log n
+

∆α
2

nc/2−4

]
Putting all these terms together yields

Cov(Uα,1, Uα,2) ≤ C|∆1∆2|α−1

[
Σ1

n
+

√
Σ1Σ2

n log2 n
+

1

nc/2−4

]
We complete the proof.

Lemma 16. Suppose nP̂i ∼ Pois(nPi) for i = 1, 2, 3 and nQ̂ ∼ Pois(nQ). Assume P2 = P3,

P1 + P2 − Q ≥
√
c1(P1 + P2 +Q) log n/2n and P1 + P2 + Q ≥ c1 log n/2n. Then, when

1 < α < 2,

E
(
Uα(P̂1 + P̂2, Q̂)− Uα(P̂1 + P̂3, Q̂)

)2

≤ C

(
P2

n
+

1

nα+c1/4

)
.

Proof. In this proof, we also adopt the following notations: ∆ = P1+P2−Q, Σ = P1+P2+Q,

∆̂1 = P̂1 + P̂2 − Q̂, ∆̂2 = P̂1 + P̂3 − Q̂, Σ̂1 = P̂1 + P̂2 + Q̂ and Σ̂2 = P̂1 + P̂3 + Q̂. We also

define Î1 = In(P̂1 + P̂2, Q̂) and Î2 = In(P̂1 + P̂3, Q̂). The definitions of Uα(P̂1 + P̂2, Q̂) and

Uα(P̂1 + P̂3, Q̂) suggest that

E
(
Uα(P̂1 + P̂2, Q̂)− Uα(P̂1 + P̂3, Q̂)

)2

≤E
(
|∆̂1|α − |∆̂2|α +

α(1− α)

2n

(
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂2Î2

))2

≤2E
(
α(1− α)

2n

(
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂2Î2

))2

+ 2E
(
|∆̂1|α − |∆̂2|α

)2

.

We now bound the above two terms separately. As |x|α is a Lipschitz function, we have

E
(
|∆̂1|α − |∆̂2|α

)2

≤ CE
(

∆̂1 − ∆̂2

)2

≤ C
P2

n
.

It is sufficient to bound the first term. For the first terms, observe that

E
(
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂2Î2

)2

≤2E
(
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂1Î2

)2

+ 2E
(
|∆̂2|α−2Σ̂1Î2 − |∆̂2|α−2Σ̂2Î2

)2

:=2(T1 + T2).
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Because |∆̂2|α−2Î2 ≤ (c1 log n/4n)α−2,

T2 = E
(
|∆̂2|α−2Σ̂1Î2 − |∆̂2|α−2Σ̂2Î2

)2

≤ C

(
c1 log n

4n

)2(α−2)
P2

n
.

For T1, we define the event B := {∆̂1, ∆̂2 >
√
c1 log nΣ/4n,Σ1/2 ≤ Σ̂1 ≤ 2Σ1}. Thus,

T1 = E
((
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂1Î2

)2

IB

)
+ E

((
|∆̂1|α−2Σ̂1Î1 − |∆̂2|α−2Σ̂1Î2

)2

IBc

)
≤ C

(
c1 log nΣ

4n

)α−3
Σ2P2

n
+ C

n2−α

nc1/4
.

Here, we apply the Taylor expansion to obtain

|∆̂2|α−2 = |∆̂1|α−2 + (α− 2)|t∆̂1 + (1− t)∆̂2|α−3(∆̂2 − ∆̂1)

for 0 ≤ t ≤ 1, when ∆̂2, ∆̂1 > 0. Putting T1 and T2 together yields

E
(
Uα(P̂1 + P̂2, Q̂)− Uα(P̂1 + P̂3, Q̂)

)2

≤CP2

n
+ C

(
c1 log n

4n

)2(α−2)
P2

n3
+ C

(
c1 log nΣ

4n

)α−3
Σ2P2

n3
+ C

1

nα+c1/4

≤CP2

n
+ C

1

nα+c1/4
.

The proof is complete.

Lemma 17. Suppose {P̂e.Q̂e}e∈E are the empirical distribution of sample drawn from Poisson-

multinomial model. Then, for any α > 1, there exists a constant C such that

Var
(
Dα(P̂ , Q̂)

)
≤ C

d2

n
,

where d is the height of tree.

Proof. The basic idea of proof is to apply the Efron-Stein inequality (see Boucheron et al.,

2013). Because p̂v and q̂v are independent, the Efron-Stein inequality can be applied with

respect to them. For arbitrary v0 ∈ V , Dα(P̂ ′, Q̂) is the distance between P̂ ′ and Q̂, where

p̂v0 is replaced independent copy p̂′v0 in P̂ ′. For any e ∈ E such that v0 ∈ τ(e), we have

E(|P̂e − Q̂e|α − |P̂ ′e − Q̂e|α)2 ≤ E(α|p̂v0 − p̂′v0 |)
2 ≤ 2α2pv0

n
.
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Here, we appeal to the fact that |x|α is Lipschitz function with Lipschitz constant α on

[−1, 1], i.e.

||x|α − |y|α| ≤ α|x− y|, x, y ∈ [−1, 1].

Since there are at most d terms involving v0, thus

E
(
Dα(P̂ , Q̂)−Dα(P̂ ′, Q̂)

)2

≤ dM2
∑

v0∈τ(e)

E(|P̂e − Q̂e|α − |P̂ ′e − Q̂e|α)2

≤ (dM)2 2α2pv0
n

.

By Efron-Stein inequality, we can know that

Var
(
Dα(P̂ , Q̂)

)
≤ 1

2

∑
v∈V

(dM)2 2α2(pv + qv)

n
≤ C

d2

n
.

Then, we complete proof.

S2.1 Lemmas on Approximation Theory

To introduce lemmas on approximation theory, we need the following definitions. The first

order symmetric difference of a function f is defined as

∆1
hf(x) = f

(
x+

h

2

)
− f

(
x− h

2

)
,

and the second order symmetric difference of a function f is defined as

∆2
hf(x) = ∆h(∆

1
hf(x)) = f(x+ h) + f(x− h)− 2f(x).

The rth order symmetric difference the can be defined as ∆r
hf(x) = ∆h(∆

r−1
h (x)). Denoted

by ϕ(x) =
√
x(1− x), the rth order Ditzian-Totik modulus of smoothness of function f :

[0, 1]→ R is defined as

ωrϕ(f, t) = sup
0<h≤t

‖∆r
hϕf(x)‖∞.

If f is a function defined on [0, 1]2, then rth order Ditzian-Totik modulus of smoothness can

be defined similarly

ωr[0,1]2(f, t) = sup
i=1,2,0<h≤t,x∈[0,1]2

|∆r
i,hϕ(xi)

f(x)|,
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where ∆i,h denotes the symmetric difference with respect to the i-th coordinate. The next

lemma shows the best polynomial approximation error can be upper bounded by Ditzian-

Totik modulus.

Lemma 18 (Ditzian and Totik (2012), see also Jiao et al. (2018)). There exists a constant

M(r) > 0 such that for any function f ∈ C[0, 1],

EK(f, [0, 1]) ≤M(r)ωrϕ(f,K−1), K > r,

where EK(f, I) denotes the distance of function f to the space of polynomials at most degree

K in the uniform norm ‖ · ‖∞ on set I. Moreover, if f(x) : [0, 1]2 → R, we have

EK(f, [0, 1]2) ≤Mωr[0,1]2(f,K
−1), K > r,

where M is a constant independent from f and K.

Lemma 19. Suppose 0 < α < 2 and x, y ∈ [0, 1]. Then,

ω2
[0,1]((

√
x+
√
y)α, t) ≤ Ctα and ω2

[0,1](|
√
x−√y|α, t) ≤ Ctα

for some constant C.

Proof. We first work on f(x, y) = (
√
x +
√
y)α. Since x and y exchangeable in f , it is

sufficient to show that

g1(t) := sup
0<h≤t,(x,y)∈[0,1]2

|(
√
x+ hϕ(x) +

√
y)α + (

√
x− hϕ(x) +

√
y)α− 2(

√
x+
√
y)α| ≤ Ctα

for some constant C, value of which could be different place from place. With Thoerem 4.1.1

Ditzian and Totik (2012), we can show that

g1(t) ≤C sup
0<h≤t,x≥4h2,y∈[0,1]

|(
√
x+ hx1/2 +

√
y)α + (

√
x− hx1/2 +

√
y)α − 2(

√
x+
√
y)α|

≤C sup
0<h≤t,x≥4h2,y∈[0,1]

|(
√
x+ ξ1hx1/2 +

√
y)α−1 − (

√
x− ξ2hx1/2 +

√
y)α−1|h

≤C sup
0<h≤t,x≥4h2,y∈[0,1]

|(
√
x+ ξ3hx1/2 +

√
y)α−2|h2

≤Ctα.
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Here, ξ1 and ξ2 are two constants between 0 and 1 and ξ3 is constant between −1 and 1.

Next, we work on f(x, y) = |
√
x−√y|α. Define

g2(t) := sup
0<h≤t,(x,y)∈[0,1]2

∣∣∣∣|√x+ hx1/2 −√y|α + |
√
x− hx1/2 −√y|α − 2|

√
x−√y|α

∣∣∣∣.
To bound g2(t), we consider two cases. First, we assume x − hx1/2 > y or x + hx1/2 < y.

With the same arguments in bounding g1(t), we can show∣∣∣∣|√x+ hx1/2 −√y|α + |
√
x− hx1/2 −√y|α − 2|

√
x−√y|α

∣∣∣∣ ≤ Chα.

Next, we assume x− hx1/2 < y < x+ hx1/2. Then,∣∣∣∣|√x+ hx1/2 −√y|α + |
√
x− hx1/2 −√y|α − 2|

√
x−√y|α

∣∣∣∣
≤4
(√

x+ hx1/2 −
√
x− hx1/2

)α
≤4hα.

Thus, we can conclude that

g2(t) ≤ Ctα.

Lemma 20. For any 0 < α < 2, there exists polynomial of degree at most 2K FM
K (x, y)

such that

|FM
K (x, y)− |x− y|α| ≤ C1

(
Mα/2(x+ y)α/2

Kα
+
Mα

K2α

)
, ∀(x, y) ∈ [0,M ]2.

for constant C1. Furthermore, if

FM
K (x, y) =

K∑
n1,n2=0

f(n1, n2)xn1yn2 ,

then the coefficients of f(n1, n2) are bounded by C2(
√

2 + 1)8KMα−n1−n2.

Proof. As |x− y|α = (
√
x+
√
y)α|
√
x−√y|α, we approximate (

√
x+
√
y)α and |

√
x−√y|α

separately. More concretely, Lemma 18 and Lemma 19 suggest that there exist polynomials

UK and VK such that

sup
(x,y)∈[0,1]2

|UK(x, y)− (
√
x+
√
y)α| ≤ C1

Kα
and sup

(x,y)∈[0,1]2
|VK(x, y)− |

√
x−√y|α| ≤ C2

Kα
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for constants C1 and C2. Thus, we could use UKVK to approximate |x− y|α. Since

|UK(x, y)VK(x, y)− |x− y|α|

=
∣∣UK(x, y)VK(x, y)− UK(x, y)|

√
x−√y|α + UK(x, y)|

√
x−√y|α − |x− y|α

∣∣
≤|UK(x, y)||VK(x, y)− |

√
x−√y|α|+ |

√
x−√y|α|UK(x, y)− (

√
x+
√
y)α|

≤|
√
x−√y|α|UK(x, y)− (

√
x+
√
y)α|+ (

√
x+
√
y)α|VK(x, y)− |

√
x−√y|α|

+ |UK(x, y)− (
√
x+
√
y)α||VK(x, y)− |

√
x−√y|α|,

we can know

sup
(x,y)∈[0,1]2

|UK(x, y)VK(x, y)− |x− y|α| ≤ 4(C1 + C2)(x+ y)α/2

Kα
+
C1C2

K2α
.

By scaling x̃ = xM and ỹ = yM ,

sup
(x̃,ỹ)∈[0,M ]2

∣∣∣∣MαUK

(
x̃

M
,
ỹ

M

)
VK

(
x̃

M
,
ỹ

M

)
− |x̃− ỹ|α

∣∣∣∣ ≤ C

(
Mα/2(x̃+ ỹ)α/2

Kα
+
Mα

K2α

)
.

Therefore, we have already constructed a polynomial FM
K (x̃, ỹ) = MαUK (x̃/M, ỹ/M)VK (x̃/M, ỹ/M).

An application of Lemma 17 in Jiao et al. (2018) could yields the conclusion on coefficients

of FM
K .

Lemma 21 (Timan (2014)). If α > 0, there exists polynomial of degree at most K FM
K (x)

such that

C1

(
M

K

)α
≤ sup
−M≤x≤M

|FM
K (x)− |x|α| ≤ C2

(
M

K

)α
.

for constant C1 and C2.

Lemma 22 (Cai and Low (2011)). For any given even integer K > 0, there exist two

probability measures ν1 and ν2 on [−1, 1] that satisfy the following conditions:

• ν1 and ν2 are symmetric around 0;

•
∫
tkν1(dt) =

∫
tkν2(dt), for k = 0, 1, . . . , K;

•
∫
f(t)ν1(dt)−

∫
f(t)ν2(dt) = 2δK,

where δK is the distance in the uniform norm on [−1, 1] from function f(x) to the space of

polynomials of no more than degree K.
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