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7 Appendix I: Geometry of HPD matrices

The space of (d×d)-dimensional Hermitian matrices together with matrix addition and scalar
multiplication (Hd×d,+, ·S) is a real vector space and every finite-dimensional real vector space
has a natural smooth manifold structure by considering a global coordinate chart induced by
a basis of the real vector space. The space of (d× d)-dimensional Hermitian positive definite
(HPD) matrices is no longer a vector space due to the positive definite constraints, but it is
an open subset of Hd×d and as such it is also a smooth manifold, see e.g. do Carmo (1992).

Affine-invariant Riemannian metric For notational convenience, in the remainder of the
supplemental document, we denote M := Pd×d for the space of (d × d)-dimensional HPD
matrices, an d2-dimensional smooth manifold. For every p ∈M, the tangent space Tp(M) can
be identified by H := Hd×d, the space of (d× d)-dimensional Hermitian matrices. As detailed
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in Pennec et al. (2006), the Frobenius inner product on Hd×d induces the affine-invariant
Riemannian metric gR on the manifold M given by the smooth family of inner products:

〈h1, h2〉p = Tr((p−1/2 ∗ h1)(p−1/2 ∗ h2)), ∀ p ∈M, (7.1)

with notation as in the main document and h1, h2 ∈ Tp(M). The Riemannian distance on M
derived from the Riemannian metric is given by:

δR(p1, p2) = ‖Log(p
−1/2
1 ∗ p2)‖F , (7.2)

The mapping x 7→ a ∗ x is an isometry for each invertible matrix a ∈ GL(d,C) = {A ∈
Cd×d | det(A) 6= 0}, i.e., it is distance-preserving:

δR(p1, p2) = δR(a ∗ p1, a ∗ p2), ∀ a ∈ GL(d,C).

Geodesics By (Bhatia, 2009, Theorem 6.1.6 and Prop. 6.2.2), the Riemannian manifold
(M, gR), with gR the affine-invariant metric, is geodesically complete, and the geodesic segment
joining any two points p1, p2 ∈M is unique and can be parametrized as,

η(p1, p2, t) = p
1/2
1 ∗

(
p
−1/2
1 ∗ p2

)t
, 0 ≤ t ≤ 1. (7.3)

Exp- and Log-maps Since (M, gR) is a geodesically complete manifold, the Hopf-Rinow
Theorem says that for every p ∈M the exponential map Expp and the logarithmic map Logp
are global diffeomorphisms with as domains Tp(M) and M respectively. By (Pennec et al.
(2006)), the exponential map Expp : Tp(M)→M is given by,

Expp(h) = p1/2 ∗ Exp
(
p−1/2 ∗ h

)
, ∀ h ∈ Tp(M), (7.4)

The logarithmic map Logp :M→ Tp(M) is given by the inverse exponential map:

Logp(q) = p1/2 ∗ Log
(
p−1/2 ∗ q

)
. (7.5)

The Riemannian distance may now also be expressed in terms of the logarithmic map as:

δR(p1, p2) = ‖Logp1(p2)‖p1 = ‖Logp2(p1)‖p2 , ∀ p1, p2 ∈M, (7.6)

where ‖h‖p := 〈h, h〉p denotes the norm of h ∈ Tp(M) induced by the affine-invariant Rieman-
nian metric.

Parallel transport As outlined in Jeuris et al. (2012) among others, the covariant derivative
at p ∈M of a smooth vector field Y ∈ X(M), with respect to a smooth vector field X ∈ X(M)
is given by:

(∇XpY )p = D(Y )(p)[Xp]−
1

2
(Xpp

−1Yp + Ypp
−1Xp). (7.7)

Here, Xp, Yp ∈ Tp(M) denote the tangent vectors associated with the vector fields X,Y at
p ∈M and D(Y )(p)[Xp] := limh→0(Y (p+hXp)−Y (p))/h is the classical Fréchet derivative of
Y (p), where Y :M→ TM maps p ∈ M to the tangent vector Yp ∈ Tp(M). This connection
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∇ is exactly the Levi-Civita connection on the Riemannian manifold (M, gR), as it can be
verified that it satisfies the Koszul formula, see Jeuris et al. (2012).

The parallel transport can be derived from the covariant derivative, and it follows that the
parallel transport of a vector w ∈ Tp(M) from a point p ∈ M along a geodesic curve in the
direction of v ∈ Tp(M) for time ∆t is given by:

T(p,∆tv, w) = Expp (∆tv/2) ∗ p−1 ∗ w. (7.8)

Substituting ∆tv = Logp(q), we obtain the parallel transport Γqp : Tp(M)→ Tq(M) that maps
a vector in Tp(M) to its parallel transported version along a geodesic curve in Tq(M) given
by:

Γqp(w) = p1/2 ∗ (p−1/2 ∗ q)1/2 ∗ p−1/2 ∗ w. (7.9)

Remark If q = Id, where Id denotes the identity matrix, we obtain the so-called whitening
transport as in e.g., Yuan et al. (2012), which parallel transports w ∈ Tp(M) to TId(M) along
a geodesic curve,

ΓId
p (w) = p−1/2 ∗ w ∈ TId(M). (7.10)

Probability measures and random variables In order to perform statistics on the Rie-
mannian manifold (M, gR), we are concerned with the notions of probability distributions and
random variables. A manifold-valued random variable X : Ω → M is a measurable function
from some probability space (Ω,A, ν) to the measurable space (M,B(M)), where B(M) is the
Borel algebra, i.e., the smallest σ-algebra containing all open sets in the complete separable
metric space (M, δR). In the following, we always work directly with the induced probability
on M, ν(B) = ν({ω ∈ Ω : X(ω) ∈ B}). By P (M), we denote the set of all probability mea-
sures on (M,B(M)) and Pp(M) denotes the subset of probability measures in P (M) that have
finite moments of order p with respect to the Riemannian distance δR, i.e., the Lp-Wasserstein
space, see (Villani, 2009, Definition 6.4). That is,

Pp(M) :=

{
ν ∈ P (M) : ∃ y0 ∈M, s.t.

∫
M
δR(y0, x)p ν(dx) <∞

}
. (7.11)

Note that if
∫
M δR(y0, x)p ν(dx) < ∞ for some y0 ∈ M and 1 ≤ p < ∞, this is true for any

y ∈M. This follows by the triangle inequality,∫
M
δR(y, x)p ν(dx) ≤ 2p

(
δR(y, y0)p +

∫
M
δR(y0, x)p ν(dx)

)
< ∞,

using that δR(p1, p2) <∞ for any p1, p2 ∈M due to the Hopf-Rinow theorem for a geodesically
complete manifold. For a sequence of probability measures (νn)n∈N in P (M), νn

w→ ν denotes
weak convergence to the probability measure ν in the usual sense, i.e.,

∫
M φ(x) νn(dx) →∫

M φ(x)ν(dx) for every continuous and bounded function φ :M→ R, and a sequence (νn)n∈N
is said to be uniformly integrable if:

lim
K→∞

sup
n∈N

∫
M
δR(y0, x)1{δR(y0,x)>K} νn(dx) = 0, for some y0 ∈M.

Note that if (νn)n∈N is uniformly integrable for some y0 ∈ M, then the sequence is uniformly
integrable for any y ∈M.
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Intrinsic means Equipped with the notions of probability distributions and random vari-
ables on the manifold, we can characterize the center of a manifold-valued random variable X
with probability measure ν. One important measure of centrality of a probability distribution
ν on the manifold is the intrinsic mean, also Karcher or Fréchet mean, as its definition is
intrinsic to the (Riemannian) distance on the space. The set of intrinsic means is given by the
points that minimize the second moment with respect to the Riemannian distance δR,

µ = Eν [X] := arg min
y∈supp(ν)

∫
M
δR(y, x)2 ν(dx). (7.12)

If ν ∈ P2(M), then at least one Karcher mean exists as the above expectation is finite for each
y ∈ M. Moreover, since the manifold (M, gR) is a geodesically complete manifold of non-
positive curvature, (see Pennec et al. (2006) or Skovgaard (1984)), by (Le, 1995, Proposition
1) the Karcher mean µ is unique for any distribution ν ∈ P2(M). By (Pennec, 2006, Corollary
1), the Karcher mean can also be represented by the unique point µ ∈M that satisfies,

Eν [Logµ(X)] = 0 (7.13)

where 0 is the zero matrix and Eν [·] is the Euclidean mean in the space of Hermitian matrices.
In general, the sample intrinsic mean of a set of observations {X1, . . . , Xn} ∈ M has no
closed-form solution, but it can be computed efficiently through a gradient descent algorithm
as described in e.g., Pennec (2006).

Remark The representation of the intrinsic mean in eq.(7.13) above has an intuitive in-
terpretation if we view the logarithmic map as a generalized notion of subtraction on the
Riemannian manifold. In particular, if we equip the Riemannian manifold of HPD matrices
with the Euclidean metric, (instead of the affine-invariant Riemannian metric), the logarithmic
map reduces to ordinary matrix subtraction Logx(y) = y − x and the above representation
becomes Eν [X − µ] = 0, or Eν [X] = µ.

8 Appendix II: Proofs

8.1 Proof of Proposition 3.1

Proof. Denote the distribution of µn := µn(X1, . . . , Xn) by νn, we show recursively that:

E[δR(µn, µ)2] =

∫
M
δR(x, µ) dνn(x) ≤ 1

n
E[δR(X1, µ)2].

By (Bhatia, 2009, Theorem 6.1.9), if X1, X2, X3 ∈M, then for t ∈ [0, 1],

δR(η(X1, X2, t), X3)2 ≤ (1− t)δR(X1, X3)2 + tδR(X2, X3)2 − t(1− t)δR(X1, X2)2.

Substituting X3 = µ and t = 1/2, (note that µ2 = η(X1, X2, 1/2)), and taking expectations
on both sides yields:

EX1EX2 [δR(µ2, µ)2] ≤ 1

2
EX1 [δR(X1, µ)2] +

1

2
EX2 [δR(X2, µ)2]− 1

4
EX1EX2 [δR(X1, X2)2].

Using that X1, X2
iid∼ ν we obtain,

E[δR(µ2, µ)2] ≤ E[δR(X1, µ)2]− 1

4
EX1EX2 [δR(X1, X2)2]. (8.1)
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From the semi-parallelogram law above, (Ho et al., 2013, Proposition 1) derive:∫
M

[δR(x, y)2 − δR(x, µ)2] dν(x) ≥ δR(y, µ)2, for any y ∈M.

By the above inequality (and independence of X1, X2),

EX2 [δR(X1, X2)2 | X1 = x1] =

∫
M
δR(x1, X2)2 dν(X2)

≥ δR(x1, µ)2 +

∫
M
δR(X2, µ)2 dν(X2)

= δR(x1, µ)2 + E[δR(X2, µ)2],

and consequently,

EX1EX2 [δR(X1, X2)2] ≥
∫
M
δR(X1, µ)2 dν(X1) + E[δR(X2, µ)2]

= 2E[δR(X1, µ)2].

Returning to eq.(8.1),

E[δR(µ2, µ)2] ≤ 1

2
E[δR(X1, µ)2].

Repeating the same argument, using independence of η(X1, X2, 1/2) and η(X3, X4, 1/2),

E[δR(µ4, µ)2] ≤ 1

2
E[δR(µ2, µ)2] ≤ 1

4
E[δR(X1, µ)2].

Continuing this iteration up to µn, we find the upper bound:

E[δR(µn, µ)2] ≤ 1

2
En/2[δR(µn/2, µ)2] ≤ . . . ≤ 1

n
E[δR(X1, µ)2].

By Markov’s inequality, P (δR(µn, µ) > ε)→ 0 for each ε > 0 as n→∞, since the distribution
of X1 is assumed to have finite second moment with respect to δR, i.e., E[δR(X1, µ)2] <∞.

8.2 Proof of Proposition 3.2

Proof. Denote L := (N − 1)/2, with L ≥ 0, and fix j ≥ 1 sufficiently large and k ∈
[L, 2j−1 − (L + 1)] away from the boundary, such that the neighboring (j − 1)-midpoints
Mj−1,k−L, . . . ,Mj−1,k+L exist.

Remark: For k < L or k > 2j−1 − (L + 1) near the boundary, we collect the N available
closest neighbors of Mj−1,k (either to the left or right). The remainder of the proof for the
boundary case is exactly analogous to the non-boundary case and follows directly by mimick-
ing the arguments outlined below.

We predict Mj,2k+1 from Mj−1,k−L, . . . ,Mj−1,k+L via intrinsic polynomial interpolation of de-
gree N − 1 passing through the N points M j−1,0, . . . ,M j−1,N−1, where M j−1,k denotes the
cumulative intrinsic average as in eq.(2.4) in the main document. The predicted midpoint

M̃j,2k+1 is then a weighted intrinsic average of the estimated polynomial at (2k + 1)2−j , i.e.,
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M̂(k−L)2−(j−1)((2k + 1)2−j), and the given midpoint M j−1,L = M(k−L)2−(j−1)(2k2−j), (with
notation as in Section 2.1 in the main document).

For notational simplicity, write M(t) := M(k−L)2−(j−1)(t) and M̂(t) := M̂(k−L)2−(j−1)(t) for
the true and estimated intrinsic cumulative mean curves respectively, where the latter is an
interpolating polynomial of order N − 1 passing through N equidistant points x0, . . . , xN−1

on the curve M(t). M(t) itself is a smooth curve with existing covariant derivatives up to
order N , and |x0−xN−1| . 2−j . The polynomial remainder of the interpolating polynomial in
Newton form with respect to the smooth curve, for every x ∈ [(k−L)2−(j−1), (k+L)2−(j−1)],
is upper bounded by:

d

dt
M̂(t)|t=x −

d

dt
M(t)|t=x .

(x− x0) · · · (x− xN−1)

N !
Γ(M)xξ

(
∇Nd

dt
M

d

dt
M
∣∣
t=ξ

)
= O(2−jN )

for some ξ ∈ [(k−L)2−(j−1), (k+L)2−(j−1)] by the mean value theorem for divided differences.
This is closely related to the Taylor expansion in eq.(3.2) in the main document. In particular,
the limit of the Newton polynomial if all nodes coincide is the Taylor polynomial, as the
divided differences become covariant derivatives, and the covariant derivatives in the Taylor
expansions of the Taylor polynomial and the smooth curves match up to order N − 1.

By definition of the derivative M̂ ′(t) := d
dtM̂(t) = lim∆t→0

1
∆tLog

M̂(t)
(M̂(t + ∆t)) and the

fundamental theorem of calculus, it is verified that:

M̂(t+ ∆t) = Exp
M̂(t)

(∫ t+∆t

t
M̂ ′(u) du

)
.

Substituting t = 2k2−j and ∆t = 2−j and using that M̂(2k2−j) = M(2k2j) by construction,
we obtain:

M̂((2k + 1)2−j) = ExpM(2k2−j)

(∫ (2k+1)2−j

2k2−j

M̂ ′(u) du

)

= ExpM(2k2−j)

(∫ (2k+1)2−j

2k2−j

M ′(u) du+O(2−jN )

)
. (8.2)

The second step in the above equation follows immediately if L = 0 (i.e., N = 1), since,∫ (2k+1)2−j

2k2−j

M̂ ′(u) du =

∫ (2k+1)2−j

2k2−j

[M ′(u) +O(1)] du =

∫ (2k+1)2−j

2k2−j

M ′(u) du+O(2−j).

If L ≥ 1, the second step in eq.(8.2) follows by the polynomial remainder error bound above,

since M̂ ′(u) = M ′(u) + O(2−jN ) for each u ∈ [2k2−j , (2k + 1)2−j ] ⊂ [(k − L)2−(j−1), (k +
L)2−(j−1)].

Application of the logarithmic map LogM(2k2−j)(·) to both sides in eq.(8.2) and using that

LogM(t)(M(t+ ∆t)) =
∫ t+∆t
t M ′(u) du as above, we rewrite:

LogM(2k2−j)(M̂((2k + 1)2−j) = LogM(2k2−j)(M(2k + 1)2−j) +O(2−jN ). (8.3)

For notational convenience, in the remainder of this proof, we write Λ = λE for some arbitrary
(not necessarily fixed) deterministic matrix E ∈ Cd×d and constant λ . 2−jN , i.e., Λ =
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O(2−jN ).

Let M,M1,M2 ∈M be deterministic matrices, we verify the following implication:

Claim. If LogM (M1)− LogM (M2) = O(λ), then also M1 = M2 +O(λ).

Proof. Starting from LogM (M1)−LogM (M2) = O(λ), by the definition of the logarithmic
map, we write out,

M1/2 ∗ Log(M−1/2 ∗M1) = M1/2 ∗ Log(M−1/2 ∗M2) +O(λ) ⇒
Log(M−1/2 ∗M1) = Log(M−1/2 ∗M2) +O(λ) ⇒

M−1/2 ∗M1 = Exp(Log(M−1/2 ∗M2) +O(λ)).

For λ→ 0 sufficiently small, M1 = Exp(Log(M2) +O(λ)) also implies M1 = M2 +O(λ).
This follows by Taylor expanding the matrix exponential,

M1 = Exp(Log(M2) +O(λ)) =
∞∑
k=0

(Log(M2) +O(λ))k

k!

=
∞∑
k=0

(Log(M2))k +O(λ)

k!
=

∞∑
k=0

(Log(M2))k

k!
+O(λ)

∞∑
k=0

1

k!
= M2 +O(λ).

As a consequence, also,

M−1/2 ∗M1 = Exp(Log(M−1/2 ∗M2) +O(λ)) ⇒
M−1/2 ∗M1 = M−1/2 ∗M2 +O(λ) ⇒

M−1/2 ∗ (M1 −M2) = O(λ) ⇒
M1 = M2 +O(λ).

Applying the above implication to eq.(8.3) yields,

M̂((2k + 1)2−j) = M((2k + 1)2−j) +O(2−jN ). (8.4)

The predicted midpoint M̃j,2k+1 is reconstructed from M̂((2k+1)2−j) andM(2k2−j) as follows.
By definition of M(t) as the cumulative intrinsic mean curve, we can write M((2k+ 1)2−j) as
a weighted intrinsic average between M j−1,L = M(2k2−j) and Mj,2k+1 according to:

M((2k + 1)2−j) = ExpM((2k+1)2−j)

(
(N − 1)2−j

N2−j
LogM((2k+1)2−j)(M j−1,L)

+
2−j

N2−j
LogM((2k+1)2−j)(Mj,2k+1)

)
.

Application of the logarithmic map LogM((2k+1)2−j)(·) to both sides and rearranging terms
(substitute N − 1 = 2L), gives,

−2L

N
LogM((2k+1)2−j)(M j−1,L) =

1

N
LogM((2k+1)2−j)(Mj,2k+1).
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Or in terms of Mj,2k+1,

Mj,2k+1 = ExpM((2k+1)2−j)

(
−2L · LogM((2k+1)2−j)(M j−1,L)

)
= η

(
M((2k + 1)2−j),M j−1,L,−2L

)
.

The predicted midpoint M̃j,2k+1 is given by replacing the true point M((2k + 1)2−j) by the

estimated point M̂((2k + 1)2−j), (M j−1,L is known), i.e.,

M̃j,2k+1 = η
(
M̂((2k + 1)2−j),M j−1,L,−2L

)
. (8.5)

Below, we use that (M + Λ)a = Ma + O(λ) for a ∈ N, (M + Λ)1/2 = M1/2 + O(λ) and
(M + Λ)−1 = M−1 +O(λ) for M ∈M and λ→ 0 sufficiently small, as verified in the proof of
Proposition 3.3, (note that this is the deterministic version), combined with eq.(8.4) and the
definition of the geodesic in eq.(7.3). Writing out eq.(8.5) gives,

M̃j,2k+1 =
(
M((2k + 1)2−j)1/2 + Λ

)
∗
((

M((2k + 1)2−j)−1/2 + Λ
)
∗M j−1,L

)−2L

=
(
M((2k + 1)2−j)1/2 + Λ

)
∗
((
M((2k + 1)2−j)−1/2 ∗M j−1,L

)−1
+ Λ

)2L

=
(
M((2k + 1)2−j)1/2 + Λ

)
∗
((
M((2k + 1)2−j)−1/2 ∗M j−1,L

)−2L
+ Λ

)
= Mj,2k+1 +O(2−jN ). (8.6)

Substituting the above result in the whitened wavelet coefficient Dj,k = 2−j/2Log(M̃
−1/2
j,2k+1 ∗

Mj,2k+1), by the same identities as used above combined with Log(M + Λ) = Log(M) +O(λ),
(verified in the proof of Proposition 3.3), it follows that for j ≥ 1 sufficiently large,

‖Dj,k‖F =
∥∥∥2−j/2Log

(
(Mj,2k+1 + Λ)−1/2 ∗Mj,2k+1

)∥∥∥
F

= 2−j/2
∥∥∥Log

(
(M
−1/2
j,2k+1 + Λ) ∗Mj,2k+1

)∥∥∥
F

= 2−j/2
∥∥Log

(
Id + Λ)

∥∥
F

= O
(

2−j/22−jN
)
,

where in the final step we expanded Log(Id + Λ) = O(2−jN ) via its Mercator series (see
(Higham, 2008, Section 11.3)), using that the spectral radius of Λ is smaller than 1 for j
sufficiently large.

8.3 Proof of Proposition 3.3

Proof. By the proof of Proposition 3.1, E[δR(Mj,k,n,Mj,k)
2] = O(2−(J−j)) for each j ≥ 0 and

0 ≤ k ≤ 2j − 1. For notational convenience, in the remainder of this proof εj,n denotes a
general (not necessarily the same) random error matrix that satisfies E‖εj,n‖2F = O(2−(J−j)).

Furthermore, we can appropriately write Mj,k,n = ExpMj,k
(εj,n), such that Mj,k,n

p→ Mj,k as
J →∞ at the correct rate since,

E[δR(ExpMj,k
(εj,n),Mj,k)

2] = E‖Log(M
−1/2
j,k ∗ ExpMj,k

(εj,n))‖2F
= E‖M−1/2

j,k ∗ εj,n‖2F ,

= O(2−(J−j))
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using the definitions of the Riemannian distance function and the logarithmic and exponential
maps. In particular, by a first-order Taylor expansion of the matrix exponential, (abusing no-

tation of εj−1,n), Mj−1,k,n = M
1/2
j−1,k∗Exp(εj−1,n) = M

1/2
j−1,k∗(Id+εj−1,n+. . .) = Mj−1,k+εj−1,n.

By eq.(2.5) in the main document, the predicted midpoint M̃j,2k+1,n is a weighted intrinsic
mean of N coarse-scale midpoints (Mj−1,k,n)k with weights summing up to 1. The rate of

M̃j,2k+1,n is therefore upper bounded by the (worst) convergence rate of the individual mid-

points (Mj−1,k,n)k, and we can also write M̃j,2k+1,n = M̃j,2k+1 + εj−1,n.

Below, we verify several implications that are needed to finish the proof. let M ∈ M be a
deterministic matrix and λE = Op(λ) a random error matrix, such that E‖λE‖F = O(λ).

Claim. If λ→ 0 sufficiently small, then Log(M + λE) = Log(M) +Op(λ).

Proof. Rewrite Log(M+λE) = Log(M(Id+λM−1E)). By the Baker-Campbell-Hausdorff
formula (e.g., (Higham, 2008, Theorem 10.4)), with X = Log(M) and Y = Log(Id +
λM−1E)),

Log(M + λE) = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) +

1

24
[Y, [X, [X,Y ]]]− . . . ,

where [X,Y ] = XY − Y X denotes the commutator of X and Y . In particular,

[X,Y ] = [Log(M),Log(Id + λM−1E)]

= Log(M)Log(Id + λM−1E)− Log(Id + λM−1E)Log(M)

= Log(M)(λM−1E +Op(λ
2))− (λM−1E +Op(λ

2))Log(M)

= Op(λ).

Here, we expanded Log(Id + λM−1E) = λM−1E +Op(λ
2) via its Mercator series (e.g.,

(Higham, 2008, Section 11.3)), using that the spectral radius ρ(λM−1E) = λρ(M−1E) <
1 almost surely for λ→ 0 sufficiently small.

Iterating the above argument, it follows that all the nested (higher-order) commutators
are of the order Op(λ) as well, and we rewrite:

Log(M + λE) = Log(M) + Log(Id + λM−1E) +Op(λ).

Expanding again Log(Id + λM−1E) = λM−1E + Op(λ
2) = Op(λ), (for λ sufficiently

small), the claim follows.

Claim. If λ→ 0 sufficiently small, then (M + λE)1/2 = M1/2 +Op(λ) and (M + λE)−1 =
M−1 +Op(λ).

Proof. For the first claim, Taylor expanding the matrix exponential,

(M + λE)1/2 = Exp

(
1

2
Log(M + λE)

)
=

∞∑
k=0

(Log(M + λE))k

2kk!

=
∞∑
k=0

(Log(M) +Op(λ))k

2kk!
=

∞∑
k=0

(Log(M))k

2kk!
+Op(λ) = M1/2 +Op(λ),
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using the previous claim Log(M +λE) = Log(M) +Op(λ) for λ→ 0 sufficiently small.

For the second claim, rewrite, (for λ sufficiently small),

(M + λE)−1 = (M(Id + λM−1E))−1

= (Id + λM−1E))−1M−1

= (Id− λM−1E + (λM−1E)2 − . . .)M−1 = M−1 +Op(λ),

applying a binomial series expansion of the matrix inverse (Id +λM−1E))−1, using that
the spectral radius ρ(λM−1E) = λρ(M−1E) < 1 almost surely for λ → 0 sufficiently
small. Combining the two claims, we find in particular also that (M + λE)−1/2 =
M−1/2 +Op(λ).

Combining the above results, for j < J sufficiently small such that the above claims hold, we
write out for the empirical whitened wavelet coefficient D̂j,k,n, (with some abuse of notation
for εj,n),

D̂j,k,n = 2−j/2 Log
(

(M̃j,2k+1 + εj−1,n)−1/2 ∗ (Mj,2k+1 + εj,n)
)

= 2−j/2 Log
(

(M̃
−1/2
j,2k+1 + εj−1,n) ∗ (Mj,2k+1 + εj,n)

)
= 2−j/2 Log

(
M̃
−1/2
j,2k+1 ∗Mj,2k+1 + εj,n + . . .

)
= 2−j/2 Log

(
M̃
−1/2
j,2k+1 ∗Mj,2k+1

)
+ 2−j/2Op(2

−(J−j)/2)

= Dj,k + 2−j/2Op(2
−(J−j)/2).

Plugging in the above result, it follows that for j < J sufficiently small,

E‖D̂j,k,n −Dj,k‖2F = O(2−j 2−(J−j)) = O(n−1).

8.4 Proof of Theorem 3.4

Proof. For the first part of the theorem, suppose that J0 = log2(n)/(2N+1)� 1 is sufficiently
large such that the rates in Propositions 3.2 and 3.3 hold. Then,∑

j,k

E‖D̂j,k −Dj,k‖2F =
∑
j≥J0

‖Dj,k‖2F +
∑
j<J0

E‖D̂j,k −Dj,k‖2F

.
∑
j≥J0

2j(2−j2−2jN ) +
∑
j<J0

2jn−1

=

 J∑
j=0

(2−2N )j −
J0−1∑
j=0

(2−2N )j

+ n−1
J0−1∑
j=1

2j

=
(2−2N )J0 − (2−2N )(J+1)

1− 2−2N
+ n−1(2J0 − 2)

. (2−2N )J0 + n−12J0 + n−1

. n−2N/(2N+1), (8.7)
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where the last step follows from substituting J0 = log2(n)/(2N + 1) since,

(2−2N )J0 = exp(−2NJ0 log(2)) = exp
(
−2N
2N+1 log(n)

)
= n−2N/(2N+1)

n−12J0 = exp(− log(n) + J0 log(2)) = exp
(
−2N
2N+1 log(n)

)
= n−2N/(2N+1).

For the second part of the theorem, if we can verify that E[δR(MJ,k, M̂J,k,n)2] . n−2N/(2N+1)

for each k = 0, . . . , n− 1, the proof is finished.

At scales j = 1, . . . , J , based on the estimated midpoints (M̂j−1,k′,n)k′ and the estimated

wavelet coefficient D̂j,k,n, in the inverse wavelet transform, the finer-scale midpoint M̂j,k,n is
estimated through,

M̂j,k,n = Exp̂̃
Mj,k,n

(
2j/2D̂j,k,n

)
.

where
̂̃
M j,k,n is the predicted midpoint at scale-location (j, k) based on (M̂j−1,k′,n)k′ . In

particular, at scale j = 1,
̂̃
M1,k,n = M̃1,k,n as the estimated coarsest midpoints (M̂0,k′,n)k′

correspond to the empirical coarsest midpoints (M0,k′,n)k′ .

At scales j = 1, . . . , J0 − 1, we do not alter the wavelet coefficients. Assuming that j � J is
sufficiently small, such that the rate in Proposition 3.3 holds, we write D̂j,k,n = Dj,k+ηn, with
ηn a general (not always the same) random error matrix satisfying E‖ηn‖F = O(n−1/2). Also,

by the proof of Proposition 3.3 (using the same notation), we can write M̃j,k,n = M̃j,k + εj,n,
where εj,n is a general (not always the same) random error matrix satisfying E‖εj,n‖F =
O(2−(J−j)/2).

In particular, at scale j = 1,

M̂1,k,n = Exp̂̃
M1,k,n

(
21/2D̂1,k,n

)
= M̃

1/2
1,k,n ∗ Exp

(
21/2M̃

−1/2
1,k,n ∗ D̂1,k,n

)
= M̃

1/2
1,k,n ∗ Exp

(
21/2D̂1,k,n

)
=

(
M̃1,k + ε1,n

)1/2
∗ Exp

(
21/2(D1,k + ηn)

)
=

(
M̃

1/2
1,k + ε1,n

)
∗
(

Exp(21/2D1,k) + 21/2ηn

)
= M1,k +Op(2

1/2n−1/2) +Op(2
−(J−1)/2)

= M1,k +Op(2
1/2n−1/2). (8.8)

Here, we used that (M + λE)1/2 = M1/2 + Op(λ) for λ → 0 sufficiently small as in the proof
of Proposition 3.3, and a Taylor expansion of the matrix exponential:

Exp(D + ηn) =
∞∑
k=0

(D + ηn)k

k!
=

∞∑
k=0

Dk

k!
+Op(n

−1/2) = Exp(D) +Op(n
−1/2).

Iterating this same argument for each scale j = 2, . . . , J0 − 1, we find that:

M̂J0−1,k,n = MJ0−1,k +

J0−1∑
j=1

Op(n
−1/22j/2) = MJ0−1,k +Op(n

−1/22(J0−1)/2).
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As a consequence, (as in the proof of Proposition 3.3), we can write
̂̃
MJ0,k,n = M̃J0,k + εJ0,n,

where εJ0,n = Op(n
−1/22J0/2). At scales j = J0, . . . , J , we set D̂j,k,n = 0 for each k. Assuming

that j � 1 is sufficiently large, such that the rate in Proposition 3.2 holds, we can write
D̂j,k,n = 0 = Dj,k + ζj,N , with ζj,N a general (not always the same) deterministic error matrix
satisfying ‖ζj,N‖F = O(2−j/22−jN ).

In particular, at scale j = J0,

M̂J0,k,n = Exp̂̃
MJ0,k,n

(
2J0/2D̂J0,k,n

)
=

(
M̃J0,k + εJ0,n

)1/2 ∗ Exp
((
M̃J0,k + εJ0,n

)−1/2 ∗ 2J0/2
(
DJ0,k + ζJ0,n

))
=

(
M̃

1/2
J0,k

+ εJ0,n
)
∗ Exp

((
M̃
−1/2
J0,k

+ εJ0,n
)
∗
(
2J0/2DJ0,k + 2J0/2ζJ0,n

))
=

(
M̃

1/2
J0,k

+ εJ0,n

)
∗
(

Exp(2J0/2DJ0,k) + 2J0/2εJ0,nDJ0,k + 2J0/2ζJ0,n

)
=

(
M̃

1/2
J0,k

+ εJ0,n

)
∗
(

Exp(2J0/2DJ0,k) +Op
(
2−J0N

))
= MJ0,k +Op(n

−1/22J0/2) +Op
(
2−J0N

)
,

which follows in the same way as in eq.(8.8) above, combined with the observation that
2J0/2εJ0,nDJ0,k = Op(2

−J0N ), since ‖2J0/2εJ0,nDJ0,k‖F = Op(2
−(J−J0)/22−J0N ) = Op(2

−J0N )
by Proposition 3.2. Iterating this same argument for each scale j = J0 + 1, . . . , J yields,

M̂J,k,n = MJ,k +Op(n
−1/22J0/2) +

J∑
j=J0

Op
(
2−jN

)
= MJ,k +Op

(
2−J0N

)
+Op

(
n−1/22J0/2

)
.

Plugging in J0 = log2(n)/(2N + 1), as previously demonstrated, the above expression reduces
to:

M̂J,k,n = MJ,k +Op
(
n−N/(2N+1)

)
, for each k = 0, . . . , n− 1.

For notational convenience, denote by ξn,N a general (not always the same) random error
matrix such that E‖ξn,N‖F = O(n−N/(2N+1)). For each k = 0, . . . , n − 1, by the previous
result:

E
[
δR(MJ,k, M̂J,k,n)2

]
= E

[
δR
(
MJ,k,MJ,k + ξn,N

)2]
= E

∥∥∥Log
(
M
−1/2
J,k ∗

(
MJ,k + ξn,N

))∥∥∥2

F

= E
∥∥Log

(
Id + ξn,N

)∥∥2

F
= O(n−2N/(2N+1)),

where in the final step we expanded Log(Id + ξn,N ) = Op(n
−N/(2N+1) via its Mercator series,

using that the spectral radius of ξn,N is smaller than 1 almost surely for n sufficiently large.

8.4.1 Proof of remark Theorem 3.4

Let γn(t) = γ(t) + εn,N and γ̂(t) be as defined in the remark after Theorem 3.4, with εn,N a
general error matrix, such that ‖εn,N‖F = O(n−N/(2N+1)). Then we can upper bound,

δ(γ(t), γn(t))2 = ‖Log
(
γ(t)−1/2 ∗ (γ(t) + εn)

)
‖2F

= ‖Log(Id + εn,N )‖2F = O(n−2N/(2N+1)),
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where in the final step we again expand Log(Id + εn,N ) = O(n−N/(2N+1)) via its Mercator
series, provided that n is sufficiently large.

By the triangle inequality, the integrated mean-squared error of the linear wavelet estimator
with respect to the continuous curve γ then also satisfies,∫ 1

0
E
[
δR(γ̂n(t), γ(t))2

]
dt ≤ 22

(∫ 1

0
E
[
δR(γ̂n(t), γn(t))2

]
dt+

∫ 1

0
δR(γn(t), γ(t))2 dt

)
= 22

(
1

n

n−1∑
k=0

E
[
δR(M̂J,k,n,MJ,k)

2
]

+

∫ 1

0
δR(γn(t), γ(t))2 dt

)
. n−2N/(2N+1),

using the convergence rate for the linear wavelet estimator derived above.

8.5 Proof of Theorem 4.1

Proof. First, we derive the bias b(X, f) = c(d, L)·f . By linearity of the (ordinary) expectation:

b(X, f) = E[Logf (X)] = f1/2 ∗E[Log(f−1/2 ∗X)], (8.9)

using that g ∗ LogX1
(X2) = Logg∗X1

(g ∗X2) for any g ∈ GL(d,C). The transformed random

variable Y := f−1/2 ∗ X is distributed as Y ∼ W c
d (L,L−1Id), which is unitarily invariant

(see e.g., (Muirhead, 1982, Section 3.2)). By (Tulino and Verdú, 2004, Section 2.1.5), taking
the eigendecomposition of a unitarily invariant matrix Y = Q ∗ Λ, the matrix of eigenvectors
Q is distributed according to the Haar measure, i.e., the uniform distribution on the set of
unitary matrices Ud = {U ∈ GL(d,C) | U∗U = Id}, implying that the eigenvectors (~qi)i=1,...,d

(the columns of Q) are identically distributed. Furthermore, Q is independent of the diagonal
eigenvalue-matrix Λ, therefore (see also Smith (2000)):

E[Log(Y )] = E

[
d∑
i=1

log(λi)~qi~q
∗
i

]
= E[~qi~q

∗
i ]E[log(det(Λ))]. (8.10)

Since Y is Hermitian, Q ∈ Ud, and therefore E[log(det(Λ))] = E[log(det(Y ))]. By (Muirhead,
1982, Theorem 3.2.15),

log(det(Y )) ∼ −d log(2L) +

d∑
i=1

log
(
χ2

2(L−(d−i))

)
,

with χ2
2(L−(d−i)) mutually independent chi-squared distributions, with 2(L − (d − i)) degrees

of freedom. Using that E[log(χ2
ν)] = log(2) + ψ(ν/2), it follows that:

E[log(det(Λ))] = −d log(L) +

d∑
i=1

ψ(L− (d− i)).

Following Smith (2000), E[~qi~q
∗
i ] = d−1Id, thus by eq.(8.10):

E[Log(Y )] =

(
− log(L) +

1

d

d∑
i=1

ψ(L− (d− i))

)
· Id = c(d, L) · Id.
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Plugging this back into eq.(8.9) yields b(X, f) = c(d, L) · f .

For the second part of the theorem, observe that X̃` (1 ≤ ` ≤ n) is unbiased with respect to
f , since:

b(X̃`, f) = f1/2 ∗E[Log(f−1/2 ∗ X̃`)]

= f1/2 ∗E[Log(e−c(d,L)Id) + Log(f−1/2 ∗X`)]

= f1/2 ∗ (−c(d, L)Id + c(d, L)Id) = 0,

using that Log(AB) = Log(A) + Log(B) for commuting matrices A,B, and E[Log(f−1/2 ∗
X`)] = c(d, L) · Id as shown above. By eq.(7.13), the unique intrinsic mean of X̃` on M is
characterized by f such that b(X̃`, f) = E[Logf (X̃`)] = 0, i.e., f is the unique intrinsic mean

of X̃` for each ` = 1, . . . , n. Since the distribution of X̃` has finite second moment (rescaled
complex Wishart distribution), the convergence in probability follows by Proposition 3.1.

8.6 Proofs of Proposition 4.2 and Lemma 4.3

Proof. In this proof, we directly derive the stronger general linear congruence equivariance
property in Lemma 4.3. The weaker unitary congruence equivariance property in Proposition
4.2 then follows directly by substituting wavelet thresholding or shrinkage of coefficients that
is only equivariant under unitary congruence transformation, (instead of trace thresholding
as in Lemma 4.3, which is equivariant under general linear congruence transformation of the
coefficients).

Let MX
j,k, M

f̂
j,k, D

X
j,k and Df̂

j,k be the midpoints and wavelet coefficients at scale-location (j, k)

based on the observations (X`)` and the estimator (f̂`)` respectively. Analogously, let MX,A
j,k ,

M f̂ ,A
j,k , DX,A

j,k and Df̂ ,A
j,k be the midpoints and wavelet coefficients based on the observations

(A ∗ X`)` and the estimator (A ∗ f̂`)` respectively, where here and throughout this proof
A ∈ GL(d,C). Below, we repeatedly make use of the identities A∗ExpM (H) = ExpA∗M1

(A∗H)
and A ∗ LogM1

(M2) = LogA∗M1
(A ∗M2) for M1,M2 ∈M and H ∈ H. In particular, denoting

Mid(M1,M2) := η(M1,M2, 1/2) for the geodesic midpoint, also,

A ∗Mid(M1,M2) = A ∗ ExpM1

(
1

2
LogM1

(M2)

)
=

ExpA∗M1

(
1

2
LogA∗M1

(A ∗M2)

)
= Mid(A ∗M1, A ∗M2).

By construction, the finest-scale midpoints satisfy MX,A
J,k = A ∗MX

J,k. Repeated application of
the above identity then implies,

MX,A
j,k = A ∗MX

j,k for all j, k. (8.11)

Furthermore, since the predicted midpoints M̃X,A
j,k are weighted intrinsic means of (MX,A

j−1,k′)k′

according to eq.(2.5) in the main document, the same relation holds for the predicted mid-

points, i.e., M̃X,A
j,k = A ∗ M̃X

j,k for all j, k. Consequently, for the wavelet coefficients at each
scale-location (j, k),

DX,A
j,k = 2−j/2Log

A∗M̃X
j,2k+1

(
A ∗MX

j,2k+1

)
= A ∗DX

j,k. (8.12)
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In Lemma 4.3, we threshold or shrink the wavelet coefficients based on the trace of the whitened
coefficients, for which:

Tr(DX,A
j,k ) = 2−j/2Tr

(
Log

(
(A ∗ M̃X

j,2k+1)−1/2 ∗ (A ∗MX
j,2k+1)

))
= 2−j/2

(
Tr
(
Log(A ∗MX

j,2k+1)
)
− Tr

(
Log(A ∗ M̃X

j,2k+1)
))

= 2−j/2
(

Tr
(
Log(MX

j,2k+1)
)
− Tr

(
Log(M̃X

j,2k+1)
))

= Tr(DX
j,k), (8.13)

using that Tr(Log(A ∗ X)) = Tr(Log(X)) + Tr(Log(AA∗)) and Tr(Log(Xt)) = tTr(Log(X))
for X ∈ M and t ∈ R, which follows from the fact that Tr(Log(X)) = log(det(X)) and the
properties of the determinant and ordinary logarithm. Let g(Tr(DX

j,k)) ∈ R be a thresholding or

shrinkage rule depending on Tr(DX
j,k), such that Df̂

j,k = g(Tr(DX
j,k))D

X
j,k. Due to the invariance

in eq.(8.13) combined with eq.(8.12), it immediately follows that:

Df̂ ,A
j,k = g(Tr(DX,A

j,k ))DX,A
j,k = A ∗

(
g(Tr(DX

j,k))D
X
j,k

)
= A ∗Df̂

j,k for all j, k.

The wavelet-thresholded estimator (f̂`)` is retrieved via the inverse wavelet transform applied
to the set of thresholded wavelet coefficients (and coarse-scale midpoints). At scale j = 0, by

eq.(8.11), M f̂ ,A
0,k = MX,A

0,k = A ∗MX
0,k = A ∗M f̂

0,k. At the odd locations 2k + 1 at the next
coarser scale j = 1,

M f̂ ,A
1,2k+1 = Exp

M̃ f̂ ,A
1,2k+1

(
21/2Df̂ ,A

j,k

)
= Exp

A∗M̃ f̂
1,2k+1

(
A ∗

(
21/2Df̂

j,k

))
= A ∗ Exp

M̃ f̂
1,2k+1

(
21/2Df̂

j,k

)
= A ∗M f̂

1,2k+1,

using that M̃ f̂ ,A
1,2k+1 = A∗M̃ f̂

1,2k+1, since the same relation holds for (M f̂ ,A
0,k′ )k′ and the predicted

midpoints are weighted intrinsic means of (M f̂ ,A
0,k′ )k′ . Also, at the even locations 2k,

M f̂ ,A
1,2k = M f̂ ,A

0,k ∗
(
M f̂ ,A

1,2k+1

)−1

= (A ∗M f̂
0,k) ∗

(
A ∗M f̂

1,2k+1

)−1

= A ∗
(
M f̂

0,k ∗
(
M f̂

1,2k+1

)−1
)

= A ∗M f̂
1,2k.

Iterating the same argument up to the finest scale j = J yields the desired result f̂A,` = A ∗ f̂`
for each ` = 1, . . . , 2J .
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8.7 Proof of Proposition 4.4

Proof. Let us write MX
J,k−1 := Xk = f

1/2
k ∗Wk for k = 1, . . . , n, where the distribution of Wk

does not depend on fk, and the intrinsic mean of Wk is the identity Id. The latter follows
from the fact that Xk has intrinsic mean fk, since:

E[LogId(Wk)] = E[f
−1/2
k ∗ Logfk(f

1/2
k ∗Wk)]

= f
−1/2
k ∗E[Logfk(Xk)]

= f
−1/2
k ∗ 0 = 0,

and the intrinsic mean µ of Wk is uniquely characterized by E[Logµ(Wk)] = 0. First, we verify
that:

Tr(Log(MX
j,k)) = Tr(Log(Mf

j,k)) + Tr(Log(MW
j,k)) for all j, k, (8.14)

where MX
j,k, M

f
j,k, and MW

j,k are the midpoints at scale-location (j, k) based on the sequences
(X`)`, (f`)`, and (W`)` respectively. For convenience, as before, denote Mid(X1, X2) :=
η(M1,M2, 1/2) for the geodesic midpoint. Using that Tr(Log(AB)) = Tr(Log(A))+Tr(Log(B))
and Log(At) = tLog(A) for any A,B ∈M, decompose:

Tr(Log(MX
j,k)) = Tr(Log(Mid(MX

j+1,2k,M
X
j+1,2k+1)))

= Tr
(
Log

(
(MX

j+1,2k)
1/2 ∗

(
(MX

j+1,2k)
−1/2 ∗MX

j+1,2k+1

)1/2))
=

1

2
Tr(Log(MX

j+1,2k)) +
1

2
Tr(Log(MX

j+1,2k+1))

...

=
1

2J−j

2J−j−1∑
`=0

Tr(Log(MX
J,(2k)J−j−1+`))

=
1

2J−j

2J−j−1∑
`=0

Tr(Log(f(2k)J−j−1+`+1))

+
1

2J−j

2J−j−1∑
`=0

Tr(Log(W(2k)J−j−1+`+1))

...

= Tr(Log(Mid(Mf
j+1,2k,M

f
j+1,2k+1))) + Tr(Log(Mid(MW

j+1,2k,M
W
j+1,2k+1)))

= Tr(Log(Mf
j,k)) + Tr(Log(MW

j,k)).

Second, we also verify that for each scale j and location k,

Tr(Log(M̃X
j,2k+1)) = Tr(Log(M̃f

j,2k+1)) + Tr(Log(M̃W
j,2k+1)), (8.15)

where M̃X
j,k′ , M̃

f
j,k′ , and M̃W

j,k′ are the imputed midpoints at scale-location (j, k′) based on the
sequences (X`)`, (f`)`, and (W`)` respectively. By eq.(2.5) in the main document, the predicted
midpoints at the odd locations 2k + 1 satisfy:

M̃X
j,2k+1 = Exp

M̃X
j,2k+1

(
L∑

`=−L
CN,2`+NLog

M̃X
j,2k+1

(MX
j−1,k+`)

)
,
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with weights CN = (CN,i)i=0,...,2N−1 as in eq.(2.5). Here, without loss of generality we con-
sider prediction away from the boundary, (at the boundary the sum runs over the N = 2L+ 1
closest available neighbors to Mj,k). Using eq.(8.14), we decompose,

Tr(Log(M̃X
j,2k+1)) = Tr

(
Log

(
ExpM̃X

j,2k+1

(∑
`

CN,2`+NLogM̃X
j,2k+1

(MX
j−1,k+`)

)))
= Tr(Log(M̃X

j,2k+1)) + Tr

(
(M̃X

j,2k+1)−1/2 ∗
(∑

`

CN,2`+NLogM̃X
j,2k+1

(MX
j−1,k+`)

))

= Tr(Log(M̃X
j,2k+1)) + Tr

(∑
`

CN,2`+NLog
(

(M̃X
j,2k+1)−1/2 ∗MX

j−1,k+`

))
= Tr(Log(M̃X

j,2k+1)) +
∑
`

CN,2`+N

(
Tr(Log(MX

j−1,k+`))− Tr(Log(M̃X
j,2k+1))

)
=

∑
`

CN,2`+NTr(Log(MX
j−1,k+`))

=
∑
`

CN,2`+NTr(Log(Mf
j−1,k+`)) +

∑
`

CN,2`+NTr(Log(MW
j−1,k+`))

...

= Tr(Log(M̃f
j,2k+1)) + Tr(Log(M̃W

j,2k+1)),

where we used in particular g∗LogX1
(X2) = Logg∗X1

(g∗X2) and g∗ExpX1
(X2) = Expg∗X1

(g∗
X2) for any g ∈ GL(d,C), and the fact that

∑
`CN,2`+N = 1.

The first claim in the Proposition now follows from eq.(8.14) and eq.(8.15) through:

Tr(DX
j,k) = 2−j/2Tr

(
Log

(
(M̃X

j,2k+1)−1/2 ∗MX
j,2k+1

))
= 2−j/2

(
Tr(Log(MX

j,2k+1))− Tr(Log(M̃X
j,2k+1))

)
= 2−j/2Tr(Log(Mf

j,2k+1)) + 2−j/2Tr(Log(MW
j,2k+1))

−2−j/2
(

Tr(Log(M̃f
j,2k+1)) + Tr(Log(M̃W

j,2k+1))
)

= Tr(Df
j,k) + Tr(DW

j,k). (8.16)

For the second claim in the Proposition, first observe:

E[Tr(Log(MW
j,k))] =

1

2J−j

2J−j−1∑
`=0

E[Tr(Log(W(2k)J−j−1+`+1))] = 0, for each j, k,

using that E[Tr(Log(W`))] = 0 for each ` = 1, . . . , n, which is implied by E[LogId(W`)] = 0.
As a consequence, also,

E[Tr(Log(M̃W
j,2k+1))] =

∑
`

CN,2`+NTr(Log(MW
j−1,k+`)) = 0, for each j, k,

and therefore,

E[Tr(DX
j,k)] = Tr(Df

j,k) + E[Tr(DW
j,k)]

= Tr(Df
j,k) + 2−j/2E

[
Tr(Log(MW

j,2k+1))− Tr(Log(M̃W
j,2k+1))

]
= Tr(Df

j,k).
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For the variance of Tr(DX
j,k), we first note that the random variables (W`)`=1,...,n are i.i.d.,

implying that the random variables (Tr(Log(MW
j,k))k=0,...,2j−1 on scale j are independent with

equal variance. We write out:

Var(Tr(DX
j,k)) = 2−jVar

(
Tr(Log(MW

j,2k+1))− Tr(Log(M̃W
j,2k+1))

)
= 2−jVar

(
Tr(Log(MW

j,2k+1))−
∑
`

CL,2`+NTr(Log(MW
j−1,k+`))

)
= 2−jVar

(
Tr(Log(MW

j,2k+1))− CN,NTr(Log(MW
j−1,k))

)
+ 2−j

∑
−L≤`≤L;`6=0

C2
N,2`+NVar(Tr(Log(MW

j−1,k+`)))

= 2−(j+1)Var(Tr(Log(MW
j,2k)))

+ 2−j
(∑

`

C2
N,2`+N − 1

)
Var(Tr(Log(MW

j−1,k+`)))

= 2−(j+1)
∑
`

C2
N,2`+NVar(Tr(Log(MW

j,0))), (8.17)

where in the final two steps we used that CN,N = 1, and by the independence of the midpoints
within each scale, for each k,

Var(Tr(Log(MW
j−1,k))) = Var

(
1

2
Tr(Log(MW

j,2k)) +
1

2
Tr(Log(MW

j,2k+1))

)
=

1

2
Var(Tr(Log(MW

j,0))).

It remains to derive an expression for Var(Tr(Log(MW
j,0))). By repeated application of the

above argument,

Var(Tr(Log(MW
j,0))) =

1

2J−j
Var(Tr(Log(MW

J,0)))

=
1

2J−j
Var(Tr(Log(W1))), (8.18)

with W1 ∼W c
d (L,L−1e−c(d,L)Id). As in the proof of Theorem 4.1,

Tr(Log(W1)) ∼ −d log(2ec(d,L)L) +
d∑
i=1

log
(
χ2

2(L−(d−i))

)
.

The variance of a log(χ2
ν) distribution equals ψ′(ν/2), (with ψ′(·) the trigamma function),

therefore:

Var(Tr(Log(W1))) =
d∑
i=1

ψ′(L− (d− i)).

Combining the above result with eq.(8.17) and eq.(8.18) finishes the proof.
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8.8 Proof of Corollary 4.5

Proof. Analogous to the proof of Theorem 4.1, W1, . . . ,Wn
iid∼ W c

d (L,L−1e−c(d,L)Id) are uni-
tarily invariant, see (Muirhead, 1982, Section 3.2). By the same argument as in eq.(8.11) the

repeated midpoints based on unitarily invariant random variables satisfy U ∗MW
j,k

d
= MW

j,k for

each j, k and U ∈ Ud. It follows that the predicted midpoints M̃W
j,2k+1 are unitarily invariant

as well, as they can be expressed as weighted intrinsic averages of the midpoints (MW
j−1,k)k,

which are unitarily invariant themselves. That is, U ∗ M̃W
j,2k+1

d
= M̃W

j,2k+1 for each j, k and

U ∈ Ud. Combining the above results, it follows that the random whitened coefficient DW
j,k is

unitarily invariant, as for each U ∈ Ud,

U ∗DW
j,k = U ∗ Log

(
(M̃W

j,2k+1)−1/2 ∗Mj,2k+1

)
= Log

(
(U ∗ M̃W

j,2k+1)−1/2 ∗ (U ∗Mj,2k+1)
)

d
= Log

(
(M̃W

j,2k+1)−1/2 ∗Mj,2k+1

)
= DW

j,k,

using that U ∗ Log(X) = Log(U ∗X) for U ∈ Ud. By the same argument as in Theorem 4.1,
if we write the eigendecomposition DW

j,k = Q ∗Λ, then for a unitarily invariant random matrix

DW
j,k,

E[DW
j,k] = E

[
d∑
i=1

λi~qi~q
∗
i

]
= E[~qi~q

∗
i ]E[Tr(Λ)]

= E[~qi~q
∗
i ]E[Tr(DW

j,k)] = 0.

Here we used that Tr(Q∗Λ) = Tr(Λ), since Q is a unitary matrix (DW
j,k is Hermitian), combined

with the result E[Tr(DW
j,k)] = 0 in Proposition 4.4.

9 Appendix III: Additional details Section 5.1

Estimation procedures Section 5.1 This appendix section provides more details on the
matrix curve estimation procedures considered in the simulated data scenarios in Section
5.1 in the main document. Each estimation procedure takes as input an initial dyadic se-
quence of random HPD matrix-valued observations X1, . . . , Xn ∈ M observed on an equidis-
tant grid t1, . . . , tn ∈ R and outputs a denoised sequence of HPD matrix-valued observations
f̂(t1), . . . , f̂(tn) ∈M.

• Linear wavelet thresholding: the input data X1, . . . , Xn is transformed to the intrin-
sic wavelet domain by means of the forward average-interpolating wavelet transform of
Section 2 in the main document subject to respectively the Riemannian, Log-Euclidean
or Cholesky metric, and all wavelet coefficients at scales j > J0 are set to zero. The
smoothed curve estimate f̂(t1), . . . , f̂(tn) is obtained by application of the intrinsic back-
ward average-interpolating wavelet transform. The main tuning parameter in the case of
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Table 1: Estimation procedure metrics and their properties.

Metric U -equiv.∗ A-equiv.† PD Estimates Wishart B-C∗∗

Riemannian 3 3 3 3
Log-Euclidean 3 7 3 7
Cholesky 7 7 3 3
Euclidean 3 7 7 3

∗, †: U -equiv. and A-equiv. respectively denote whether the estimator is equivariant under
congruence transformation by a unitary matrix U ∈ Ud or a general linear matrix A ∈
GL(C, d), see Section 4.1.

∗∗: Wishart B-C denotes whether a bias-correction (B-C) is available in the context of spec-

tral matrix estimation, where the periodogram data is asymptotically Wishart distributed.

linear wavelet thresholding is the maximum scale of nonzero wavelet coefficients J0. The
impact of the average-interpolation order of the wavelet transform is small in terms of the
estimation error compared to the choice of the scale parameter J0. For this reason the
refinement order is fixed at N = 5 for all simulated scenarios in Section 5. Linear wavelet
thresholding is implemented in the pdSpecEst-package by the function pdSpecEst1D()

with arguments alpha = 0, jmax set to the maximum scale of nonzero coefficients J0,
and metric set to metric considered for estimation.

• Nonlinear wavelet thresholding: the input data X1, . . . , Xn is transformed to the
intrinsic wavelet domain the same way as for the linear wavelet thresholding procedure.
The nonlinear wavelet thresholding procedure considers dyadic tree-structured thresh-
olding based on the traces of the individual coefficients by minimizing the complexity
penalized loss criterion given in eq.(5.1) and explained in more detail in the main doc-
ument. The main tuning parameter is the regularization parameter λ ≥ 0, and the
refinement order of the wavelet transforms is fixed at N = 5 for all simulation scenarios
equivalent to the linear thresholding procedure. For sufficiently large n, the scalar coef-
ficients dj,k are approximately normally distributed at reasonably coarse scales j, as the
scalar coefficients dj,k are essentially locally weighted averages of the observations. For
normally distributed coefficients, a natural choice for the regularization parameter is the
universal threshold λ ∼ σw

√
2 log(n), with n the total number of wavelet coefficients and

σ2
w the noise variance determined either via eq.(4.1) in the main document or from the

data itself. Tree-structured trace thresholding is implemented in the pdSpecEst-package
by the function pdSpecEst1D() with arguments alpha = 1 to use a universal threshold
multiplied by α = 1, and metric set to the metric considered for estimation.

• Nearest-Neighbor (NN) regression: intrinsic nearest-neighbor regression is im-
plemented by replacing ordinary local Euclidean averages by their intrinsic counter-
parts based on the Riemannian, Log-Euclidean and Cholesky metric using the function
pdMean() in the pdSpecEst-package. In the case of the Riemannian metric, the local
intrinsic averages are calculated efficiently by the gradient descent algorithm in Pen-
nec (2006). The main tuning parameter in this benchmark procedure is the number of
nearest neighbors used in the local averages.

• Cubic Spline (CS) regression: intrinsic cubic smoothing spline regression is imple-
mented in the space of HPD matrices based on the Riemannian, Log-Euclidean and
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Cholesky metric. For the Riemannian metric, we implemented the penalized regression
approach in Boumal and Absil (2011a) and Boumal and Absil (2011b), with penalty
parameters (λ = 0, µ > 0), such that the minimizers of the objective function are ap-
proximate cubic splines in the manifold of HPD matrices. The Riemannian conjugate
gradient descent method in Boumal and Absil (2011b) to compute the estimator is avail-
able through the function pdSplineReg() in the pdSpecEst-package. Here, we use a
backtracking line search based on the Armijo-Goldstein condition. The main tuning
parameter in this benchmark procedure is the regularization parameter in the penalized
loss criterion.

• Local polynomial (LP) regression: intrinsic local polynomial regression of degree
p = 0 (LP-0) and degree p = 3 (LP-3) respectively is implemented in the space of HPD
matrices based on the Riemannian metric, Log-Euclidean metric and Cholesky metric.
For the Riemannian metric, we have only implemented the locally constant estimator,
i.e. degree p = 0, as local polynomial regression under the Riemannian metric for p > 0
requires the optimization of a non-convex objective function and is computationally
quite challenging. We refer to Yuan et al. (2012) for additional details. The main
tuning parameter in this benchmark procedure is the bandwidth parameter of the local
polynomials.

• Multitaper spectral estimation: the multitaper benchmark estimator is only con-
sidered in the periodogram noise scenario given in Table 2, as this is the only simulated
scenario that provides input time series data in addition to the input (periodogram)
observations X1, . . . , Xn. The multitaper spectral estimate takes as input the generated
d-dimensional stationary time trace and is based on L ≥ d discrete prolate spheroidal
(DPSS) taper functions using the function pdPgram(), thereby guaranteeing an HPD ma-
trix curve estimate f̂(t1), . . . , f̂(tn) ∈M. The main tuning parameter in this benchmark
procedure is the number of DPSS tapers L.
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