Appendix

This section includes the proofs of the results presented in the preceding sections.

Proof of Proposition 1. v{ and v§ are functions of (v1,v2) that are uniquely determined by

p1 = (a—1)v1 +vg — Wi(p1, A1(v1)) ®)

p2 = va — Wa(uz, A2(v1, v2)) ’
of which A1 (v1) = A(1—v)* and A\g(v1,v2) = A(min{1,v;} — vy )T with 2+ = max{0,z}. It can be
easily checked that vy is the valuation threshold at which customers is indifferent between services 1
and 2, and vo is the valuation threshold at which customer is indifferent between purchasing service
2 and not purchasing any service. Due to the various relationships between 0, 1, vy and ve, there
are four cases. Note that v{ and v§ are thresholds that determine the firms’ effective arrival rate.
Literally speaking, (v{,v$) does not necessarily equal (v, v2): a customer who prefers service 1 over
service 2 does not necessarily purchase service 1 eventually, because she may prefer balking over

purchasing service 1. Aa a result, these equilibrium arrival rates comprise four different value-based

market segmentations as shown in the following.

The specified functional relation between (v§,vS) and (v, v2) takes the following forms.
1) If 0 <wy <w; <1, then v{ = v; and v§ = va.
2) If 0 < vy <wy <1, then v§ = v{ and vf is given by
av] — Wi(u1, A7) = avy — Wi(p1, A(1 —v1)) + va — vy 9)
3) If v; < 0 <wp <1, then v§ = v and v{ is given by
av] — Wi (p1, AS) = avy — Wi(u1, A) + vy — vy (10)
4) If 0 < vy <1 < vy, then v§ =1 and v§ is given by
vy — Wa(u2,A3) = po. (11)

The proof of this Proposition involves lengthy analysis. We put it as a permanent working paper
Huang et al. (2017). For brevity, we omit it in this paper, and refer to interested readers to Huang

et al. (2017) for details. O

Proof of Lemma 1. 1. Note that if firm 1 chooses any strategy greater than 1, then A\; = 0.
Considering this, firm 1’s optimal strategy must be no greater than 1, and this includes two cases,

v1 > vg and v < vg.
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1-1) Suppose that firm 1 chooses a strategy from vy > vy. Then we have Aj(vi) = A(1 — vy),
and firm 1’s local best response (denoted by vi(vq)) is
vi(vg) = argmax m (v1),
va<v1<1
where 11 (v1) = A(1 — v1)[(a — 1)vg + vo — Wi(p1, A1 (v1))]. Let A(1 — vy,) = pi. It is clear that if
v1 < Uy, then Wi (u1, A\ (v1)) = oo, and so m1(v1) = —oo. Thus, the optimal strategy must satisfy

V] > Upy, in which 7 (v;1) is continuous in v1. Given v, < v1 < 1, it can be easily calculated that

OW1 (1, A1 (v1))
O

O*Wi (1, Mi(v1))
N2

773(111) = A(l — Ul) a—1+A :| — A[(Oz — 1)111 —+ Vo — Wl(,ul,)\l(vl))],

OW1(p1, A1(v1))
oM

7 (vy) = =A3(1 —vy) —2A [a—l—i—/\ < 0.

Thus, 71(v1) is a strictly concave function with respect to v1 given v, < v; < 1. Let v{(v2) be the

stationary point of m(v1) with respect to vy given v, < v; < 1, which is determined by the FOC

) (00(v2)) = 0, L.,

OW1 (1, A1 (09 (v2)))
)81

AL —0(2)) |a— 11 A ] = Ao — 1)e(0n) + v — Wz, A (o)) = 0.

(12)

Note that 7{(v1) < 0 and li_I)n 71 (v1) = +oo > 0. It follows that v{(vs) is well-defined only when
V1 —Um

71 (1) <0;ie vy > 1—a+Wi(u1,0). Thus, given vy € (v, 1], if va < 1—a+W1(p1,0), then m(vy)

is increasing in vy; if vo > 1 — o + Wi (u1,0), then 71 (v1) peaks at v{(va) and vy, < v9(v2) < 1.

Incorporating the constraint vy < vy, vi(vg) is given by

1, 1)2<1—Oz+W1(/L1,0)

vi(v2) = (13)

max{v(va), v2}, vo > 1—a+ Wi(ug,0)

In what follows, we show how to simplify v{(ve) with the condition that ve > 1 —a+ Wi(u1,0).

Differentiating (??) with respect to va, we have

R Al ;32@9(@2))) s (a . Aawlwl,aA;l(v?(vQ)»)] av;(;z) .
and so . )
Tl <o MR <
Thus, there exists at most one solution with respect to vy for v?(vg) = v9. Note that when

vy = 1 —a+ Wi(u1,0), v9(v2) = 1 and v{(va) — va = a — Wi(u1,0) > 0. Note also that when
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va =1, Eq. (??) becomes

OW1 (11, M (v9(1)))

J— 0 J—
A1 —vi(1)) l[a—14+A O

— Al = 1)o7 (1) + 1 = Wi(pz, M(2}(1)))] = 0,

whose LHS is obviously decreasing in v9(1), and it is negative when v{(1) = 1; so v{(1) < 1.

Thus, when vy = 1, v9(v2) < 1 = ve. This means there exists a unique root with respect to vg of

vY(ve) = vg between 1 — a4+ Wi (u1,0) and 1. Denote such a root as vy. By Eq. (?7), it satisfies

the following equation:

oW1 (p1, M (v))

A(l—yg) 04—1+A 8A1

— Alawy — Wi(p1, Ar(e2))] = 0. (14)

By the monotonicity of v{(vg) — vg, it is clear that v)(vg) > vg for va < v,. Then, we can specify

vh(va) (Eq. (7)) as

1, 0§U2<1—Q+W1<M1,0)
vi(v2) = ¢ 9(vy), 1—a+Wi(u,0) <wvg <wy - (15)
V2, Vg > Uy

1-2) Suppose that firm 1 chooses a strategy from v; < ve. Then we have \; = A(1 —v;), and
firm 1’s local best response (denoted by v?(vg)) is
’U%(’UQ) = argmax 71 (v1),
0<v1<v2

where 71 (v1) = A(1 — v1)[ovr — Wi(p1, A1(v1))]. Given vp < 1, it can be easily calculated that

OW1 (1, M(v1))

O
OW1 (1, M(v1))
O\

7 (v1) = A1 —v1) [a+ A

] — Aavy — Wi (pa, A (v1))],

OWi (pa, A1 (v1))

7T11/(’l)1) = —A3(1 - Ul) a)\l

—2A [a—FA

This means that 7(-) is strictly concave. Let v}/ be the stationary point of 71 (+), which is deter-
mined with the following FOC:

OW1 (p1, M1 (v17))

Al =My la+A Y
1

] = Ao — W (M ()] = 0. (16)

Furthermore, as 7 (v1) < 0, 71 (0) > 0 and 7} (1) < 0, it is clear that v/ is well-defined, 0 < v} < 1,

and

V9, 0<wy<oM
v%(vz) = t (17)

v, vy > oM

36



In the following, we compare the two local best responses and pick the one resulting in larger

profit as the global best response. Before this, we first show that 0 < vy < U{VI < 1. Denote

Fo(x) = (20— 1)(1 — 2)A — ah + A [Wl (11, M () + A(1 — x)awl(’gifl(x))} L as)

oW (p1, Al(x))]
O\ '

fa(z) :=2a(1l —z)A —aA+ A [Wl(ul, A(z)) + A1 —x) (19)

It is easily seen that given x € [0,1], f3(z) and fy(x) are decreasing in z, and f3(x) < fi(x) (the
equality holds only when = = 1). And, by Egs. (8) and (?7?), it is clear that

f3(vg) =0, f4(’U{M) =0.

Since

OWi(p1, A1(0))

f3(0) = (@ = DA+ A | Wi (u1, A1(0)) + A B
1

> 0,
fa(l) = —a+ Wi (p1,0) < 0.
it follows that 0 < vy, v} < 1 and f3(v]!) < f4(v¥) = 0. Thus,
0<wy<oM <1,
Then, we capture firm 1’s global best response (v](v2)) based on the preceding results, the local

best response v} (v2) and v?(vq) (see Egs. (9) and (10)).

a. When 0 < vp < 1 — a + Wi(u1,0), v?(vy) = vy is a feasible strategy contained by v > vs.
Note that vi(vg) is the local best response for all v1 > va, so v?(vq) is dominated by v (ve),

thus indicating that v} (v2) = vi(vg) = 1.

b. When 1 — a + Wi (u1,0) < vg < vy, we have v?(v2) = ve. Similar to Case a, it follows that
vi(va2) = v (v2) = v} (va).

c. When vy < vg < oM, vl(vg) = vg = v?(v2), and so v} (ve) = va.

d. When vy > v vi(ve) = vy is a feasible strategy contained by v; < va. Note that v?(vy) is

the local best response for all v; < vg, so v1(vg) is dominated by v(vs), thus indicating that

vi(v2) = v¥(va) = vi’.
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2. Given v; <1, firm 2’s revenue (denoted by m2(v2)) can be divided into two cases; that is

A(v1 — v2)[vg — Wa(pua, Aa(v2))], vg < vp

0, Vg > V1

7T2(’U2) =

Obviously, any strategy greater than vy is dominated by those no greater than v;. Thus, firm 2’s

best response is

v5(v1) = argmax mo(vy) = A(v1 — ve)[va — Wa(ua, A2(v2))].
0<v2<vy

Given 0 < v9 < wy, it can be easily calculated that

OWa(p2, A2(v2))

mh(va) = A(vy —v2) [1+ A } — Afvy — Wa(pa, A(v2))],

Ao
2
7 (v9) = —A3 (01 — UQ)a WQ(g;, 32@2)) oA [1 N Aawg(ugi?(@)) N
2

That is, ma(+) is a strictly concave function. Let v9(v1) be the stationary point of ma(-) with respect

to vy with the constraint that 0 < vo < w1, which is determined by

OWa (2, AQ(US(Ul)))] — A[Y(v1) — Waluz, A(@3(v1))] = 0. (20)
O

Avy — vg(vl)) 14+A

Note that 745 (vs) < 0 and 74(0) > 0. v8(v1) is well-defined only when 75(v1) > 0; ie., vy >

Wy (pe,0). Thus, given 0 < ve < vy, if v1 < Wa(ug,0), then ma(v2) is increasing in wve; if vq >

Wa(ua,0), then m2(v2) peaks at va = v3(vq). Thus, v3(vq) is given by

. U1, 0 < vy < Wa(uz,0)
vy (v1) = . (21)
vy (v1), Wa(p2,0) <wv; <1

In particular, if v; = Wa(uz,0), then v9(v1) = Wa(us,0).

Furthermore, differentiating Eq. (?7?) with respect to v1, we have

OWa(p2, A2 (v3(v1))) 4o 0,y P Walpa, A2 (v)(v1))) ] dv3(v1)
A|2+2A A —
[ + N + A%(v1 — v5(v1)) M o
0 2 0
_A [1 + op IW2(p2, Aa(v5(v1))) A%y — o0(w1)) 2 W2(M27)\22(Ug(01)))] 7
a>\2 8)\2
and so
0
0< 2l
8’01
This proves the monotonicity of v9(v;) with respective to v;. O
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Proof of Proposition 2. In particular, 2 (1) is the unique solution to Wa(pud (111),0) = 1-AT'/A.
We first show that o < ud (1) is equivalent to Wa(ug,0) > v, By the definition of pd (11), it is
easily seen that ps < ug(ul) indicates

8W1 (,U,l, Qt)

dat — oA+ A | Wi (p1,2t) + 2t
o\

<0,

where t = A[1 — Wa(u2,0)]/2. By the definition of f4(x) (see Eq. (??)) and vi/, this further
indicates that f4(W2(u2,0)) < 0 = f4(vM). Finally, by the monotonicity of fi(-), it follows that

Wa(ua,0) > v]M. According to Lemma 1, we have Figure 9.

Figure 9: The Nash equilibrium

As shown in Figure 9, there exists continuum equilibria, from (vy,vs) to (v, v}M). Among

these equilibria, AJ = 0 and so 72 = 0 holds. As for firm 1, given vy = vy, it solves

max 7T1('U1) = A(l — Ul)[owl — WI(MI, )\1(@1))].

vy <vy <vM

By the definition of v{/, it is clear that 71 (v1) peaks at v{?. Thus, the equilibrium, (v}, v{), is

Pareto dominating. Let (vi,v3) = (v}, v]M), it is clear that AT = A(1 — v}), so we have

T
200 —aA + A [Wl(m,x{wx{w] = 0.

01
O
Proof of Proposition 3. In particular, M%V (111) is the unique solution to
AT ow A
a— (2a— 1)T1 — [Wl(,ul, A+ )\r{lgj\l’l)] = 0. (22)
1

We first show that ,ug(ul) < g < MQT/ (p1) is equivalent to v, < Wa(ua,0) < v}M. In the proof of
Proposition 2, we showed that pd (11) < ps is equivalent to Wa(usg,0) < vi?, and so we just need

to verify that po < pd' (1) is equivalent to vy < Wa(uz,0).

By the definition of ,u; (1), it is easily seen that pg < MQT/ (1) indicates

oWy (.ula 2t)

22a— 1)t —aA+ A | Wi (1, 2t) + 2t
o\

< 0.

By the definition of f3(x) (see Eq. (??)) and v, (see Eq. (8)), this further indicates that
f3(Wa(p2,0)) < 0 = f3(vy). Finally, by the monotonicity of f3(-), it follows that Wa(u2,0) > v,,

and so vy < Wa(ug,0) < U{V[ holds. According to Lemma 1, we have Figure 10.
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Figure 10: The Nash equilibrium

As shown in Figure 10, there exist continuum equilibria, from (vy, vy) to (Wa(uz2,0), Wa(ue,0)).

Among these equilibria, AJ = 0, and so 73 = 0 holds. As for firm 1, given vy = v1, it solves

= A(1— — W A .
22921‘%(%0) 7T1(U1) ( Ul)[avl 1(#1, 1(01))]

By the definition of v} (see Eq. (7)), it is clear that given Wa(us2,0) < v, m1(v1) is increasing
in the feasible domain. Thus, the equilibrium, (Wa(us2,0), Wa(ue,0)), is Pareto dominating. Let
(7. 3) = (Wap2,0), Wa(u2.0)), it i clear that

AT = A1 —v}) = A[L — Wa(ua,0)], AT = 0.

g

Proof of Proposition 4. In particular, uf (112) is the unique solution to Wi (uf (112),0) = a—A1/A.
We first show that 1 < pf(ug) is equivalent to 1 — o + Wi (u1,0) > v9(1). By the definition of
pt (p2), it is easily seen that py < pf (u2) indicates

OWa (2,2
4s — A+ A WQ(MQ,QS)—{—QSM,S)] <0,

02

where s = Afa—Wi (i1, 0)]/2. Let f(@) := 2(1—z)A—A+A [Wg(,ug, A(1—2)) +A(1 - )%ﬁfl’”].
It is clear that f5(x) is decreasing in z, and f5(1—a+Wi(u1,0)) = 4s—A+A [Wg(,ug, 2s) + QSM}
According to Eq. (?7?), it is clear that f5(v(1)) = 0. Thus, we have f5(1 —a + Wi(u1,0)) <0 =
f5(v9(1)). Finally, by the monotonicity of f5(-), it follows that 1 —a+Wi(u1,0) > v9(1). According

to Lemma 1, we have Figure 11.

Figure 11: The Nash equilibrium

As shown in Figure 11, the equilibrium is (v§,v3) = (1,v9(1)), and so AI' = 0 and Al =
A1 —8(1)]. Let v9(1) =1 — % and substitute it into f5(v9(1)) = 0. It follows that

)\T 8W2(M27 )‘2)

N A+ A T
Ay + A | Wa(u2, Ay) + g

=0.

g

Proof of Proposition 5. By the definition of uf(u2) and ,u;(ul), when p1 > pd(p2) and
po > pd’ (1), we have the following figure.
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Figure 12: The Nash equilibrium

As shown in Figure 12, the equilibrium, (v}, v3), satisfies

A(L — o) [a 1+ AW} — (a — DA + AWy (1, A(1 — v})) — Avg =0,

- (23)
Avf = v3) |14+ AZ2LRIED | N 4 AW (12, A(v] — v5)) = 0.
On this occasion, AT = A(1 —v}) and A\l = A(v} — v3). Hence, we have
T
(20 = DAT + 23 = ah + A [Wi(pu, AT) + AT 220 — o,
T
A 20T — A+ A [Wg(uz, A) + A%%} ~0.
0

Proof of Proposition 6. 1. According to Eq. (77?), it is clear that when p; = p, M=o,
and thus, pd (1) = pa (ud (1) = p2). According to Eq. (??), we have py = pp, A3 = 0. Thus,

i (p2) = pa.
2. Let

o) = (125 = [Wun. o) + 2002

)8

It is easy to see that f{(z) < 0 and %(f) > 0. According to Eq. (??), it is clear that Al is

increasing in ;. From Wa(ud'(11),0) =1 — %, it is clear that pud (i11) is increasing in p.
Let
x 1914 , T
fo(x)=a—(2a—1)— — Wl(ul,x)+xl(7ul) .
A o\

It is easy to see that fi(x) < 0 and % > 0. According to Eq. (?7), it is clear that Al is

!/ T !/
increasing in py. From Wa(ud' (u1),0) =1 — )‘Tl, it is clear that pul (111) is increasing in p1.

Let

f3(z)=1-27 - [W2(H2,$) +

: 8W2(u2,:c)] '

OX2
It is easy to see that fi(x) < 0 and 8537/;@ > 0. According to Eq. (??), it is clear that \J is

T
increasing in po. From Wi (uf (u2),0) = o — ’\%, it is clear that pd (111) is increasing in p.

T
3. According to Eq. (?7?), it is clear that AT is increasing in . From Wa(ud (111),0) =1 — /\Tl,
it is clear that ul (u1) is increasing in a. According to Eq. (?7?), it is clear that Al is constant in

T
a. From Wy (ul(p2),0) = o — )\TQ? it is clear that puf (u2) is decreasing in av.
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4. We verify this via a contradiction. Assume that there is at least one intersecting point

between o = pud (1) and p1 = pf (u2). Then there exists a pair of (1, pg) such that

p1 < g < pd (p2), po < pe < pd (). (24)

According to Theorems 2 and 4, this indicates that
M=o, AT =o. (25)

However, this is true only when
pr < pa & pg < po.

Otherwise, the firm can post a small positive price to obtain some customers, and thus, Eq. (14)
cannot hold. According to Eq. (13), there is a contradiction. Similarly, we can show that there is

no intersecting point between g = pd (1) and py = pT (u2).

To show that there is no intersecting point between gy = pd (p1) and po = pd (p1), it suf-
fices to show that pd (u1) > p5(u1) for any py > p1. Note that p5(pq) is determined by
Wa(p3 (11),0) = 1 — z, where z satisfies a (1 —2%) — [Wl(,ul,a:) —1—33%;11@)}; pd (1) is de-
termined by Wa(ud' (11),0) = 1 — y, where z satisfies o (1-2%)+4%4 - [Wl(,ul,y) + y%ﬁl’w :
As a result, we need to show that y > x. Recall that fi(x) = 0 = fa(y); f5() is decreasing;

fa(z) = fi(z) = /A > 0. It follows that fa(y) =0 = fi(z) < fo(x), and so y > z.

5. From Eq. (?7?), it is easy to see that AT < A/2, and thus, Wa(ud (11),0) = 1— Tl 3. From
Eq. (?7), it is easy to see that A] < 525 A, and thus, Wa(ud (1), 0) 1- )\T > 2L From Eq.
(77), it is easy to see that AT < A/2, and so Wa(ud (111),0) =1 — Tl > 1. O

Proof of Proposition 7. The proofs of the first three cases are straightforward; thus, we give the

last two cases.

For Case 4, differentiating Eq. (1) w.r.t. 1, we have

T 2 T
i% [ z + 28W2(:u27 )‘2 ) )\Ta WQ(MZ? )‘2 >:| 8)‘2 (26)
A O A Oz Oz O
and
10\ _ [2a-1 n o OW (111, A) ATé’le(MhMT)] 2V [3W1(/L17>\1T) N \r P Wi, M)
NG A O\ ! EIVE: o B L aNom
(27)
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T
This gives gi‘t X 3221 < 0. Furthermore, substltutlng glven in Eq. (7?) into Eq. (?7), we have

awl(m,Al) A1T82Wl(m,A1T) N 2—-1 1 1/A oXT
2 OWa(pa,\ 92Wa (2,
O\ oM\ A Ay 2{(;;2 3) + AT ;g\ug 7) -l-% o1
_ [ AD) |\ P, A
O LoMom
Note that
20—1 1 1/A 20-1 11/A
A AgdWa(uaA]) | \TPWalwaA]) | 2 A A2 '
P SV ARE A
1 3W2(#2A2T) T32W2(M2AQT)
AT oAT A2 ax A2 N2 AT
It is clear that > 0 and 2 < 0. Now, 8—;1 + o = 2+28W2(u22,>\ ) o ETAPPRYY 8u11 > 0.
A 2% ONg2
Similarly, we can show that 8#1 <0, ﬁ > 0 and 6A1 + ?922 > 0.

For Case 5, differentiating Eq. (1) w.r.t. «, we have

1 aAT 26W2(.u2a )‘5) + )\TaZW?(/‘LQ’)‘g) + a)‘T
A da o 2 o> Al da
and
1— 2)\T 28W1(/,61, )\?) )\T 82W1(,UJ1, )\T) 200 — 1 8%{ T l@)ér
A O\ o2 A da A da’
This gives BX{ X BBAQT <0, 78()‘%2/\;) = [ZABWZ(MZ’/\2) +A)\Ta ng\zg’A2) + 1} 9 and
8W1(,UJ1,)\1) )\T62W1(,u1,)\1) +20£—1 1 1/A a)\T —1_ 2)\T
oA N> A A 3W2(u27>\ )Jr)\Ta Wa (p2,A3 )+g toJe A
02 ONa? A
Thus, if 1 — 231 > 0, then 2L > 0, 22 < 0, and 2X8+2) > ¢, if 1 — 220 < 0, then %L < 0,
aa)‘ & > 0 and W < 0. According to Proposition 7, it is clear that as uo increases, )\1T first

remains unchanged, then increases, and then decreases. In particular, AT peaks at po = ,ug/(,ul)
with value A[L — Wa(ud'(111),0)]. Let 1 — 220=W20 GO e have Wy (il (1), 0) > 1/2.
> 1/2 holds, and

Recall that pd (Ml) is increasing in p1. Thus, when j; is small, Wa(ud (,u1

AT aAQ

0)
so 5+ >0, < 0 and M > 0. In contrast, when py is large, Wa(pd' (111),0) < 1/2
)

holds. Note also that )\1T is decreasing in po for po > pd” (111). Tt follows that (1) when pg is small,

T T
1—-25 1 <0, and so 2L <0 8A2 >0and%§0; (2)When,ugislarge,1—2T1>0,andso
T
8501>06*2<0 d%ﬂ) 0
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Proof of Lemma 2. Differentiating (2) with respect to p;, we have

1= |: 1 8W1(,u1, )\1):| 8)\1 1 8)\2

B ) VIR I R o
__1oh |1 OWa(pa )| OAe
A Op: A OXo Ip1
From the second equation, we have sign[g—gi] = —sign[g—;‘,f]. Combining these equations and elimi-
nating g—;‘f, we have
C1\2
|- _(Od_l)l_awl(ﬂl,)\l) _l_i_ () 225
A o\ A % + %ﬁj»‘?) 6p1
This gives g—gi < 0 and g—zf > 0. Moreover, we have
o ox [ TR Jon
Op1 op1 % + %";»‘2) Op1 ’
In the same way, it can be shown that ‘3—23 >0, g—;‘z < 0 and % + % < 0. O
Proof of Lemma 3. According to
A A
7'('1()\1) =\ [Ct — Oéxl — XZ - WI(MI;AI)] y
we have
Al Ao OWi (p1, A1)
(M) =a — 202~ 22 A1) — A SHRAL AL
m (A1) =« a0 Wi (g, A1) — M1 YV
a Wi, A O2W1 (ju1, A
() = - 2% 21(,5’/‘\1 D _ Alg(;ﬁ )y,
This proves the concavity of 71 (A1) in A;. As for ma(A2), we have
VS| OWa (2, A2)
L(o) =1 — 222 2L N B2, 22)
m5(A2) A A Wa(p2, A2) — A2 Do ;
2 oW ;A O*W- s A
m(Aa) =~ & - 225‘;2 2) _ AQ;(A’:; 2) g,
This proves the concavity of ma(A2) in Ag. O

Proof of Lemma 4. Note that each firm’s best response is characterized by the FOC. Firm 1’s
best response, say Aj(A2), is given by

AT(A A
) 22 4w, A 2)) — M)

OW1 (1, Af(A2))

-2
o « O
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and firm 2’s best response, say A3(A1), is given by

Ap(A) M OWa (2, A5(A1))
1—222 = - —A5(A ’ =0.
A A W2(/’[/27)\2()\1)) )\2( 1) a)\Q
This gives
ON(A2) _ 1 0 |8)\‘1‘()\2)| <1
- * 2 * b 9
8)\2 20 + 2A8W1(M81)7\>1‘1()\2)) + /\’{()\2)8 Wl(lgl)\?w(/\Q)) 0)\2
and
05 (A1) _ 1 <0 ‘8)\3()\1)‘ <1
O\ 2+ 2A8W2(“82>’\;\3()‘1)) + Ag(A1)32W2(;52)\§3(/\1)) oM
O
Proof of Proposition 8.
e For Region (I), firm 1’s effective arrival rate A{ is given by
AS sy, 5 OWi(p, )
—2fL) _ ELEL A . 2
« (1 2 A ) [Wl(,ul,)\l) )\ a)\l :| 0 ( 8)
e For Region (II), firm 2’s effective arrival rate A5 is given by
A5 s 5 OWa (2, A3)
1-2—=) — A5)+ A ———==| =0. 29
(1-232 ) Wt ) 4 25 2202 (29)
e For Region (III), A{ and A5 are given by
S
2 =a(1-25) = [Walm, A) + A 20l (30)
A7 OWa(ua,
2= (1-23) = [Walu, X9) + 2§20z

o 15 (p1) and pi(us) are the solutions to Wa(us (u1),0) = 1 — AY/A and Wy (uy (u2),0) =
a — A5 /A, respectively, where \; is determined by (15) and A5 is determined by (16).

According to Lemmas 3 and 4, the equilibrium of the effective arrival rates (A7, \3) is derived from

7 (A7) = 0 and 75(\5) = 0; i.e.,

AN o WD)
T = <1 — QX — Wl(/-l/ly)\l) )\ T ; (31)
AP 23 s 53W2(M27)\2)

S S 2 — 2 es 2
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Next, we derive the condition for )\;9 > 0 for ¢ = 1,2. We begin by showing that % > 0 and

a)‘2 > 0. Differentiating Eq. (??) w.r.t. p;, we have

10X 2 ow. A5 2W. A5)7T oA
ib:_ 7_‘_2 2(:“’27 2) )\ga 2(:“’227 2) 2' (33)
A 8”1 A 8)\2 6)\2 (9/“
This gives ‘9—21 X gl)‘j < 0. Furthermore, differentiating Eq. (??) w.r.t. p1 and substituting 3 8A2
given in Eq. (??), we have
an(Nh)\ ) )\582W1(u1,)\ ) 2c 1 1/A 8)\1
2 A A 5 9.,
o\ o\ A A 23W2g/<z7>\2) + A8 32W§§\u§7 5) + % o
_ oWy (,ulv Af) + )\S 02W1 (:ulv )‘f)
O booMOm
Note that
OWn (pa, A O*W1 (1, A 2 1 1/A 2 11/A
: lgih 2 A ;9(;15 2 * Ta IV YLAEY) 262%(#2 X 2 Ia - A/2 =0
1 a)\ ’ —'l— )\ 6)\227 2 + K A
It is clear that % > 0 and gT)E < 0. Similarly, we can show that g—;\é < 0 and g—i‘é > 0.
Let A = 0. According to Egs. (??) and (??), we have
)\S
1—- T =W (,u27 0)7 (34)
AP OW1(p1, AY
al1-25L Wl(m,ASHASw = 0. (35)
A oM

Thus, A5 > 0 if and only if uo > p5 (1), where 5 (1) satisfies Wa(u5 (u1),0) = 1 — % with A7
determined by Eq. (19). Let A\{ = 0. We have

A5
OZ—X :Wl(,u170), (36)
A5 OWa(pg, AS)
1222 ) — | Wa(ug, AS) + A5 —222220 1 =0, 37
(1-232 ) [Watia ) + 25 2202 (37)
Then, A{ > 0 if and only if py > uf(u2), where pt (uo) satisfies Wy (py (p2),0) = a — )‘—2 with A5

determined by Eq. (21). Thus, AP > 0 if and only if both us > p5 (1) and gy > pf(u2) hold.
Moreover, if one of them does not hold, the market structure becomes a monopoly. In particular,
it is easy to show that if s < 5 (p1), A7 is exactly characterized by Eq. (19); if pu1 < uf (u2), A5
is exactly characterized by Eq. (21). O

Proof of Proposition 9. We omit this proof because it is similar to but less complicated than

that of Proposition 6. O
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Proof of Proposition 10. We omit this proof because it is similar to but less complicated than

that of Proposition 7. O

Proof of Proposition 11. It follows immediately from Propositions 2 and 4 and Parts (1) and

(2) of Proposition 8. O

Proof of Proposition 12. The proof is divided into two cases: (1) pd (1) < po < pd’ (11); (2)
p1 > pd(ps) and pg > M;(Hl)- (1) When pd'(p1) < pa < MQT/(,ul), we have I = 0 < \j. Note
that AT = X\ when pp = pd(u1). Note also that when pd (u1) < po < pd (1), ON /Opug > 0
and OA]/Opz < 0. Tt is immediate that AT > A7, (2) When gy > pf (u2) and pe > pd' (1),
the equilibrium market structure is a duopoly in the value-based and size-based competitions and
)\g >0,i=1,2and j =T,5. We prove by contradiction that /\1T > /\f . Suppose otherwise that
AT < A\{. In the previous case, we have shown that AT > \¥ when po = p2" (111). By the continuity
of AXI" and A\{. There exists at least one threshold with respect to us such that AT = \{. Then
from the second line of Eqs. (1) and (17), we have AJ = A, which, according to the first line of
Egs. (1) and (17), gives us AT = A = 0, thus contradicting with AT > 0 and A\{ > 0. Therefore,

we have AT > A7, and from the second line of Egs. (1) and (17), we have A\I' < \5. O

Proof of Proposition 13. Note from Proposition 12 that /\‘29 > )\QT, and thus, we can immediately
conclude that pl < pg since p% = % + Ag%ﬁj’/\%) is increasing in )\é for j = 5,T. Next, we prove
pl < p*l9 by contradiction. Note that the equilibrium effective arrival rates and prices in a duopoly
satisfy (2). Suppose now that plT > pls . Recall that p2T < pg . From Lemma 2, we have A1 increases
in po and decreases in p;. Thus, pg < pg and plT > pf result in )\1T < /\‘19 , which contradicts
A )\*19 . Hence, p' < 10*19 holds. Now, we have pl < p*lg and pl < pg , from Lemma 2, it is clear

that AT + Al > A7 + 5. 0
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