
Appendix

This section includes the proofs of the results presented in the preceding sections.

Proof of Proposition 1. ve1 and ve2 are functions of (v1, v2) that are uniquely determined by p1 = (α− 1)v1 + v2 −W1(µ1, λ1(v1))

p2 = v2 −W2(µ2, λ2(v1, v2))
, (8)

of which λ1(v1) = Λ(1−v+1 )
+ and λ2(v1, v2) = Λ(min{1, v1}−v+2 )

+ with x+ = max{0, x}. It can be

easily checked that v1 is the valuation threshold at which customers is indifferent between services 1

and 2, and v2 is the valuation threshold at which customer is indifferent between purchasing service

2 and not purchasing any service. Due to the various relationships between 0, 1, v1 and v2, there

are four cases. Note that ve1 and ve2 are thresholds that determine the firms’ effective arrival rate.

Literally speaking, (ve1, v
e
2) does not necessarily equal (v1, v2): a customer who prefers service 1 over

service 2 does not necessarily purchase service 1 eventually, because she may prefer balking over

purchasing service 1. Aa a result, these equilibrium arrival rates comprise four different value-based

market segmentations as shown in the following.

The specified functional relation between (ve1, v
e
2) and (v1, v2) takes the following forms.

1) If 0 ≤ v2 ≤ v1 ≤ 1, then ve1 = v1 and ve2 = v2.

2) If 0 ≤ v1 ≤ v2 ≤ 1, then ve2 = ve1 and ve1 is given by

αve1 −W1(µ1, λ
e
1) = αv1 −W1(µ1,Λ(1− v1)) + v2 − v1. (9)

3) If v1 < 0 ≤ v2 ≤ 1, then ve2 = ve1 and ve1 is given by

αve1 −W1(µ1, λ
e
1) = αv1 −W1(µ1,Λ) + v2 − v1. (10)

4) If 0 ≤ v2 ≤ 1 < v1, then ve1 = 1 and ve2 is given by

ve2 −W2(µ2, λ
e
2) = p2. (11)

The proof of this Proposition involves lengthy analysis. We put it as a permanent working paper

Huang et al. (2017). For brevity, we omit it in this paper, and refer to interested readers to Huang

et al. (2017) for details. □

Proof of Lemma 1. 1. Note that if firm 1 chooses any strategy greater than 1, then λ1 = 0.

Considering this, firm 1’s optimal strategy must be no greater than 1, and this includes two cases,

v1 ≥ v2 and v1 ≤ v2.
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1-1) Suppose that firm 1 chooses a strategy from v1 ≥ v2. Then we have λ1(v1) = Λ(1 − v1),

and firm 1’s local best response (denoted by v11(v2)) is

v11(v2) = argmax
v2≤v1≤1

π1(v1),

where π1(v1) = Λ(1− v1)[(α− 1)v1 + v2 −W1(µ1, λ1(v1))]. Let Λ(1− vm) = µ1. It is clear that if

v1 ≤ vm, then W1(µ1, λ1(v1)) = ∞, and so π1(v1) = −∞. Thus, the optimal strategy must satisfy

v1 > vm, in which π1(v1) is continuous in v1. Given vm < v1 ≤ 1, it can be easily calculated that

π′
1(v1) = Λ(1− v1)

[
α− 1 + Λ

∂W1(µ1, λ1(v1))

∂λ1

]
− Λ[(α− 1)v1 + v2 −W1(µ1, λ1(v1))],

π′′
1(v1) = −Λ3(1− v1)

∂2W1(µ1, λ1(v1))

∂λ1
2 − 2Λ

[
α− 1 + Λ

∂W1(µ1, λ1(v1))

∂λ1

]
< 0.

Thus, π1(v1) is a strictly concave function with respect to v1 given vm < v1 ≤ 1. Let v01(v2) be the

stationary point of π1(v1) with respect to v1 given vm < v1 ≤ 1, which is determined by the FOC

π′
1(v

0
1(v2)) = 0, i.e.,

Λ(1− v01(v2))

[
α− 1 + Λ

∂W1(µ1, λ1(v
0
1(v2)))

∂λ1

]
− Λ[(α− 1)v01(v2) + v2 −W1(µ1, λ1(v

0
1(v2)))] = 0.

(12)

Note that π′′
1(v1) < 0 and lim

v1→vm
π′
1(v1) = +∞ > 0. It follows that v01(v2) is well-defined only when

π′
1(1) ≤ 0; i.e. v2 ≥ 1−α+W1(µ1, 0). Thus, given v1 ∈ (vm, 1], if v2 < 1−α+W1(µ1, 0), then π1(v1)

is increasing in v1; if v2 ≥ 1 − α + W1(µ1, 0), then π1(v1) peaks at v01(v2) and vm < v01(v2) ≤ 1.

Incorporating the constraint v2 ≤ v1, v
1
1(v2) is given by

v11(v2) =

 1, v2 < 1− α+W1(µ1, 0)

max{v01(v2), v2}, v2 ≥ 1− α+W1(µ1, 0)
. (13)

In what follows, we show how to simplify v11(v2) with the condition that v2 ≥ 1−α+W1(µ1, 0).

Differentiating (??) with respect to v2, we have[
Λ2(1− v01(v2))

∂2W1(µ1, λ1(v
0
1(v2)))

∂λ1
2 + 2

(
α− 1 + Λ

∂W1(µ1, λ1(v
0
1(v2)))

∂λ1

)]
∂v01(v2)

∂v2
= −1,

and so
∂v01(v2)

∂v2
< 0,

∂v01(v2)− v2
∂v2

< 0.

Thus, there exists at most one solution with respect to v2 for v01(v2) = v2. Note that when

v2 = 1 − α + W1(µ1, 0), v
0
1(v2) = 1 and v01(v2) − v2 = α − W1(µ1, 0) > 0. Note also that when
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v2 = 1, Eq. (??) becomes

Λ(1− v01(1))

[
α− 1 + Λ

∂W1(µ1, λ1(v
0
1(1)))

∂λ1

]
− Λ[(α− 1)v01(1) + 1−W1(µ1, λ1(v

0
1(1)))] = 0,

whose LHS is obviously decreasing in v01(1), and it is negative when v01(1) = 1; so v01(1) < 1.

Thus, when v2 = 1, v01(v2) < 1 = v2. This means there exists a unique root with respect to v2 of

v01(v2) = v2 between 1 − α +W1(µ1, 0) and 1. Denote such a root as v2. By Eq. (??), it satisfies

the following equation:

Λ(1− v2)

[
α− 1 + Λ

∂W1(µ1, λ1(v2))

∂λ1

]
− Λ[αv2 −W1(µ1, λ1(v2))] = 0. (14)

By the monotonicity of v01(v2) − v2, it is clear that v
0
1(v2) > v2 for v2 < v2. Then, we can specify

v11(v2) (Eq. (7)) as

v11(v2) =


1, 0 ≤ v2 < 1− α+W1(µ1, 0)

v01(v2), 1− α+W1(µ1, 0) ≤ v2 ≤ v2

v2, v2 > v2

. (15)

1-2) Suppose that firm 1 chooses a strategy from v1 ≤ v2. Then we have λ1 = Λ(1 − v1), and

firm 1’s local best response (denoted by v21(v2)) is

v21(v2) = argmax
0≤v1≤v2

π1(v1),

where π1(v1) = Λ(1− v1)[αv1 −W1(µ1, λ1(v1))]. Given v1 ≤ 1, it can be easily calculated that

π′
1(v1) = Λ(1− v1)

[
α+ Λ

∂W1(µ1, λ1(v1))

∂λ1

]
− Λ[αv1 −W1(µ1, λ1(v1))],

π′′
1(v1) = −Λ3(1− v1)

∂W1(µ1, λ1(v1))

∂λ1
− 2Λ

[
α+ Λ

∂W1(µ1, λ1(v1))

∂λ1

]
< 0.

This means that π1(·) is strictly concave. Let vM1 be the stationary point of π1(·), which is deter-

mined with the following FOC:

Λ(1− vM1 )

[
α+ Λ

∂W1(µ1, λ1(v
M
1 ))

∂λ1

]
− Λ[αvM1 −W1(µ1, λ1(v

M
1 ))] = 0. (16)

Furthermore, as π′′
1(v1) < 0, π′

1(0) > 0 and π′
1(1) < 0, it is clear that vM1 is well-defined, 0 < vM1 < 1,

and

v21(v2) =

 v2, 0 ≤ v2 < vM1

vM1 , v2 ≥ vM1

. (17)
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In the following, we compare the two local best responses and pick the one resulting in larger

profit as the global best response. Before this, we first show that 0 < v2 < vM1 < 1. Denote

f3(x) := (2α− 1)(1− x)Λ− αΛ + Λ

[
W1(µ1, λ1(x)) + Λ(1− x)

∂W1(µ1, λ1(x))

∂λ1

]
, (18)

f4(x) := 2α(1− x)Λ− αΛ + Λ

[
W1(µ1, λ1(x)) + Λ(1− x)

∂W1(µ1, λ1(x))

∂λ1

]
. (19)

It is easily seen that given x ∈ [0, 1], f3(x) and f4(x) are decreasing in x, and f3(x) ≤ f4(x) (the

equality holds only when x = 1). And, by Eqs. (8) and (??), it is clear that

f3(v2) = 0, f4(v
M
1 ) = 0.

Since

f3(0) = (α− 1)Λ + Λ

[
W1(µ1, λ1(0)) + Λ

∂W1(µ1, λ1(0))

∂λ1

]
> 0,

f4(1) = −α+W1(µ1, 0) < 0.

it follows that 0 < v2, v
M
1 < 1 and f3(v

M
1 ) < f4(v

M
1 ) = 0. Thus,

0 < v2 < vM1 < 1.

Then, we capture firm 1’s global best response (v∗1(v2)) based on the preceding results, the local

best response v11(v2) and v21(v2) (see Eqs. (9) and (10)).

a. When 0 ≤ v2 < 1 − α + W1(µ1, 0), v
2
1(v2) = v2 is a feasible strategy contained by v1 ≥ v2.

Note that v11(v2) is the local best response for all v1 ≥ v2, so v21(v2) is dominated by v11(v2),

thus indicating that v∗1(v2) = v11(v2) = 1.

b. When 1 − α +W1(µ1, 0) ≤ v2 ≤ v2, we have v21(v2) = v2. Similar to Case a, it follows that

v∗1(v2) = v11(v2) = v01(v2).

c. When v2 < v2 < vM1 , v11(v2) = v2 = v21(v2), and so v∗1(v2) = v2.

d. When v2 ≥ vM1 , v11(v2) = v2 is a feasible strategy contained by v1 ≤ v2. Note that v21(v2) is

the local best response for all v1 ≤ v2, so v11(v2) is dominated by v21(v2), thus indicating that

v∗1(v2) = v21(v2) = vM1 .
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2. Given v1 ≤ 1, firm 2’s revenue (denoted by π2(v2)) can be divided into two cases; that is

π2(v2) =

 Λ(v1 − v2)[v2 −W2(µ2, λ2(v2))], v2 ≤ v1

0, v2 > v1
.

Obviously, any strategy greater than v1 is dominated by those no greater than v1. Thus, firm 2’s

best response is

v∗2(v1) = argmax
0≤v2≤v1

π2(v2) = Λ(v1 − v2)[v2 −W2(µ2, λ2(v2))].

Given 0 ≤ v2 ≤ v1, it can be easily calculated that

π′
2(v2) = Λ(v1 − v2)

[
1 + Λ

∂W2(µ2, λ2(v2))

∂λ2

]
− Λ[v2 −W2(µ2, λ(v2))],

π′′
2(v2) = −Λ3(v1 − v2)

∂2W2(µ2, λ2(v2))

∂λ2
2 − 2Λ

[
1 + Λ

∂W2(µ2, λ2(v2))

∂λ2

]
< 0.

That is, π2(·) is a strictly concave function. Let v02(v1) be the stationary point of π2(·) with respect

to v2 with the constraint that 0 ≤ v2 ≤ v1, which is determined by

Λ(v1 − v02(v1))

[
1 + Λ

∂W2(µ2, λ2(v
0
2(v1)))

∂λ2

]
− Λ[v02(v1)−W2(µ2, λ(v

0
2(v1)))] = 0. (20)

Note that π′′
2(v2) < 0 and π′

2(0) > 0. v02(v1) is well-defined only when π′
2(v1) ≥ 0; i.e., v1 ≥

W2(µ2, 0). Thus, given 0 ≤ v2 ≤ v1, if v1 < W2(µ2, 0), then π2(v2) is increasing in v2; if v1 ≥

W2(µ2, 0), then π2(v2) peaks at v2 = v02(v1). Thus, v
∗
2(v1) is given by

v∗2(v1) =

 v1, 0 ≤ v1 < W2(µ2, 0)

v02(v1), W2(µ2, 0) ≤ v1 ≤ 1
. (21)

In particular, if v1 = W2(µ2, 0), then v02(v1) = W2(µ2, 0).

Furthermore, differentiating Eq. (??) with respect to v1, we have

Λ

[
2 + 2Λ

∂W2(µ2, λ2(v
0
2(v1)))

∂λ2
+ Λ2(v1 − v02(v1))

∂2W2(µ2, λ2(v
0
2(v1)))

∂λ2
2

]
∂v02(v1)

∂v1

=Λ

[
1 + 2Λ

∂W2(µ2, λ2(v
0
2(v1)))

∂λ2
+ Λ2(v1 − v02(v1))

∂2W2(µ2, λ2(v
0
2(v1)))

∂λ2
2

]
,

and so

0 <
∂v02(v1)

∂v1
< 1.

This proves the monotonicity of v02(v1) with respective to v1. □
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Proof of Proposition 2. In particular, µT
2 (µ1) is the unique solution toW2(µ

T
2 (µ1), 0) = 1−λT

1 /Λ.

We first show that µ2 < µT
2 (µ1) is equivalent to W2(µ2, 0) > vM1 . By the definition of µT

2 (µ1), it is

easily seen that µ2 < µT
2 (µ1) indicates

4αt− αΛ + Λ

[
W1(µ1, 2t) + 2t

∂W1(µ1, 2t)

∂λ1

]
< 0,

where t = Λ[1 − W2(µ2, 0)]/2. By the definition of f4(x) (see Eq. (??)) and vM1 , this further

indicates that f4(W2(µ2, 0)) < 0 = f4(v
M
1 ). Finally, by the monotonicity of f4(·), it follows that

W2(µ2, 0) > vM1 . According to Lemma 1, we have Figure 9.

Figure 9: The Nash equilibrium

As shown in Figure 9, there exists continuum equilibria, from (v2, v2) to (vM1 , vM1 ). Among

these equilibria, λT
2 = 0 and so π2 = 0 holds. As for firm 1, given v2 = v1, it solves

max
v2≤v1≤vM1

π1(v1) = Λ(1− v1)[αv1 −W1(µ1, λ1(v1))].

By the definition of vM1 , it is clear that π1(v1) peaks at vM1 . Thus, the equilibrium, (vM1 , vM1 ), is

Pareto dominating. Let (v∗1, v
∗
2) = (vM1 , vM1 ), it is clear that λT

1 = Λ(1− vM1 ), so we have

2αλT
1 − αΛ + Λ

[
W1(µ1, λ

T
1 ) + λT

1

∂W1(µ1, λ
T
1 )

∂λ1

]
= 0.

□

Proof of Proposition 3. In particular, µT ′
2 (µ1) is the unique solution to

α− (2α− 1)
λT
1

Λ
−
[
W1(µ1, λ

T
1 ) + λT

1

∂W1(µ1, λ
T
1 )

∂λ1

]
= 0. (22)

We first show that µT
2 (µ1) ≤ µ2 < µT ′

2 (µ1) is equivalent to v2 < W2(µ2, 0) ≤ vM1 . In the proof of

Proposition 2, we showed that µT
2 (µ1) ≤ µ2 is equivalent to W2(µ2, 0) ≤ vM1 , and so we just need

to verify that µ2 < µT ′
2 (µ1) is equivalent to v2 < W2(µ2, 0).

By the definition of µT ′
2 (µ1), it is easily seen that µ2 < µT ′

2 (µ1) indicates

2(2α− 1)t− αΛ + Λ

[
W1(µ1, 2t) + 2t

∂W1(µ1, 2t)

∂λ1

]
< 0.

By the definition of f3(x) (see Eq. (??)) and v2 (see Eq. (8)), this further indicates that

f3(W2(µ2, 0)) < 0 = f3(v2). Finally, by the monotonicity of f3(·), it follows that W2(µ2, 0) > v2,

and so v2 < W2(µ2, 0) ≤ vM1 holds. According to Lemma 1, we have Figure 10.
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Figure 10: The Nash equilibrium

As shown in Figure 10, there exist continuum equilibria, from (v2, v2) to (W2(µ2, 0),W2(µ2, 0)).

Among these equilibria, λT
2 = 0, and so π2 = 0 holds. As for firm 1, given v2 = v1, it solves

max
v2≤v1≤W2(µ2,0)

π1(v1) = Λ(1− v1)[αv1 −W1(µ1, λ1(v1))].

By the definition of vM1 (see Eq. (??)), it is clear that given W2(µ2, 0) ≤ vM1 , π1(v1) is increasing

in the feasible domain. Thus, the equilibrium, (W2(µ2, 0),W2(µ2, 0)), is Pareto dominating. Let

(v∗1, v
∗
2) = (W2(µ2, 0),W2(µ2, 0)), it is clear that

λT
1 = Λ(1− v∗1) = Λ[1−W2(µ2, 0)], λT

2 = 0.

□

Proof of Proposition 4. In particular, µT
1 (µ2) is the unique solution toW1(µ

T
1 (µ2), 0) = α−λT

2 /Λ.

We first show that µ1 < µT
1 (µ2) is equivalent to 1 − α + W1(µ1, 0) > v02(1). By the definition of

µT
1 (µ2), it is easily seen that µ1 < µT

1 (µ2) indicates

4s− Λ + Λ

[
W2(µ2, 2s) + 2s

∂W2(µ2, 2s)

∂λ2

]
< 0,

where s = Λ[α−W1(µ1, 0)]/2. Let f5(x) := 2(1−x)Λ−Λ+Λ
[
W2(µ2,Λ(1− x)) + Λ(1− x)∂W2(µ2,Λ(1−x))

∂λ2

]
.

It is clear that f5(x) is decreasing in x, and f5(1−α+W1(µ1, 0)) = 4s−Λ+Λ
[
W2(µ2, 2s) + 2s∂W2(µ2,2s)

∂λ2

]
.

According to Eq. (??), it is clear that f5(v
0
2(1)) = 0. Thus, we have f5(1 − α +W1(µ1, 0)) < 0 =

f5(v
0
2(1)). Finally, by the monotonicity of f5(·), it follows that 1−α+W1(µ1, 0) > v02(1). According

to Lemma 1, we have Figure 11.

Figure 11: The Nash equilibrium

As shown in Figure 11, the equilibrium is (v∗1, v
∗
2) = (1, v02(1)), and so λT

1 = 0 and λT
2 =

Λ[1− v02(1)]. Let v
0
2(1) = 1− λT

2
Λ and substitute it into f5(v

0
2(1)) = 0. It follows that

2λT
2 − Λ + Λ

[
W2(µ2, λ

T
2 ) + λT

2

∂W2(µ2, λ
T
2 )

∂λ2

]
= 0.

□

Proof of Proposition 5. By the definition of µT
1 (µ2) and µT ′

2 (µ1), when µ1 ≥ µT
1 (µ2) and

µ2 ≥ µT ′
2 (µ1), we have the following figure.
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Figure 12: The Nash equilibrium

As shown in Figure 12, the equilibrium, (v∗1, v
∗
2), satisfies Λ(1− v∗1)

[
α− 1 + Λ

∂W1(µ1,Λ(1−v∗1))
∂λ1

]
− (α− 1)Λv∗1 + ΛW1(µ1,Λ(1− v∗1))− Λv∗2 = 0,

Λ(v∗1 − v∗2)
[
1 + Λ

∂W2(µ2,Λ(v∗1−v∗2))
∂λ2

]
− Λv∗2 + ΛW2(µ2,Λ(v

∗
1 − v∗2)) = 0.

. (23)

On this occasion, λT
1 = Λ(1− v∗1) and λT

2 = Λ(v∗1 − v∗2). Hence, we have (2α− 1)λT
1 + λT

2 − αΛ + Λ
[
W1(µ1, λ

T
1 ) + λT

1
∂W1(µ1,λT

1 )
∂λ1

]
= 0,

λT
1 + 2λT

2 − Λ + Λ
[
W2(µ2, λ

T
2 ) + λT

2
∂W2(µ2,λT

2 )
∂λ2

]
= 0.

□

Proof of Proposition 6. 1. According to Eq. (??), it is clear that when µ1 = µ1, λ
T
1 = 0,

and thus, µT
2 (µ1) = µ2 (µT ′

2 (µ1) = µ2). According to Eq. (??), we have µ2 = µ2, λ
T
2 = 0. Thus,

µT
1 (µ2) = µ1.

2. Let

f1(x) = α
(
1− 2

x

Λ

)
−
[
W1(µ1, x) + x

∂W1(µ1, x)

∂λ1

]
.

It is easy to see that f ′
1(x) < 0 and ∂f1(x)

∂µ1
> 0. According to Eq. (??), it is clear that λT

1 is

increasing in µ1. From W2(µ
T
2 (µ1), 0) = 1− λT

1
Λ , it is clear that µT

2 (µ1) is increasing in µ1.

Let

f2(x) = α− (2α− 1)
x

Λ
−
[
W1(µ1, x) + x

∂W1(µ1, x)

∂λ1

]
.

It is easy to see that f ′
2(x) < 0 and ∂f2(x)

∂µ1
> 0. According to Eq. (??), it is clear that λT

1 is

increasing in µ1. From W2(µ
T ′
2 (µ1), 0) = 1− λT

1
Λ , it is clear that µT ′

2 (µ1) is increasing in µ1.

Let

f3(x) = 1− 2
x

Λ
−
[
W2(µ2, x) + x

∂W2(µ2, x)

∂λ2

]
.

It is easy to see that f ′
3(x) < 0 and ∂f3(x)

∂µ2
> 0. According to Eq. (??), it is clear that λT

2 is

increasing in µ2. From W1(µ
T
1 (µ2), 0) = α− λT

2
Λ , it is clear that µT

2 (µ1) is increasing in µ1.

3. According to Eq. (??), it is clear that λT
1 is increasing in α. From W2(µ

T
2 (µ1), 0) = 1− λT

1
Λ ,

it is clear that µT
2 (µ1) is increasing in α. According to Eq. (??), it is clear that λT

2 is constant in

α. From W1(µ
T
1 (µ2), 0) = α− λT

2
Λ , it is clear that µT

1 (µ2) is decreasing in α.
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4. We verify this via a contradiction. Assume that there is at least one intersecting point

between µ2 = µT
2 (µ1) and µ1 = µT

1 (µ2). Then there exists a pair of (µ1, µ2) such that

µ1 < µ1 ≤ µT
1 (µ2), µ2 < µ2 ≤ µT

2 (µ1). (24)

According to Theorems 2 and 4, this indicates that

λT
1 = 0, λT

2 = 0. (25)

However, this is true only when

µ1 < µ1 & µ2 < µ2.

Otherwise, the firm can post a small positive price to obtain some customers, and thus, Eq. (14)

cannot hold. According to Eq. (13), there is a contradiction. Similarly, we can show that there is

no intersecting point between µ2 = µT ′
2 (µ1) and µ1 = µT

1 (µ2).

To show that there is no intersecting point between µ2 = µT ′
2 (µ1) and µ2 = µT

2 (µ1), it suf-

fices to show that µT ′
2 (µ1) > µS

2 (µ1) for any µ1 > µ1. Note that µS
2 (µ1) is determined by

W2(µ
S
2 (µ1), 0) = 1 − x, where x satisfies α

(
1− 2 x

Λ

)
−

[
W1(µ1, x) + x∂W1(µ1,x)

∂λ1

]
; µT ′

2 (µ1) is de-

termined by W2(µ
T ′
2 (µ1), 0) = 1 − y, where x satisfies α

(
1− 2 y

Λ

)
+ y

Λ −
[
W1(µ1, y) + y ∂W1(µ1,y)

∂λ1

]
.

As a result, we need to show that y > x. Recall that f1(x) = 0 = f2(y); f ′
2(·) is decreasing;

f2(x)− f1(x) = x/Λ > 0. It follows that f2(y) = 0 = f1(x) < f2(x), and so y > x.

5. From Eq. (??), it is easy to see that λT
1 < Λ/2, and thus, W2(µ

T
2 (µ1), 0) = 1− λT

1
Λ > 1

2 . From

Eq. (??), it is easy to see that λT
1 < α

2α−1Λ, and thus, W2(µ
T ′
2 (µ1), 0) = 1− λT

1
Λ > α−1

2α−1 . From Eq.

(??), it is easy to see that λT
1 < Λ/2, and so W2(µ

T
2 (µ1), 0) = 1− λT

1
Λ > 1

2 . □

Proof of Proposition 7. The proofs of the first three cases are straightforward; thus, we give the

last two cases.

For Case 4, differentiating Eq. (1) w.r.t. µ1, we have

1

Λ

∂λT
1

∂µ1
= −

[
2

Λ
+ 2

∂W2(µ2, λ
T
2 )

∂λ2
+ λT

2

∂2W2(µ2, λ
T
2 )

∂λ2
2

]
∂λT

2

∂µ1
(26)

and

1

Λ

∂λT
2

∂µ1
= −

[
2α− 1

Λ
+ 2

∂W1(µ1, λ
T
1 )

∂λ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1
2

]
∂λT

1

∂µ1
−
[
∂W1(µ1, λ

T
1 )

∂µ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1∂µ1

]
.

(27)

42



This gives
∂λT

1
∂µ1

× ∂λT
2

∂µ1
< 0. Furthermore, substituting

∂λT
2

∂µ1
given in Eq. (??) into Eq. (??), we have2∂W1(µ1, λ

T
1 )

∂λ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1
2 +

2α− 1

Λ
− 1

Λ

1/Λ

2
∂W2(µ2,λT

2 )
∂λ2

+ λT
2
∂2W2(µ2,λT

2 )

∂λ2
2 + 2

Λ

 ∂λT
1

∂µ1

=−
[
∂W1(µ1, λ

T
1 )

∂µ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1∂µ1

]
.

Note that

2α− 1

Λ
− 1

Λ

1/Λ

2
∂W2(µ2,λT

2 )
∂λ2

+ λT
2
∂2W2(µ2,λT

2 )

∂λ2
2 + 2

Λ

>
2α− 1

Λ
− 1

Λ

1/Λ
2
Λ

> 0.

It is clear that
∂λT

1
∂µ1

> 0 and
∂λT

2
∂µ1

< 0. Now,
∂λT

1
∂µ1

+
∂λT

2
∂µ1

=

 1
Λ
+2

∂W2(µ2,λ
T
2 )

∂λ2
+λT

2

∂2W2(µ2,λ
T
2 )

∂λ2
2

2
Λ
+2

∂W2(µ2,λ
T
2 )

∂λ2
+λT

2

∂2W2(µ2,λ
T
2 )

∂λ2
2

 ∂λT
1

∂µ1
> 0.

Similarly, we can show that
∂λT

1
∂µ2

< 0,
∂λT

2
∂µ2

> 0 and
∂λT

1
∂µ2

+
∂λT

2
∂µ2

> 0.

For Case 5, differentiating Eq. (1) w.r.t. α, we have

− 1

Λ

∂λT
1

∂α
=

[
2
∂W2(µ2, λ

T
2 )

∂λ2
+ λT

2

∂2W2(µ2, λ
T
2 )

∂λ2
2 +

2

Λ

]
∂λT

2

∂α

and

1− 2
λT
1

Λ
=

[
2
∂W1(µ1, λ

T
1 )

∂λ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1
2 +

2α− 1

Λ

]
∂λT

1

∂α
+

1

Λ

∂λT
2

∂α
.

This gives
∂λT

1
∂α × ∂λT

2
∂α < 0,

∂(λT
1 +λT

2 )
∂α = −

[
2Λ

∂W2(µ2,λT
2 )

∂λ2
+ ΛλT

2
∂2W2(µ2,λT

2 )

∂λ2
2 + 1

]
∂λT

2
∂α and2∂W1(µ1, λ

T
1 )

∂λ1
+ λT

1

∂2W1(µ1, λ
T
1 )

∂λ1
2 +

2α− 1

Λ
− 1

Λ

1/Λ

2
∂W2(µ2,λT

2 )
∂λ2

+ λT
2
∂2W2(µ2,λT

2 )

∂λ2
2 + 2

Λ

 ∂λT
1

∂α
= 1−2

λT
1

Λ
.

Thus, if 1 − 2
λT
1
Λ ≥ 0, then

∂λT
1

∂α ≥ 0,
∂λT

2
∂α ≤ 0, and

∂(λT
1 +λT

2 )
∂α ≥ 0; if 1 − 2

λT
1
Λ < 0, then

∂λT
1

∂α < 0,

∂λT
2

∂α > 0 and
∂(λT

1 +λT
2 )

∂α < 0. According to Proposition 7, it is clear that as µ2 increases, λT
1 first

remains unchanged, then increases, and then decreases. In particular, λT
1 peaks at µ2 = µT ′

2 (µ1)

with value Λ[1 −W2(µ
T ′
2 (µ1), 0)]. Let 1 − 2

Λ[1−W2(µT ′
2 (µ1),0)]

Λ > 0. We have W2(µ
T ′
2 (µ1), 0) > 1/2.

Recall that µT ′
2 (µ1) is increasing in µ1. Thus, when µ1 is small, W2(µ

T ′
2 (µ1), 0) > 1/2 holds, and

so
∂λT

1
∂α ≥ 0,

∂λT
2

∂α ≤ 0 and
∂(λT

1 +λT
2 )

∂α ≥ 0. In contrast, when µ1 is large, W2(µ
T ′
2 (µ1), 0) ≤ 1/2

holds. Note also that λT
1 is decreasing in µ2 for µ2 ≥ µT ′

2 (µ1). It follows that (1) when µ2 is small,

1− 2
λT
1
Λ ≤ 0, and so

∂λT
1

∂α ≤ 0,
∂λT

2
∂α ≥ 0 and

∂(λT
1 +λT

2 )
∂α ≤ 0; (2) when µ2 is large, 1− 2

λT
1
Λ > 0, and so

∂λT
1

∂α > 0,
∂λT

2
∂α < 0 and

∂(λT
1 +λT

2 )
∂α > 0. □
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Proof of Lemma 2. Differentiating (2) with respect to p1, we have

1 =

[
−α

1

Λ
− ∂W1(µ1, λ1)

∂λ1

]
∂λ1

∂p1
− 1

Λ

∂λ2

∂p1
,

0 = − 1

Λ

∂λ1

∂p1
+

[
− 1

Λ
− ∂W2(µ2, λ2)

∂λ2

]
∂λ2

∂p1
.

From the second equation, we have sign[∂λ1
∂p1

] = −sign[∂λ2
∂p1

]. Combining these equations and elimi-

nating ∂λ2
∂p1

, we have

1 =

[
−(α− 1)

1

Λ
− ∂W1(µ1, λ1)

∂λ1
− 1

Λ
+

(−1
Λ

)2
1
Λ + ∂W2(µ2,λ2)

∂λ2

]
∂λ1

∂p1

This gives ∂λ1
∂p1

< 0 and ∂λ2
∂p1

> 0. Moreover, we have

∂λ1

∂p1
+

∂λ2

∂p1
=

[
∂W2(µ2,λ2)

∂λ2

1
Λ + ∂W2(µ2,λ2)

∂λ2

]
∂λ1

∂p1
< 0.

In the same way, it can be shown that ∂λ1
∂p2

> 0, ∂λ2
∂p2

< 0 and ∂λ1
∂p2

+ ∂λ2
∂p2

< 0. □

Proof of Lemma 3. According to

π1(λ1) = λ1

[
α− α

λ1

Λ
− λ2

Λ
−W1(µ1, λ1)

]
,

we have

π′
1(λ1) =α− 2α

λ1

Λ
− λ2

Λ
−W1(µ1, λ1)− λ1

∂W1(µ1, λ1)

∂λ1
,

π′′
1(λ1) =− 2

α

Λ
− 2

∂W1(µ1, λ1)

∂λ1
− λ1

∂2W1(µ1, λ1)

∂λ1
2 < 0.

This proves the concavity of π1(λ1) in λ1. As for π2(λ2), we have

π′
2(λ2) =1− 2

λ2

Λ
− λ1

Λ
−W2(µ2, λ2)− λ2

∂W2(µ2, λ2)

∂λ2
,

π′′
2(λ2) =− 2

Λ
− 2

∂W2(µ2, λ2)

∂λ2
− λ2

∂2W2(µ2, λ2)

∂λ2
2 < 0.

This proves the concavity of π2(λ2) in λ2. □

Proof of Lemma 4. Note that each firm’s best response is characterized by the FOC. Firm 1’s

best response, say λ∗
1(λ2), is given by

α− 2α
λ∗
1(λ2)

Λ
− λ2

Λ
−W1(µ1, λ

∗
1(λ2))− λ∗

1(λ2)
∂W1(µ1, λ

∗
1(λ2))

∂λ1
= 0,
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and firm 2’s best response, say λ∗
2(λ1), is given by

1− 2
λ∗
2(λ1)

Λ
− λ1

Λ
−W2(µ2, λ

∗
2(λ1))− λ∗

2(λ1)
∂W2(µ2, λ

∗
2(λ1))

∂λ2
= 0.

This gives

∂λ∗
1(λ2)

∂λ2
= − 1

2α+ 2Λ
∂W1(µ1,λ∗

1(λ2))
∂λ1

+ λ∗
1(λ2)

∂2W1(µ1,λ∗
1(λ2))

∂λ2
1

< 0, |∂λ
∗
1(λ2)

∂λ2
| < 1,

and
∂λ∗

2(λ1)

∂λ1
= − 1

2 + 2Λ
∂W2(µ2,λ∗

2(λ1))
∂λ2

+ λ∗
2(λ1)

∂2W2(µ2,λ∗
2(λ1))

∂λ2
2

< 0, |∂λ
∗
2(λ1)

∂λ1
| < 1.

□

Proof of Proposition 8.

• For Region (I), firm 1’s effective arrival rate λS
1 is given by

α

(
1− 2

λS
1

Λ

)
−
[
W1(µ1, λ

S
1 ) + λS

1

∂W1(µ1, λ
S
1 )

∂λ1

]
= 0. (28)

• For Region (II), firm 2’s effective arrival rate λS
2 is given by(

1− 2
λS
2

Λ

)
−
[
W2(µ2, λ

S
2 ) + λS

2

∂W2(µ2, λ
S
2 )

∂λ2

]
= 0. (29)

• For Region (III), λS
1 and λS

2 are given by
λS
2
Λ = α

(
1− 2

λS
1
Λ

)
−
[
W1(µ1, λ

S
1 ) + λS

1
∂W1(µ1,λS

1 )
∂λ1

]
,

λS
1
Λ =

(
1− 2

λS
2
Λ

)
−
[
W2(µ2, λ

S
2 ) + λS

2
∂W2(µ2,λS

2 )
∂λ2

]
.

(30)

• µS
2 (µ1) and µS

1 (µ2) are the solutions to W2(µ
S
2 (µ1), 0) = 1 − λS

1 /Λ and W1(µ
S
1 (µ2), 0) =

α− λS
2 /Λ, respectively, where λS

1 is determined by (15) and λS
2 is determined by (16).

According to Lemmas 3 and 4, the equilibrium of the effective arrival rates (λS
1 , λ

S
2 ) is derived from

π′
1(λ

S
1 ) = 0 and π′

2(λ
S
2 ) = 0; i.e.,

λS
2

Λ
= α

(
1− 2

λS
1

Λ

)
−
[
W1(µ1, λ

S
1 ) + λS

1

∂W1(µ1, λ
S
1 )

∂λ1

]
, (31)

λS
1

Λ
=

(
1− 2

λS
2

Λ

)
−
[
W2(µ2, λ

S
2 ) + λS

2

∂W2(µ2, λ
S
2 )

∂λ2

]
. (32)
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Next, we derive the condition for λS
i ≥ 0 for i = 1, 2. We begin by showing that ∂λ1

∂µ1
> 0 and

∂λ2
∂µ2

> 0. Differentiating Eq. (??) w.r.t. µ1, we have

1

Λ

∂λ1

∂µ1
= −

[
2

Λ
+ 2

∂W2(µ2, λ
S
2 )

∂λ2
+ λS

2

∂2W2(µ2, λ
S
2 )

∂λ2
2

]
∂λ2

∂µ1
. (33)

This gives ∂λ1
∂µ1

× ∂λ2
∂µ1

< 0. Furthermore, differentiating Eq. (??) w.r.t. µ1 and substituting ∂λ2
∂µ1

given in Eq. (??), we have2∂W1(µ1, λ
S
1 )

∂λ1
+ λS

1

∂2W1(µ1, λ
S
1 )

∂λ1
2 +

2α

Λ
− 1

Λ

1/Λ

2
∂W2(µ2,λS

2 )
∂λ2

+ λS
2
∂2W2(µ2,λS

2 )

∂λ2
2 + 2

Λ

 ∂λ1

∂µ1

=−
[
∂W1(µ1, λ

S
1 )

∂µ1
+ λS

1

∂2W1(µ1, λ
S
1 )

∂λ1∂µ1

]
.

Note that

2
∂W1(µ1, λ

S
1 )

∂λ1
+ λS

1

∂2W1(µ1, λ
S
1 )

∂λ1
2 +

2α

Λ
− 1

Λ

1/Λ

2
∂W2(µ2,λS

2 )
∂λ2

+ λS
2
∂2W2(µ2,λS

2 )

∂λ2
2 + 2

Λ

>
2α

Λ
− 1

Λ

1/Λ
2
Λ

> 0.

It is clear that ∂λ1
∂µ1

> 0 and ∂λ2
∂µ1

< 0. Similarly, we can show that ∂λ1
∂µ2

< 0 and ∂λ2
∂µ2

> 0.

Let λS
2 = 0. According to Eqs. (??) and (??), we have

1− λS
1

Λ
= W2(µ2, 0), (34)

α

(
1− 2

λS
1

Λ

)
−
[
W1(µ1, λ

S
1 ) + λS

1

∂W1(µ1, λ
S
1 )

∂λ1

]
= 0. (35)

Thus, λS
2 ≥ 0 if and only if µ2 ≥ µS

2 (µ1), where µS
2 (µ1) satisfies W2(µ

S
2 (µ1), 0) = 1 − λS

1
Λ with λS

1

determined by Eq. (19). Let λS
1 = 0. We have

α− λS
2

Λ
= W1(µ1, 0), (36)(

1− 2
λS
2

Λ

)
−
[
W2(µ2, λ

S
2 ) + λS

2

∂W2(µ2, λ
S
2 )

∂λ2

]
= 0. (37)

Then, λS
1 ≥ 0 if and only if µ1 ≥ µS

1 (µ2), where µS
1 (µ2) satisfies W1(µ

S
1 (µ2), 0) = α − λS

2
Λ with λS

2

determined by Eq. (21). Thus, λD
i ≥ 0 if and only if both µ2 ≥ µS

2 (µ1) and µ1 ≥ µS
1 (µ2) hold.

Moreover, if one of them does not hold, the market structure becomes a monopoly. In particular,

it is easy to show that if µ2 < µS
2 (µ1), λ

S
1 is exactly characterized by Eq. (19); if µ1 < µS

1 (µ2), λ
S
2

is exactly characterized by Eq. (21). □

Proof of Proposition 9. We omit this proof because it is similar to but less complicated than

that of Proposition 6. □
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Proof of Proposition 10. We omit this proof because it is similar to but less complicated than

that of Proposition 7. □

Proof of Proposition 11. It follows immediately from Propositions 2 and 4 and Parts (1) and

(2) of Proposition 8. □

Proof of Proposition 12. The proof is divided into two cases: (1) µT
2 (µ1) < µ2 < µT ′

2 (µ1); (2)

µ1 > µT
1 (µ2) and µ2 ≥ µT ′

2 (µ1). (1) When µT
2 (µ1) < µ2 < µT ′

2 (µ1), we have λT
2 = 0 < λS

2 . Note

that λT
1 = λS

1 when µ2 = µT
2 (µ1). Note also that when µT

2 (µ1) < µ2 < µT ′
2 (µ1), ∂λ

T
1 /∂µ2 > 0

and ∂λS
1 /∂µ2 < 0. It is immediate that λT

1 > λS
1 . (2) When µ1 > µT

1 (µ2) and µ2 ≥ µT ′
2 (µ1),

the equilibrium market structure is a duopoly in the value-based and size-based competitions and

λj
i > 0, i = 1, 2 and j = T, S. We prove by contradiction that λT

1 > λS
1 . Suppose otherwise that

λT
1 ≤ λS

1 . In the previous case, we have shown that λT
1 > λS

1 when µ2 = µT ′
2 (µ1). By the continuity

of λT
1 and λS

1 . There exists at least one threshold with respect to µ2 such that λT
1 = λS

1 . Then

from the second line of Eqs. (1) and (17), we have λT
2 = λS

2 , which, according to the first line of

Eqs. (1) and (17), gives us λT
1 = λS

1 = 0, thus contradicting with λT
1 > 0 and λS

1 > 0. Therefore,

we have λT
1 > λS

1 , and from the second line of Eqs. (1) and (17), we have λT
2 < λS

2 . □

Proof of Proposition 13. Note from Proposition 12 that λS
2 > λT

2 , and thus, we can immediately

conclude that pT2 < pS2 since pj2 =
λj
2
Λ +λj

2
∂W2(µ2,λ

j
2)

∂λ2
is increasing in λj

2 for j = S, T . Next, we prove

pT1 < pS1 by contradiction. Note that the equilibrium effective arrival rates and prices in a duopoly

satisfy (2). Suppose now that pT1 ≥ pS1 . Recall that p
T
2 < pS2 . From Lemma 2, we have λ1 increases

in p2 and decreases in p1. Thus, pT2 < pS2 and pT1 ≥ pS1 result in λT
1 < λS

1 , which contradicts

λT
1 > λS

1 . Hence, pT1 < pS1 holds. Now, we have pT1 < pS1 and pT2 < pS2 , from Lemma 2, it is clear

that λT
1 + λT

2 > λS
1 + λS

2 . □
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