Appendix

This section includes the proofs of the results presented in the preceding sections.
Proof of Proposition 1. v_{1}^{e} and v_{2}^{e} are functions of $\left(v_{1}, v_{2}\right)$ that are uniquely determined by

$$
\left\{\begin{array}{l}
p_{1}=(\alpha-1) v_{1}+v_{2}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right) \tag{8}\\
p_{2}=v_{2}-W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{1}, v_{2}\right)\right)
\end{array},\right.
$$

of which $\lambda_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}^{+}\right)^{+}$and $\lambda_{2}\left(v_{1}, v_{2}\right)=\Lambda\left(\min \left\{1, v_{1}\right\}-v_{2}^{+}\right)^{+}$with $x^{+}=\max \{0, x\}$. It can be easily checked that v_{1} is the valuation threshold at which customers is indifferent between services 1 and 2 , and v_{2} is the valuation threshold at which customer is indifferent between purchasing service 2 and not purchasing any service. Due to the various relationships between $0,1, v_{1}$ and v_{2}, there are four cases. Note that v_{1}^{e} and v_{2}^{e} are thresholds that determine the firms' effective arrival rate. Literally speaking, $\left(v_{1}^{e}, v_{2}^{e}\right)$ does not necessarily equal $\left(v_{1}, v_{2}\right)$: a customer who prefers service 1 over service 2 does not necessarily purchase service 1 eventually, because she may prefer balking over purchasing service 1. Aa a result, these equilibrium arrival rates comprise four different value-based market segmentations as shown in the following.

The specified functional relation between $\left(v_{1}^{e}, v_{2}^{e}\right)$ and $\left(v_{1}, v_{2}\right)$ takes the following forms.

1) If $0 \leq v_{2} \leq v_{1} \leq 1$, then $v_{1}^{e}=v_{1}$ and $v_{2}^{e}=v_{2}$.
2) If $0 \leq v_{1} \leq v_{2} \leq 1$, then $v_{2}^{e}=v_{1}^{e}$ and v_{1}^{e} is given by

$$
\begin{equation*}
\alpha v_{1}^{e}-W_{1}\left(\mu_{1}, \lambda_{1}^{e}\right)=\alpha v_{1}-W_{1}\left(\mu_{1}, \Lambda\left(1-v_{1}\right)\right)+v_{2}-v_{1} . \tag{9}
\end{equation*}
$$

3) If $v_{1}<0 \leq v_{2} \leq 1$, then $v_{2}^{e}=v_{1}^{e}$ and v_{1}^{e} is given by

$$
\begin{equation*}
\alpha v_{1}^{e}-W_{1}\left(\mu_{1}, \lambda_{1}^{e}\right)=\alpha v_{1}-W_{1}\left(\mu_{1}, \Lambda\right)+v_{2}-v_{1} . \tag{10}
\end{equation*}
$$

4) If $0 \leq v_{2} \leq 1<v_{1}$, then $v_{1}^{e}=1$ and v_{2}^{e} is given by

$$
\begin{equation*}
v_{2}^{e}-W_{2}\left(\mu_{2}, \lambda_{2}^{e}\right)=p_{2} . \tag{11}
\end{equation*}
$$

The proof of this Proposition involves lengthy analysis. We put it as a permanent working paper Huang et al. (2017). For brevity, we omit it in this paper, and refer to interested readers to Huang et al. (2017) for details.

Proof of Lemma 1. 1. Note that if firm 1 chooses any strategy greater than 1 , then $\lambda_{1}=0$. Considering this, firm 1's optimal strategy must be no greater than 1 , and this includes two cases, $v_{1} \geq v_{2}$ and $v_{1} \leq v_{2}$.

1-1) Suppose that firm 1 chooses a strategy from $v_{1} \geq v_{2}$. Then we have $\lambda_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)$, and firm 1's local best response (denoted by $v_{1}^{1}\left(v_{2}\right)$) is

$$
v_{1}^{1}\left(v_{2}\right)=\underset{v_{2} \leq v_{1} \leq 1}{\operatorname{argmax}} \pi_{1}\left(v_{1}\right),
$$

where $\pi_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[(\alpha-1) v_{1}+v_{2}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right]$. Let $\Lambda\left(1-v_{m}\right)=\mu_{1}$. It is clear that if $v_{1} \leq v_{m}$, then $W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)=\infty$, and so $\pi_{1}\left(v_{1}\right)=-\infty$. Thus, the optimal strategy must satisfy $v_{1}>v_{m}$, in which $\pi_{1}\left(v_{1}\right)$ is continuous in v_{1}. Given $v_{m}<v_{1} \leq 1$, it can be easily calculated that

$$
\begin{aligned}
& \pi_{1}^{\prime}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[(\alpha-1) v_{1}+v_{2}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right] \\
& \pi_{1}^{\prime \prime}\left(v_{1}\right)=-\Lambda^{3}\left(1-v_{1}\right) \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}{ }^{2}}-2 \Lambda\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}}\right]<0 .
\end{aligned}
$$

Thus, $\pi_{1}\left(v_{1}\right)$ is a strictly concave function with respect to v_{1} given $v_{m}<v_{1} \leq 1$. Let $v_{1}^{0}\left(v_{2}\right)$ be the stationary point of $\pi_{1}\left(v_{1}\right)$ with respect to v_{1} given $v_{m}<v_{1} \leq 1$, which is determined by the FOC $\pi_{1}^{\prime}\left(v_{1}^{0}\left(v_{2}\right)\right)=0$, i.e.,

$$
\begin{equation*}
\Lambda\left(1-v_{1}^{0}\left(v_{2}\right)\right)\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}\left(v_{2}\right)\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[(\alpha-1) v_{1}^{0}\left(v_{2}\right)+v_{2}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}\left(v_{2}\right)\right)\right)\right]=0 \tag{12}
\end{equation*}
$$

Note that $\pi_{1}^{\prime \prime}\left(v_{1}\right)<0$ and $\lim _{v_{1} \rightarrow v_{m}} \pi_{1}^{\prime}\left(v_{1}\right)=+\infty>0$. It follows that $v_{1}^{0}\left(v_{2}\right)$ is well-defined only when $\pi_{1}^{\prime}(1) \leq 0$; i.e. $v_{2} \geq 1-\alpha+W_{1}\left(\mu_{1}, 0\right)$. Thus, given $v_{1} \in\left(v_{m}, 1\right]$, if $v_{2}<1-\alpha+W_{1}\left(\mu_{1}, 0\right)$, then $\pi_{1}\left(v_{1}\right)$ is increasing in v_{1}; if $v_{2} \geq 1-\alpha+W_{1}\left(\mu_{1}, 0\right)$, then $\pi_{1}\left(v_{1}\right)$ peaks at $v_{1}^{0}\left(v_{2}\right)$ and $v_{m}<v_{1}^{0}\left(v_{2}\right) \leq 1$. Incorporating the constraint $v_{2} \leq v_{1}, v_{1}^{1}\left(v_{2}\right)$ is given by

$$
v_{1}^{1}\left(v_{2}\right)=\left\{\begin{array}{ll}
1, & v_{2}<1-\alpha+W_{1}\left(\mu_{1}, 0\right) \tag{13}\\
\max \left\{v_{1}^{0}\left(v_{2}\right), v_{2}\right\}, & v_{2} \geq 1-\alpha+W_{1}\left(\mu_{1}, 0\right)
\end{array} .\right.
$$

In what follows, we show how to simplify $v_{1}^{1}\left(v_{2}\right)$ with the condition that $v_{2} \geq 1-\alpha+W_{1}\left(\mu_{1}, 0\right)$. Differentiating (??) with respect to v_{2}, we have

$$
\left[\Lambda^{2}\left(1-v_{1}^{0}\left(v_{2}\right)\right) \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}\left(v_{2}\right)\right)\right)}{\partial \lambda_{1}{ }^{2}}+2\left(\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}\left(v_{2}\right)\right)\right)}{\partial \lambda_{1}}\right)\right] \frac{\partial v_{1}^{0}\left(v_{2}\right)}{\partial v_{2}}=-1,
$$

and so

$$
\frac{\partial v_{1}^{0}\left(v_{2}\right)}{\partial v_{2}}<0, \frac{\partial v_{1}^{0}\left(v_{2}\right)-v_{2}}{\partial v_{2}}<0 .
$$

Thus, there exists at most one solution with respect to v_{2} for $v_{1}^{0}\left(v_{2}\right)=v_{2}$. Note that when $v_{2}=1-\alpha+W_{1}\left(\mu_{1}, 0\right), v_{1}^{0}\left(v_{2}\right)=1$ and $v_{1}^{0}\left(v_{2}\right)-v_{2}=\alpha-W_{1}\left(\mu_{1}, 0\right)>0$. Note also that when
$v_{2}=1$, Eq. (??) becomes

$$
\Lambda\left(1-v_{1}^{0}(1)\right)\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}(1)\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[(\alpha-1) v_{1}^{0}(1)+1-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{0}(1)\right)\right)\right]=0
$$

whose LHS is obviously decreasing in $v_{1}^{0}(1)$, and it is negative when $v_{1}^{0}(1)=1$; so $v_{1}^{0}(1)<1$. Thus, when $v_{2}=1, v_{1}^{0}\left(v_{2}\right)<1=v_{2}$. This means there exists a unique root with respect to v_{2} of $v_{1}^{0}\left(v_{2}\right)=v_{2}$ between $1-\alpha+W_{1}\left(\mu_{1}, 0\right)$ and 1 . Denote such a root as \underline{v}_{2}. By Eq. (??), it satisfies the following equation:

$$
\begin{equation*}
\Lambda\left(1-\underline{v}_{2}\right)\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(\underline{v}_{2}\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[\alpha \underline{v}_{2}-W_{1}\left(\mu_{1}, \lambda_{1}\left(\underline{v}_{2}\right)\right)\right]=0 . \tag{14}
\end{equation*}
$$

By the monotonicity of $v_{1}^{0}\left(v_{2}\right)-v_{2}$, it is clear that $v_{1}^{0}\left(v_{2}\right)>v_{2}$ for $v_{2}<\underline{v}_{2}$. Then, we can specify $v_{1}^{1}\left(v_{2}\right)$ (Eq. (7)) as

$$
v_{1}^{1}\left(v_{2}\right)= \begin{cases}1, & 0 \leq v_{2}<1-\alpha+W_{1}\left(\mu_{1}, 0\right) \tag{15}\\ v_{1}^{0}\left(v_{2}\right), & 1-\alpha+W_{1}\left(\mu_{1}, 0\right) \leq v_{2} \leq \underline{v}_{2} \\ v_{2}, & v_{2}>\underline{v}_{2}\end{cases}
$$

1-2) Suppose that firm 1 chooses a strategy from $v_{1} \leq v_{2}$. Then we have $\lambda_{1}=\Lambda\left(1-v_{1}\right)$, and firm 1's local best response (denoted by $v_{1}^{2}\left(v_{2}\right)$) is

$$
v_{1}^{2}\left(v_{2}\right)=\underset{0 \leq v_{1} \leq v_{2}}{\operatorname{argmax}} \pi_{1}\left(v_{1}\right),
$$

where $\pi_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[\alpha v_{1}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right]$. Given $v_{1} \leq 1$, it can be easily calculated that

$$
\begin{aligned}
& \pi_{1}^{\prime}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[\alpha+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[\alpha v_{1}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right] \\
& \pi_{1}^{\prime \prime}\left(v_{1}\right)=-\Lambda^{3}\left(1-v_{1}\right) \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}}-2 \Lambda\left[\alpha+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)}{\partial \lambda_{1}}\right]<0 .
\end{aligned}
$$

This means that $\pi_{1}(\cdot)$ is strictly concave. Let v_{1}^{M} be the stationary point of $\pi_{1}(\cdot)$, which is determined with the following FOC:

$$
\begin{equation*}
\Lambda\left(1-v_{1}^{M}\right)\left[\alpha+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{M}\right)\right)}{\partial \lambda_{1}}\right]-\Lambda\left[\alpha v_{1}^{M}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}^{M}\right)\right)\right]=0 \tag{16}
\end{equation*}
$$

Furthermore, as $\pi_{1}^{\prime \prime}\left(v_{1}\right)<0, \pi_{1}^{\prime}(0)>0$ and $\pi_{1}^{\prime}(1)<0$, it is clear that v_{1}^{M} is well-defined, $0<v_{1}^{M}<1$, and

$$
v_{1}^{2}\left(v_{2}\right)=\left\{\begin{array}{ll}
v_{2}, & 0 \leq v_{2}<v_{1}^{M} \tag{17}\\
v_{1}^{M}, & v_{2} \geq v_{1}^{M}
\end{array} .\right.
$$

In the following, we compare the two local best responses and pick the one resulting in larger profit as the global best response. Before this, we first show that $0<\underline{v}_{2}<v_{1}^{M}<1$. Denote

$$
\begin{align*}
& f_{3}(x):=(2 \alpha-1)(1-x) \Lambda-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, \lambda_{1}(x)\right)+\Lambda(1-x) \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}(x)\right)}{\partial \lambda_{1}}\right] \tag{18}\\
& f_{4}(x):=2 \alpha(1-x) \Lambda-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, \lambda_{1}(x)\right)+\Lambda(1-x) \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}(x)\right)}{\partial \lambda_{1}}\right] \tag{19}
\end{align*}
$$

It is easily seen that given $x \in[0,1], f_{3}(x)$ and $f_{4}(x)$ are decreasing in x, and $f_{3}(x) \leq f_{4}(x)$ (the equality holds only when $x=1$). And, by Eqs. (8) and (??), it is clear that

$$
f_{3}\left(\underline{v}_{2}\right)=0, f_{4}\left(v_{1}^{M}\right)=0 .
$$

Since

$$
\begin{aligned}
& f_{3}(0)=(\alpha-1) \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, \lambda_{1}(0)\right)+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}(0)\right)}{\partial \lambda_{1}}\right]>0 \\
& f_{4}(1)=-\alpha+W_{1}\left(\mu_{1}, 0\right)<0
\end{aligned}
$$

it follows that $0<\underline{v}_{2}, v_{1}^{M}<1$ and $f_{3}\left(v_{1}^{M}\right)<f_{4}\left(v_{1}^{M}\right)=0$. Thus,

$$
0<\underline{v}_{2}<v_{1}^{M}<1 .
$$

Then, we capture firm 1's global best response $\left(v_{1}^{*}\left(v_{2}\right)\right)$ based on the preceding results, the local best response $v_{1}^{1}\left(v_{2}\right)$ and $v_{1}^{2}\left(v_{2}\right)$ (see Eqs. (9) and (10)).
a. When $0 \leq v_{2}<1-\alpha+W_{1}\left(\mu_{1}, 0\right), v_{1}^{2}\left(v_{2}\right)=v_{2}$ is a feasible strategy contained by $v_{1} \geq v_{2}$. Note that $v_{1}^{1}\left(v_{2}\right)$ is the local best response for all $v_{1} \geq v_{2}$, so $v_{1}^{2}\left(v_{2}\right)$ is dominated by $v_{1}^{1}\left(v_{2}\right)$, thus indicating that $v_{1}^{*}\left(v_{2}\right)=v_{1}^{1}\left(v_{2}\right)=1$.
b. When $1-\alpha+W_{1}\left(\mu_{1}, 0\right) \leq v_{2} \leq \underline{v}_{2}$, we have $v_{1}^{2}\left(v_{2}\right)=v_{2}$. Similar to Case a, it follows that $v_{1}^{*}\left(v_{2}\right)=v_{1}^{1}\left(v_{2}\right)=v_{1}^{0}\left(v_{2}\right)$.
c. When $\underline{v}_{2}<v_{2}<v_{1}^{M}, v_{1}^{1}\left(v_{2}\right)=v_{2}=v_{1}^{2}\left(v_{2}\right)$, and so $v_{1}^{*}\left(v_{2}\right)=v_{2}$.
d. When $v_{2} \geq v_{1}^{M}, v_{1}^{1}\left(v_{2}\right)=v_{2}$ is a feasible strategy contained by $v_{1} \leq v_{2}$. Note that $v_{1}^{2}\left(v_{2}\right)$ is the local best response for all $v_{1} \leq v_{2}$, so $v_{1}^{1}\left(v_{2}\right)$ is dominated by $v_{1}^{2}\left(v_{2}\right)$, thus indicating that $v_{1}^{*}\left(v_{2}\right)=v_{1}^{2}\left(v_{2}\right)=v_{1}^{M}$.
2. Given $v_{1} \leq 1$, firm 2 's revenue (denoted by $\pi_{2}\left(v_{2}\right)$) can be divided into two cases; that is

$$
\pi_{2}\left(v_{2}\right)= \begin{cases}\Lambda\left(v_{1}-v_{2}\right)\left[v_{2}-W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}\right)\right)\right], & v_{2} \leq v_{1} \\ 0, & v_{2}>v_{1}\end{cases}
$$

Obviously, any strategy greater than v_{1} is dominated by those no greater than v_{1}. Thus, firm 2's best response is

$$
v_{2}^{*}\left(v_{1}\right)=\underset{0 \leq v_{2} \leq v_{1}}{\operatorname{argmax}} \pi_{2}\left(v_{2}\right)=\Lambda\left(v_{1}-v_{2}\right)\left[v_{2}-W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}\right)\right)\right]
$$

Given $0 \leq v_{2} \leq v_{1}$, it can be easily calculated that

$$
\begin{aligned}
& \pi_{2}^{\prime}\left(v_{2}\right)=\Lambda\left(v_{1}-v_{2}\right)\left[1+\Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}\right)\right)}{\partial \lambda_{2}}\right]-\Lambda\left[v_{2}-W_{2}\left(\mu_{2}, \lambda\left(v_{2}\right)\right)\right] \\
& \pi_{2}^{\prime \prime}\left(v_{2}\right)=-\Lambda^{3}\left(v_{1}-v_{2}\right) \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}\right)\right)}{\partial \lambda_{2}^{2}}-2 \Lambda\left[1+\Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}\right)\right)}{\partial \lambda_{2}}\right]<0
\end{aligned}
$$

That is, $\pi_{2}(\cdot)$ is a strictly concave function. Let $v_{2}^{0}\left(v_{1}\right)$ be the stationary point of $\pi_{2}(\cdot)$ with respect to v_{2} with the constraint that $0 \leq v_{2} \leq v_{1}$, which is determined by

$$
\begin{equation*}
\Lambda\left(v_{1}-v_{2}^{0}\left(v_{1}\right)\right)\left[1+\Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}^{0}\left(v_{1}\right)\right)\right)}{\partial \lambda_{2}}\right]-\Lambda\left[v_{2}^{0}\left(v_{1}\right)-W_{2}\left(\mu_{2}, \lambda\left(v_{2}^{0}\left(v_{1}\right)\right)\right)\right]=0 \tag{20}
\end{equation*}
$$

Note that $\pi_{2}^{\prime \prime}\left(v_{2}\right)<0$ and $\pi_{2}^{\prime}(0)>0 . v_{2}^{0}\left(v_{1}\right)$ is well-defined only when $\pi_{2}^{\prime}\left(v_{1}\right) \geq 0 ;$ i.e., $v_{1} \geq$ $W_{2}\left(\mu_{2}, 0\right)$. Thus, given $0 \leq v_{2} \leq v_{1}$, if $v_{1}<W_{2}\left(\mu_{2}, 0\right)$, then $\pi_{2}\left(v_{2}\right)$ is increasing in v_{2}; if $v_{1} \geq$ $W_{2}\left(\mu_{2}, 0\right)$, then $\pi_{2}\left(v_{2}\right)$ peaks at $v_{2}=v_{2}^{0}\left(v_{1}\right)$. Thus, $v_{2}^{*}\left(v_{1}\right)$ is given by

$$
v_{2}^{*}\left(v_{1}\right)= \begin{cases}v_{1}, & 0 \leq v_{1}<W_{2}\left(\mu_{2}, 0\right) \tag{21}\\ v_{2}^{0}\left(v_{1}\right), & W_{2}\left(\mu_{2}, 0\right) \leq v_{1} \leq 1\end{cases}
$$

In particular, if $v_{1}=W_{2}\left(\mu_{2}, 0\right)$, then $v_{2}^{0}\left(v_{1}\right)=W_{2}\left(\mu_{2}, 0\right)$.

Furthermore, differentiating Eq. (??) with respect to v_{1}, we have

$$
\begin{aligned}
& \Lambda\left[2+2 \Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}^{0}\left(v_{1}\right)\right)\right)}{\partial \lambda_{2}}+\Lambda^{2}\left(v_{1}-v_{2}^{0}\left(v_{1}\right)\right) \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}^{0}\left(v_{1}\right)\right)\right)}{\partial \lambda_{2}{ }^{2}}\right] \frac{\partial v_{2}^{0}\left(v_{1}\right)}{\partial v_{1}} \\
= & \Lambda\left[1+2 \Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}^{0}\left(v_{1}\right)\right)\right)}{\partial \lambda_{2}}+\Lambda^{2}\left(v_{1}-v_{2}^{0}\left(v_{1}\right)\right) \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}\left(v_{2}^{0}\left(v_{1}\right)\right)\right)}{\partial \lambda_{2}{ }^{2}}\right],
\end{aligned}
$$

and so

$$
0<\frac{\partial v_{2}^{0}\left(v_{1}\right)}{\partial v_{1}}<1
$$

This proves the monotonicity of $v_{2}^{0}\left(v_{1}\right)$ with respective to v_{1}.

Proof of Proposition 2. In particular, $\mu_{2}^{T}\left(\mu_{1}\right)$ is the unique solution to $W_{2}\left(\mu_{2}^{T}\left(\mu_{1}\right), 0\right)=1-\lambda_{1}^{T} / \Lambda$. We first show that $\mu_{2}<\mu_{2}^{T}\left(\mu_{1}\right)$ is equivalent to $W_{2}\left(\mu_{2}, 0\right)>v_{1}^{M}$. By the definition of $\mu_{2}^{T}\left(\mu_{1}\right)$, it is easily seen that $\mu_{2}<\mu_{2}^{T}\left(\mu_{1}\right)$ indicates

$$
4 \alpha t-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, 2 t\right)+2 t \frac{\partial W_{1}\left(\mu_{1}, 2 t\right)}{\partial \lambda_{1}}\right]<0
$$

where $t=\Lambda\left[1-W_{2}\left(\mu_{2}, 0\right)\right] / 2$. By the definition of $f_{4}(x)$ (see Eq. (??)) and v_{1}^{M}, this further indicates that $f_{4}\left(W_{2}\left(\mu_{2}, 0\right)\right)<0=f_{4}\left(v_{1}^{M}\right)$. Finally, by the monotonicity of $f_{4}(\cdot)$, it follows that $W_{2}\left(\mu_{2}, 0\right)>v_{1}^{M}$. According to Lemma 1, we have Figure 9.

Figure 9: The Nash equilibrium

As shown in Figure 9, there exists continuum equilibria, from $\left(\underline{v}_{2}, \underline{v}_{2}\right)$ to $\left(v_{1}^{M}, v_{1}^{M}\right)$. Among these equilibria, $\lambda_{2}^{T}=0$ and so $\pi_{2}=0$ holds. As for firm 1, given $v_{2}=v_{1}$, it solves

$$
\max _{v_{2} \leq v_{1} \leq v_{1}^{M}} \pi_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[\alpha v_{1}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right] .
$$

By the definition of v_{1}^{M}, it is clear that $\pi_{1}\left(v_{1}\right)$ peaks at v_{1}^{M}. Thus, the equilibrium, $\left(v_{1}^{M}, v_{1}^{M}\right)$, is Pareto dominating. Let $\left(v_{1}^{*}, v_{2}^{*}\right)=\left(v_{1}^{M}, v_{1}^{M}\right)$, it is clear that $\lambda_{1}^{T}=\Lambda\left(1-v_{1}^{M}\right)$, so we have

$$
2 \alpha \lambda_{1}^{T}-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)+\lambda_{1}^{T} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}\right]=0
$$

Proof of Proposition 3. In particular, $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is the unique solution to

$$
\begin{equation*}
\alpha-(2 \alpha-1) \frac{\lambda_{1}^{T}}{\Lambda}-\left[W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)+\lambda_{1}^{T} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}\right]=0 . \tag{22}
\end{equation*}
$$

We first show that $\mu_{2}^{T}\left(\mu_{1}\right) \leq \mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is equivalent to $\underline{v}_{2}<W_{2}\left(\mu_{2}, 0\right) \leq v_{1}^{M}$. In the proof of Proposition 2, we showed that $\mu_{2}^{T}\left(\mu_{1}\right) \leq \mu_{2}$ is equivalent to $W_{2}\left(\mu_{2}, 0\right) \leq v_{1}^{M}$, and so we just need to verify that $\mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is equivalent to $\underline{v}_{2}<W_{2}\left(\mu_{2}, 0\right)$.

By the definition of $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$, it is easily seen that $\mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ indicates

$$
2(2 \alpha-1) t-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, 2 t\right)+2 t \frac{\partial W_{1}\left(\mu_{1}, 2 t\right)}{\partial \lambda_{1}}\right]<0
$$

By the definition of $f_{3}(x)$ (see Eq. (??)) and \underline{v}_{2} (see Eq. (8)), this further indicates that $f_{3}\left(W_{2}\left(\mu_{2}, 0\right)\right)<0=f_{3}\left(\underline{v}_{2}\right)$. Finally, by the monotonicity of $f_{3}(\cdot)$, it follows that $W_{2}\left(\mu_{2}, 0\right)>\underline{v}_{2}$, and so $\underline{v}_{2}<W_{2}\left(\mu_{2}, 0\right) \leq v_{1}^{M}$ holds. According to Lemma 1, we have Figure 10.

Figure 10: The Nash equilibrium
As shown in Figure 10, there exist continuum equilibria, from $\left(\underline{v}_{2}, \underline{v}_{2}\right)$ to $\left(W_{2}\left(\mu_{2}, 0\right), W_{2}\left(\mu_{2}, 0\right)\right)$. Among these equilibria, $\lambda_{2}^{T}=0$, and so $\pi_{2}=0$ holds. As for firm 1 , given $v_{2}=v_{1}$, it solves

$$
\max _{\underline{v}_{2} \leq v_{1} \leq W_{2}\left(\mu_{2}, 0\right)} \pi_{1}\left(v_{1}\right)=\Lambda\left(1-v_{1}\right)\left[\alpha v_{1}-W_{1}\left(\mu_{1}, \lambda_{1}\left(v_{1}\right)\right)\right] .
$$

By the definition of v_{1}^{M} (see Eq. (??)), it is clear that given $W_{2}\left(\mu_{2}, 0\right) \leq v_{1}^{M}, \pi_{1}\left(v_{1}\right)$ is increasing in the feasible domain. Thus, the equilibrium, $\left(W_{2}\left(\mu_{2}, 0\right), W_{2}\left(\mu_{2}, 0\right)\right)$, is Pareto dominating. Let $\left(v_{1}^{*}, v_{2}^{*}\right)=\left(W_{2}\left(\mu_{2}, 0\right), W_{2}\left(\mu_{2}, 0\right)\right)$, it is clear that

$$
\lambda_{1}^{T}=\Lambda\left(1-v_{1}^{*}\right)=\Lambda\left[1-W_{2}\left(\mu_{2}, 0\right)\right], \lambda_{2}^{T}=0
$$

Proof of Proposition 4. In particular, $\mu_{1}^{T}\left(\mu_{2}\right)$ is the unique solution to $W_{1}\left(\mu_{1}^{T}\left(\mu_{2}\right), 0\right)=\alpha-\lambda_{2}^{T} / \Lambda$. We first show that $\mu_{1}<\mu_{1}^{T}\left(\mu_{2}\right)$ is equivalent to $1-\alpha+W_{1}\left(\mu_{1}, 0\right)>v_{2}^{0}(1)$. By the definition of $\mu_{1}^{T}\left(\mu_{2}\right)$, it is easily seen that $\mu_{1}<\mu_{1}^{T}\left(\mu_{2}\right)$ indicates

$$
4 s-\Lambda+\Lambda\left[W_{2}\left(\mu_{2}, 2 s\right)+2 s \frac{\partial W_{2}\left(\mu_{2}, 2 s\right)}{\partial \lambda_{2}}\right]<0
$$

where $s=\Lambda\left[\alpha-W_{1}\left(\mu_{1}, 0\right)\right] / 2$. Let $f_{5}(x):=2(1-x) \Lambda-\Lambda+\Lambda\left[W_{2}\left(\mu_{2}, \Lambda(1-x)\right)+\Lambda(1-x) \frac{\partial W_{2}\left(\mu_{2}, \Lambda(1-x)\right)}{\partial \lambda_{2}}\right]$. It is clear that $f_{5}(x)$ is decreasing in x, and $f_{5}\left(1-\alpha+W_{1}\left(\mu_{1}, 0\right)\right)=4 s-\Lambda+\Lambda\left[W_{2}\left(\mu_{2}, 2 s\right)+2 s \frac{\partial W_{2}\left(\mu_{2}, 2 s\right)}{\partial \lambda_{2}}\right]$. According to Eq. (??), it is clear that $f_{5}\left(v_{2}^{0}(1)\right)=0$. Thus, we have $f_{5}\left(1-\alpha+W_{1}\left(\mu_{1}, 0\right)\right)<0=$ $f_{5}\left(v_{2}^{0}(1)\right)$. Finally, by the monotonicity of $f_{5}(\cdot)$, it follows that $1-\alpha+W_{1}\left(\mu_{1}, 0\right)>v_{2}^{0}(1)$. According to Lemma 1, we have Figure 11.

Figure 11: The Nash equilibrium

As shown in Figure 11, the equilibrium is $\left(v_{1}^{*}, v_{2}^{*}\right)=\left(1, v_{2}^{0}(1)\right)$, and so $\lambda_{1}^{T}=0$ and $\lambda_{2}^{T}=$ $\Lambda\left[1-v_{2}^{0}(1)\right]$. Let $v_{2}^{0}(1)=1-\frac{\lambda_{2}^{T}}{\Lambda}$ and substitute it into $f_{5}\left(v_{2}^{0}(1)\right)=0$. It follows that

$$
2 \lambda_{2}^{T}-\Lambda+\Lambda\left[W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)+\lambda_{2}^{T} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}\right]=0
$$

Proof of Proposition 5. By the definition of $\mu_{1}^{T}\left(\mu_{2}\right)$ and $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$, when $\mu_{1} \geq \mu_{1}^{T}\left(\mu_{2}\right)$ and $\mu_{2} \geq \mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$, we have the following figure.

Figure 12: The Nash equilibrium

As shown in Figure 12, the equilibrium, $\left(v_{1}^{*}, v_{2}^{*}\right)$, satisfies

$$
\left\{\begin{array}{l}
\Lambda\left(1-v_{1}^{*}\right)\left[\alpha-1+\Lambda \frac{\partial W_{1}\left(\mu_{1}, \Lambda\left(1-v_{1}^{*}\right)\right)}{\partial \lambda_{1}}\right]-(\alpha-1) \Lambda v_{1}^{*}+\Lambda W_{1}\left(\mu_{1}, \Lambda\left(1-v_{1}^{*}\right)\right)-\Lambda v_{2}^{*}=0, \tag{23}\\
\Lambda\left(v_{1}^{*}-v_{2}^{*}\right)\left[1+\Lambda \frac{\partial W_{2}\left(\mu_{2}, \Lambda\left(v_{1}^{*}-v_{2}^{*}\right)\right)}{\partial \lambda_{2}}\right]-\Lambda v_{2}^{*}+\Lambda W_{2}\left(\mu_{2}, \Lambda\left(v_{1}^{*}-v_{2}^{*}\right)\right)=0 .
\end{array}\right.
$$

On this occasion, $\lambda_{1}^{T}=\Lambda\left(1-v_{1}^{*}\right)$ and $\lambda_{2}^{T}=\Lambda\left(v_{1}^{*}-v_{2}^{*}\right)$. Hence, we have

$$
\left\{\begin{array}{l}
(2 \alpha-1) \lambda_{1}^{T}+\lambda_{2}^{T}-\alpha \Lambda+\Lambda\left[W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)+\lambda_{1}^{T} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}\right]=0, \\
\lambda_{1}^{T}+2 \lambda_{2}^{T}-\Lambda+\Lambda\left[W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)+\lambda_{2}^{T} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}\right]=0 .
\end{array}\right.
$$

Proof of Proposition 6. 1. According to Eq. (??), it is clear that when $\mu_{1}=\mu_{1}, \lambda_{1}^{T}=0$, and thus, $\mu_{2}^{T}\left(\mu_{1}\right)=\underline{\mu_{2}}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)=\underline{\mu_{2}}\right)$. According to Eq. (??), we have $\mu_{2}=\underline{\mu_{2}}, \lambda_{2}^{T}=0$. Thus, $\mu_{1}^{T}\left(\mu_{2}\right)=\underline{\mu_{1}}$.
2. Let

$$
f_{1}(x)=\alpha\left(1-2 \frac{x}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, x\right)+x \frac{\partial W_{1}\left(\mu_{1}, x\right)}{\partial \lambda_{1}}\right]
$$

It is easy to see that $f_{1}^{\prime}(x)<0$ and $\frac{\partial f_{1}(x)}{\partial \mu_{1}}>0$. According to Eq. (??), it is clear that λ_{1}^{T} is increasing in μ_{1}. From $W_{2}\left(\mu_{2}^{T}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}$, it is clear that $\mu_{2}^{T}\left(\mu_{1}\right)$ is increasing in μ_{1}.

Let

$$
f_{2}(x)=\alpha-(2 \alpha-1) \frac{x}{\Lambda}-\left[W_{1}\left(\mu_{1}, x\right)+x \frac{\partial W_{1}\left(\mu_{1}, x\right)}{\partial \lambda_{1}}\right]
$$

It is easy to see that $f_{2}^{\prime}(x)<0$ and $\frac{\partial f_{2}(x)}{\partial \mu_{1}}>0$. According to Eq. (??), it is clear that λ_{1}^{T} is increasing in μ_{1}. From $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}$, it is clear that $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is increasing in μ_{1}.

Let

$$
f_{3}(x)=1-2 \frac{x}{\Lambda}-\left[W_{2}\left(\mu_{2}, x\right)+x \frac{\partial W_{2}\left(\mu_{2}, x\right)}{\partial \lambda_{2}}\right] .
$$

It is easy to see that $f_{3}^{\prime}(x)<0$ and $\frac{\partial f_{3}(x)}{\partial \mu_{2}}>0$. According to Eq. (??), it is clear that λ_{2}^{T} is increasing in μ_{2}. From $W_{1}\left(\mu_{1}^{T}\left(\mu_{2}\right), 0\right)=\alpha-\frac{\lambda_{2}^{T}}{\Lambda}$, it is clear that $\mu_{2}^{T}\left(\mu_{1}\right)$ is increasing in μ_{1}.
3. According to Eq. (??), it is clear that λ_{1}^{T} is increasing in α. From $W_{2}\left(\mu_{2}^{T}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}$, it is clear that $\mu_{2}^{T}\left(\mu_{1}\right)$ is increasing in α. According to Eq. (??), it is clear that λ_{2}^{T} is constant in α. From $W_{1}\left(\mu_{1}^{T}\left(\mu_{2}\right), 0\right)=\alpha-\frac{\lambda_{2}^{T}}{\Lambda}$, it is clear that $\mu_{1}^{T}\left(\mu_{2}\right)$ is decreasing in α.
4. We verify this via a contradiction. Assume that there is at least one intersecting point between $\mu_{2}=\mu_{2}^{T}\left(\mu_{1}\right)$ and $\mu_{1}=\mu_{1}^{T}\left(\mu_{2}\right)$. Then there exists a pair of $\left(\mu_{1}, \mu_{2}\right)$ such that

$$
\begin{equation*}
\underline{\mu_{1}}<\mu_{1} \leq \mu_{1}^{T}\left(\mu_{2}\right), \underline{\mu_{2}}<\mu_{2} \leq \mu_{2}^{T}\left(\mu_{1}\right) . \tag{24}
\end{equation*}
$$

According to Theorems 2 and 4, this indicates that

$$
\begin{equation*}
\lambda_{1}^{T}=0, \lambda_{2}^{T}=0 \tag{25}
\end{equation*}
$$

However, this is true only when

$$
\mu_{1}<\underline{\mu_{1}} \& \mu_{2}<\underline{\mu_{2}} .
$$

Otherwise, the firm can post a small positive price to obtain some customers, and thus, Eq. (14) cannot hold. According to Eq. (13), there is a contradiction. Similarly, we can show that there is no intersecting point between $\mu_{2}=\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ and $\mu_{1}=\mu_{1}^{T}\left(\mu_{2}\right)$.

To show that there is no intersecting point between $\mu_{2}=\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ and $\mu_{2}=\mu_{2}^{T}\left(\mu_{1}\right)$, it suffices to show that $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)>\mu_{2}^{S}\left(\mu_{1}\right)$ for any $\mu_{1}>\underline{\mu_{1}}$. Note that $\mu_{2}^{S}\left(\mu_{1}\right)$ is determined by $W_{2}\left(\mu_{2}^{S}\left(\mu_{1}\right), 0\right)=1-x$, where x satisfies $\alpha\left(1-2 \frac{x}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, x\right)+x \frac{\partial W_{1}\left(\mu_{1}, x\right)}{\partial \lambda_{1}}\right] ; \mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is determined by $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)=1-y$, where x satisfies $\alpha\left(1-2 \frac{y}{\Lambda}\right)+\frac{y}{\Lambda}-\left[W_{1}\left(\mu_{1}, y\right)+y \frac{\partial W_{1}\left(\mu_{1}, y\right)}{\partial \lambda_{1}}\right]$. As a result, we need to show that $y>x$. Recall that $f_{1}(x)=0=f_{2}(y) ; f_{2}^{\prime}(\cdot)$ is decreasing; $f_{2}(x)-f_{1}(x)=x / \Lambda>0$. It follows that $f_{2}(y)=0=f_{1}(x)<f_{2}(x)$, and so $y>x$.
5. From Eq. (??), it is easy to see that $\lambda_{1}^{T}<\Lambda / 2$, and thus, $W_{2}\left(\mu_{2}^{T}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}>\frac{1}{2}$. From Eq. (??), it is easy to see that $\lambda_{1}^{T}<\frac{\alpha}{2 \alpha-1} \Lambda$, and thus, $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}>\frac{\alpha-1}{2 \alpha-1}$. From Eq. (??), it is easy to see that $\lambda_{1}^{T}<\Lambda / 2$, and so $W_{2}\left(\mu_{2}^{T}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{T}}{\Lambda}>\frac{1}{2}$.

Proof of Proposition 7. The proofs of the first three cases are straightforward; thus, we give the last two cases.

For Case 4, differentiating Eq. (1) w.r.t. μ_{1}, we have

$$
\begin{equation*}
\frac{1}{\Lambda} \frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}}=-\left[\frac{2}{\Lambda}+2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}\right] \frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}} \tag{26}
\end{equation*}
$$

and
$\frac{1}{\Lambda} \frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}}=-\left[\frac{2 \alpha-1}{\Lambda}+2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}{ }^{2}}\right] \frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}}-\left[\frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \mu_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1} \partial \mu_{1}}\right]$.

This gives $\frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}} \times \frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}}<0$. Furthermore, substituting $\frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}}$ given in Eq. (??) into Eq. (??), we have

$$
\begin{aligned}
& {\left[2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}{ }^{2}}+\frac{2 \alpha-1}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}+\frac{2}{\Lambda}}\right] \frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}} } \\
= & -\left[\frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \mu_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1} \partial \mu_{1}}\right] .
\end{aligned}
$$

Note that

$$
\frac{2 \alpha-1}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}+\frac{2}{\Lambda}}>\frac{2 \alpha-1}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{\frac{2}{\Lambda}}>0 .
$$

It is clear that $\frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}}>0$ and $\frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}}<0$. Now, $\frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}}+\frac{\partial \lambda_{2}^{T}}{\partial \mu_{1}}=\left[\frac{\frac{1}{\Lambda}+2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}}{\frac{2}{\Lambda}+2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}}\right] \frac{\partial \lambda_{1}^{T}}{\partial \mu_{1}}>0$. Similarly, we can show that $\frac{\partial \lambda_{1}^{T}}{\partial \mu_{2}}<0, \frac{\partial \lambda_{2}^{T}}{\partial \mu_{2}}>0$ and $\frac{\partial \lambda_{1}^{T}}{\partial \mu_{2}}+\frac{\partial \lambda_{2}^{T}}{\partial \mu_{2}}>0$.

For Case 5, differentiating Eq. (1) w.r.t. α, we have

$$
-\frac{1}{\Lambda} \frac{\partial \lambda_{1}^{T}}{\partial \alpha}=\left[2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}+\frac{2}{\Lambda}\right] \frac{\partial \lambda_{2}^{T}}{\partial \alpha}
$$

and

$$
1-2 \frac{\lambda_{1}^{T}}{\Lambda}=\left[2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}{ }^{2}}+\frac{2 \alpha-1}{\Lambda}\right] \frac{\partial \lambda_{1}^{T}}{\partial \alpha}+\frac{1}{\Lambda} \frac{\partial \lambda_{2}^{T}}{\partial \alpha} .
$$

This gives $\frac{\partial \lambda_{1}^{T}}{\partial \alpha} \times \frac{\partial \lambda_{2}^{T}}{\partial \alpha}<0, \frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha}=-\left[2 \Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\Lambda \lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}+1\right] \frac{\partial \lambda_{2}^{T}}{\partial \alpha}$ and $\left[2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}}+\lambda_{1}^{T} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{T}\right)}{\partial \lambda_{1}{ }^{2}}+\frac{2 \alpha-1}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}}+\lambda_{2}^{T} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{T}\right)}{\partial \lambda_{2}{ }^{2}}+\frac{2}{\Lambda}}\right] \frac{\partial \lambda_{1}^{T}}{\partial \alpha}=1-2 \frac{\lambda_{1}^{T}}{\Lambda}$.

Thus, if $1-2 \frac{\lambda_{1}^{T}}{\Lambda} \geq 0$, then $\frac{\partial \lambda_{1}^{T}}{\partial \alpha} \geq 0, \frac{\partial \lambda_{2}^{T}}{\partial \alpha} \leq 0$, and $\frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha} \geq 0$; if $1-2 \frac{\lambda_{1}^{T}}{\Lambda}<0$, then $\frac{\partial \lambda_{1}^{T}}{\partial \alpha}<0$, $\frac{\partial \lambda_{2}^{T}}{\partial \alpha}>0$ and $\frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha}<0$. According to Proposition 7, it is clear that as μ_{2} increases, λ_{1}^{T} first remains unchanged, then increases, and then decreases. In particular, λ_{1}^{T} peaks at $\mu_{2}=\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ with value $\Lambda\left[1-W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)\right]$. Let $1-2 \frac{\Lambda\left[1-W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)\right]}{\Lambda}>0$. We have $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)>1 / 2$. Recall that $\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$ is increasing in μ_{1}. Thus, when μ_{1} is small, $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right)>1 / 2$ holds, and so $\frac{\partial \lambda_{1}^{T}}{\partial \alpha} \geq 0, \frac{\partial \lambda_{2}^{T}}{\partial \alpha} \leq 0$ and $\frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha} \geq 0$. In contrast, when μ_{1} is large, $W_{2}\left(\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), 0\right) \leq 1 / 2$ holds. Note also that λ_{1}^{T} is decreasing in μ_{2} for $\mu_{2} \geq \mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$. It follows that (1) when μ_{2} is small, $1-2 \frac{\lambda_{1}^{T}}{\Lambda} \leq 0$, and so $\frac{\partial \lambda_{1}^{T}}{\partial \alpha} \leq 0, \frac{\partial \lambda_{2}^{T}}{\partial \alpha} \geq 0$ and $\frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha} \leq 0 ;(2)$ when μ_{2} is large, $1-2 \frac{\lambda_{1}^{T}}{\Lambda}>0$, and so $\frac{\partial \lambda_{1}^{T}}{\partial \alpha}>0, \frac{\partial \lambda_{2}^{T}}{\partial \alpha}<0$ and $\frac{\partial\left(\lambda_{1}^{T}+\lambda_{2}^{T}\right)}{\partial \alpha}>0$.

Proof of Lemma 2. Differentiating (2) with respect to p_{1}, we have

$$
\begin{aligned}
& 1=\left[-\alpha \frac{1}{\Lambda}-\frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\right)}{\partial \lambda_{1}}\right] \frac{\partial \lambda_{1}}{\partial p_{1}}-\frac{1}{\Lambda} \frac{\partial \lambda_{2}}{\partial p_{1}}, \\
& 0=-\frac{1}{\Lambda} \frac{\partial \lambda_{1}}{\partial p_{1}}+\left[-\frac{1}{\Lambda}-\frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}}\right] \frac{\partial \lambda_{2}}{\partial p_{1}} .
\end{aligned}
$$

From the second equation, we have $\operatorname{sign}\left[\frac{\partial \lambda_{1}}{\partial p_{1}}\right]=-\operatorname{sign}\left[\frac{\partial \lambda_{2}}{\partial p_{1}}\right]$. Combining these equations and eliminating $\frac{\partial \lambda_{2}}{\partial p_{1}}$, we have

$$
1=\left[-(\alpha-1) \frac{1}{\Lambda}-\frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\right)}{\partial \lambda_{1}}-\frac{1}{\Lambda}+\frac{\left(\frac{-1}{\Lambda}\right)^{2}}{\frac{1}{\Lambda}+\frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}}}\right] \frac{\partial \lambda_{1}}{\partial p_{1}}
$$

This gives $\frac{\partial \lambda_{1}}{\partial p_{1}}<0$ and $\frac{\partial \lambda_{2}}{\partial p_{1}}>0$. Moreover, we have

$$
\frac{\partial \lambda_{1}}{\partial p_{1}}+\frac{\partial \lambda_{2}}{\partial p_{1}}=\left[\frac{\frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}}}{\frac{1}{\Lambda}+\frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}}}\right] \frac{\partial \lambda_{1}}{\partial p_{1}}<0
$$

In the same way, it can be shown that $\frac{\partial \lambda_{1}}{\partial p_{2}}>0, \frac{\partial \lambda_{2}}{\partial p_{2}}<0$ and $\frac{\partial \lambda_{1}}{\partial p_{2}}+\frac{\partial \lambda_{2}}{\partial p_{2}}<0$.
Proof of Lemma 3. According to

$$
\pi_{1}\left(\lambda_{1}\right)=\lambda_{1}\left[\alpha-\alpha \frac{\lambda_{1}}{\Lambda}-\frac{\lambda_{2}}{\Lambda}-W_{1}\left(\mu_{1}, \lambda_{1}\right)\right],
$$

we have

$$
\begin{aligned}
& \pi_{1}^{\prime}\left(\lambda_{1}\right)=\alpha-2 \alpha \frac{\lambda_{1}}{\Lambda}-\frac{\lambda_{2}}{\Lambda}-W_{1}\left(\mu_{1}, \lambda_{1}\right)-\lambda_{1} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\right)}{\partial \lambda_{1}}, \\
& \pi_{1}^{\prime \prime}\left(\lambda_{1}\right)=-2 \frac{\alpha}{\Lambda}-2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}\right)}{\partial \lambda_{1}}-\lambda_{1} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}\right)}{\partial \lambda_{1}{ }^{2}}<0 .
\end{aligned}
$$

This proves the concavity of $\pi_{1}\left(\lambda_{1}\right)$ in λ_{1}. As for $\pi_{2}\left(\lambda_{2}\right)$, we have

$$
\begin{aligned}
& \pi_{2}^{\prime}\left(\lambda_{2}\right)=1-2 \frac{\lambda_{2}}{\Lambda}-\frac{\lambda_{1}}{\Lambda}-W_{2}\left(\mu_{2}, \lambda_{2}\right)-\lambda_{2} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}} \\
& \pi_{2}^{\prime \prime}\left(\lambda_{2}\right)=-\frac{2}{\Lambda}-2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}}-\lambda_{2} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}\right)}{\partial \lambda_{2}{ }^{2}}<0
\end{aligned}
$$

This proves the concavity of $\pi_{2}\left(\lambda_{2}\right)$ in λ_{2}.

Proof of Lemma 4. Note that each firm's best response is characterized by the FOC. Firm 1's best response, say $\lambda_{1}^{*}\left(\lambda_{2}\right)$, is given by

$$
\alpha-2 \alpha \frac{\lambda_{1}^{*}\left(\lambda_{2}\right)}{\Lambda}-\frac{\lambda_{2}}{\Lambda}-W_{1}\left(\mu_{1}, \lambda_{1}^{*}\left(\lambda_{2}\right)\right)-\lambda_{1}^{*}\left(\lambda_{2}\right) \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{*}\left(\lambda_{2}\right)\right)}{\partial \lambda_{1}}=0
$$

and firm 2's best response, say $\lambda_{2}^{*}\left(\lambda_{1}\right)$, is given by

$$
1-2 \frac{\lambda_{2}^{*}\left(\lambda_{1}\right)}{\Lambda}-\frac{\lambda_{1}}{\Lambda}-W_{2}\left(\mu_{2}, \lambda_{2}^{*}\left(\lambda_{1}\right)\right)-\lambda_{2}^{*}\left(\lambda_{1}\right) \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{*}\left(\lambda_{1}\right)\right)}{\partial \lambda_{2}}=0
$$

This gives

$$
\frac{\partial \lambda_{1}^{*}\left(\lambda_{2}\right)}{\partial \lambda_{2}}=-\frac{1}{2 \alpha+2 \Lambda \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{*}\left(\lambda_{2}\right)\right)}{\partial \lambda_{1}}+\lambda_{1}^{*}\left(\lambda_{2}\right) \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{*}\left(\lambda_{2}\right)\right)}{\partial \lambda_{1}^{2}}}<0,\left|\frac{\partial \lambda_{1}^{*}\left(\lambda_{2}\right)}{\partial \lambda_{2}}\right|<1
$$

and

$$
\frac{\partial \lambda_{2}^{*}\left(\lambda_{1}\right)}{\partial \lambda_{1}}=-\frac{1}{2+2 \Lambda \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{*}\left(\lambda_{1}\right)\right)}{\partial \lambda_{2}}+\lambda_{2}^{*}\left(\lambda_{1}\right) \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{*}\left(\lambda_{1}\right)\right)}{\partial \lambda_{2}^{2}}}<0,\left|\frac{\partial \lambda_{2}^{*}\left(\lambda_{1}\right)}{\partial \lambda_{1}}\right|<1
$$

Proof of Proposition 8.

- For Region (I), firm 1's effective arrival rate λ_{1}^{S} is given by

$$
\begin{equation*}
\alpha\left(1-2 \frac{\lambda_{1}^{S}}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)+\lambda_{1}^{S} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}\right]=0 . \tag{28}
\end{equation*}
$$

- For Region (II), firm 2's effective arrival rate λ_{2}^{S} is given by

$$
\begin{equation*}
\left(1-2 \frac{\lambda_{2}^{S}}{\Lambda}\right)-\left[W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)+\lambda_{2}^{S} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}\right]=0 \tag{29}
\end{equation*}
$$

- For Region (III), λ_{1}^{S} and λ_{2}^{S} are given by

$$
\left\{\begin{array}{l}
\frac{\lambda_{2}^{S}}{\Lambda}=\alpha\left(1-2 \frac{\lambda_{1}^{S}}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)+\lambda_{1}^{S} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}\right] \tag{30}\\
\frac{\lambda_{1}^{S}}{\Lambda}=\left(1-2 \frac{\lambda_{2}^{S}}{\Lambda}\right)-\left[W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)+\lambda_{2}^{S} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}\right]
\end{array}\right.
$$

- $\mu_{2}^{S}\left(\mu_{1}\right)$ and $\mu_{1}^{S}\left(\mu_{2}\right)$ are the solutions to $W_{2}\left(\mu_{2}^{S}\left(\mu_{1}\right), 0\right)=1-\lambda_{1}^{S} / \Lambda$ and $W_{1}\left(\mu_{1}^{S}\left(\mu_{2}\right), 0\right)=$ $\alpha-\lambda_{2}^{S} / \Lambda$, respectively, where λ_{1}^{S} is determined by (15) and λ_{2}^{S} is determined by (16).

According to Lemmas 3 and 4, the equilibrium of the effective arrival rates $\left(\lambda_{1}^{S}, \lambda_{2}^{S}\right)$ is derived from $\pi_{1}^{\prime}\left(\lambda_{1}^{S}\right)=0$ and $\pi_{2}^{\prime}\left(\lambda_{2}^{S}\right)=0$; i.e.,

$$
\begin{align*}
& \frac{\lambda_{2}^{S}}{\Lambda}=\alpha\left(1-2 \frac{\lambda_{1}^{S}}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)+\lambda_{1}^{S} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}\right] \tag{31}\\
& \frac{\lambda_{1}^{S}}{\Lambda}=\left(1-2 \frac{\lambda_{2}^{S}}{\Lambda}\right)-\left[W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)+\lambda_{2}^{S} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}\right] \tag{32}
\end{align*}
$$

Next, we derive the condition for $\lambda_{i}^{S} \geq 0$ for $i=1,2$. We begin by showing that $\frac{\partial \lambda_{1}}{\partial \mu_{1}}>0$ and $\frac{\partial \lambda_{2}}{\partial \mu_{2}}>0$. Differentiating Eq. (??) w.r.t. μ_{1}, we have

$$
\begin{equation*}
\frac{1}{\Lambda} \frac{\partial \lambda_{1}}{\partial \mu_{1}}=-\left[\frac{2}{\Lambda}+2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}+\lambda_{2}^{S} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}^{2}}\right] \frac{\partial \lambda_{2}}{\partial \mu_{1}} \tag{33}
\end{equation*}
$$

This gives $\frac{\partial \lambda_{1}}{\partial \mu_{1}} \times \frac{\partial \lambda_{2}}{\partial \mu_{1}}<0$. Furthermore, differentiating Eq. (??) w.r.t. μ_{1} and substituting $\frac{\partial \lambda_{2}}{\partial \mu_{1}}$ given in Eq. (??), we have

$$
\begin{aligned}
& {\left[2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}+\lambda_{1}^{S} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}^{2}}+\frac{2 \alpha}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}+\lambda_{2}^{S} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}^{2}}+\frac{2}{\Lambda}}\right] \frac{\partial \lambda_{1}}{\partial \mu_{1}} } \\
= & -\left[\frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \mu_{1}}+\lambda_{1}^{S} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1} \partial \mu_{1}}\right]
\end{aligned}
$$

Note that

$$
2 \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}+\lambda_{1}^{S} \frac{\partial^{2} W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}^{2}}+\frac{2 \alpha}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{2 \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}+\lambda_{2}^{S} \frac{\partial^{2} W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}^{2}}+\frac{2}{\Lambda}}>\frac{2 \alpha}{\Lambda}-\frac{1}{\Lambda} \frac{1 / \Lambda}{\frac{2}{\Lambda}}>0
$$

It is clear that $\frac{\partial \lambda_{1}}{\partial \mu_{1}}>0$ and $\frac{\partial \lambda_{2}}{\partial \mu_{1}}<0$. Similarly, we can show that $\frac{\partial \lambda_{1}}{\partial \mu_{2}}<0$ and $\frac{\partial \lambda_{2}}{\partial \mu_{2}}>0$.
Let $\lambda_{2}^{S}=0$. According to Eqs. (??) and (??), we have

$$
\begin{array}{r}
1-\frac{\lambda_{1}^{S}}{\Lambda}=W_{2}\left(\mu_{2}, 0\right) \\
\alpha\left(1-2 \frac{\lambda_{1}^{S}}{\Lambda}\right)-\left[W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)+\lambda_{1}^{S} \frac{\partial W_{1}\left(\mu_{1}, \lambda_{1}^{S}\right)}{\partial \lambda_{1}}\right]=0 \tag{35}
\end{array}
$$

Thus, $\lambda_{2}^{S} \geq 0$ if and only if $\mu_{2} \geq \mu_{2}^{S}\left(\mu_{1}\right)$, where $\mu_{2}^{S}\left(\mu_{1}\right)$ satisfies $W_{2}\left(\mu_{2}^{S}\left(\mu_{1}\right), 0\right)=1-\frac{\lambda_{1}^{S}}{\Lambda}$ with λ_{1}^{S} determined by Eq. (19). Let $\lambda_{1}^{S}=0$. We have

$$
\begin{array}{r}
\alpha-\frac{\lambda_{2}^{S}}{\Lambda}=W_{1}\left(\mu_{1}, 0\right) \\
\left(1-2 \frac{\lambda_{2}^{S}}{\Lambda}\right)-\left[W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)+\lambda_{2}^{S} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{S}\right)}{\partial \lambda_{2}}\right]=0 \tag{37}
\end{array}
$$

Then, $\lambda_{1}^{S} \geq 0$ if and only if $\mu_{1} \geq \mu_{1}^{S}\left(\mu_{2}\right)$, where $\mu_{1}^{S}\left(\mu_{2}\right)$ satisfies $W_{1}\left(\mu_{1}^{S}\left(\mu_{2}\right), 0\right)=\alpha-\frac{\lambda_{2}^{S}}{\Lambda}$ with λ_{2}^{S} determined by Eq. (21). Thus, $\lambda_{i}^{D} \geq 0$ if and only if both $\mu_{2} \geq \mu_{2}^{S}\left(\mu_{1}\right)$ and $\mu_{1} \geq \mu_{1}^{S}\left(\mu_{2}\right)$ hold. Moreover, if one of them does not hold, the market structure becomes a monopoly. In particular, it is easy to show that if $\mu_{2}<\mu_{2}^{S}\left(\mu_{1}\right), \lambda_{1}^{S}$ is exactly characterized by Eq. (19); if $\mu_{1}<\mu_{1}^{S}\left(\mu_{2}\right), \lambda_{2}^{S}$ is exactly characterized by Eq. (21).

Proof of Proposition 9. We omit this proof because it is similar to but less complicated than that of Proposition 6.

Proof of Proposition 10. We omit this proof because it is similar to but less complicated than that of Proposition 7.

Proof of Proposition 11. It follows immediately from Propositions 2 and 4 and Parts (1) and (2) of Proposition 8.

Proof of Proposition 12. The proof is divided into two cases: (1) $\mu_{2}^{T}\left(\mu_{1}\right)<\mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$; (2) $\mu_{1}>\mu_{1}^{T}\left(\mu_{2}\right)$ and $\mu_{2} \geq \mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$. (1) When $\mu_{2}^{T}\left(\mu_{1}\right)<\mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$, we have $\lambda_{2}^{T}=0<\lambda_{2}^{S}$. Note that $\lambda_{1}^{T}=\lambda_{1}^{S}$ when $\mu_{2}=\mu_{2}^{T}\left(\mu_{1}\right)$. Note also that when $\mu_{2}^{T}\left(\mu_{1}\right)<\mu_{2}<\mu_{2}^{T^{\prime}}\left(\mu_{1}\right), \partial \lambda_{1}^{T} / \partial \mu_{2}>0$ and $\partial \lambda_{1}^{S} / \partial \mu_{2}<0$. It is immediate that $\lambda_{1}^{T}>\lambda_{1}^{S}$. (2) When $\mu_{1}>\mu_{1}^{T}\left(\mu_{2}\right)$ and $\mu_{2} \geq \mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$, the equilibrium market structure is a duopoly in the value-based and size-based competitions and $\lambda_{i}^{j}>0, i=1,2$ and $j=T, S$. We prove by contradiction that $\lambda_{1}^{T}>\lambda_{1}^{S}$. Suppose otherwise that $\lambda_{1}^{T} \leq \lambda_{1}^{S}$. In the previous case, we have shown that $\lambda_{1}^{T}>\lambda_{1}^{S}$ when $\mu_{2}=\mu_{2}^{T^{\prime}}\left(\mu_{1}\right)$. By the continuity of λ_{1}^{T} and λ_{1}^{S}. There exists at least one threshold with respect to μ_{2} such that $\lambda_{1}^{T}=\lambda_{1}^{S}$. Then from the second line of Eqs. (1) and (17), we have $\lambda_{2}^{T}=\lambda_{2}^{S}$, which, according to the first line of Eqs. (1) and (17), gives us $\lambda_{1}^{T}=\lambda_{1}^{S}=0$, thus contradicting with $\lambda_{1}^{T}>0$ and $\lambda_{1}^{S}>0$. Therefore, we have $\lambda_{1}^{T}>\lambda_{1}^{S}$, and from the second line of Eqs. (1) and (17), we have $\lambda_{2}^{T}<\lambda_{2}^{S}$.

Proof of Proposition 13. Note from Proposition 12 that $\lambda_{2}^{S}>\lambda_{2}^{T}$, and thus, we can immediately conclude that $p_{2}^{T}<p_{2}^{S}$ since $p_{2}^{j}=\frac{\lambda_{2}^{j}}{\Lambda}+\lambda_{2}^{j} \frac{\partial W_{2}\left(\mu_{2}, \lambda_{2}^{j}\right)}{\partial \lambda_{2}}$ is increasing in λ_{2}^{j} for $j=S, T$. Next, we prove $p_{1}^{T}<p_{1}^{S}$ by contradiction. Note that the equilibrium effective arrival rates and prices in a duopoly satisfy (2). Suppose now that $p_{1}^{T} \geq p_{1}^{S}$. Recall that $p_{2}^{T}<p_{2}^{S}$. From Lemma 2, we have λ_{1} increases in p_{2} and decreases in p_{1}. Thus, $p_{2}^{T}<p_{2}^{S}$ and $p_{1}^{T} \geq p_{1}^{S}$ result in $\lambda_{1}^{T}<\lambda_{1}^{S}$, which contradicts $\lambda_{1}^{T}>\lambda_{1}^{S}$. Hence, $p_{1}^{T}<p_{1}^{S}$ holds. Now, we have $p_{1}^{T}<p_{1}^{S}$ and $p_{2}^{T}<p_{2}^{S}$, from Lemma 2, it is clear that $\lambda_{1}^{T}+\lambda_{2}^{T}>\lambda_{1}^{S}+\lambda_{2}^{S}$.

