Appendix

This section includes the proofs of the results presented in the preceding sections.

Proof of Proposition 1. v_1^e and v_2^e are functions of (v_1, v_2) that are uniquely determined by

$$\begin{cases} p_1 = (\alpha - 1)v_1 + v_2 - W_1(\mu_1, \lambda_1(v_1)) \\ p_2 = v_2 - W_2(\mu_2, \lambda_2(v_1, v_2)) \end{cases},$$
(8)

of which $\lambda_1(v_1) = \Lambda(1-v_1^+)^+$ and $\lambda_2(v_1, v_2) = \Lambda(\min\{1, v_1\} - v_2^+)^+$ with $x^+ = \max\{0, x\}$. It can be easily checked that v_1 is the valuation threshold at which customers is indifferent between services 1 and 2, and v_2 is the valuation threshold at which customer is indifferent between purchasing service 2 and not purchasing any service. Due to the various relationships between 0, 1, v_1 and v_2 , there are four cases. Note that v_1^e and v_2^e are thresholds that determine the firms' effective arrival rate. Literally speaking, (v_1^e, v_2^e) does not necessarily equal (v_1, v_2) : a customer who prefers service 1 over service 2 does not necessarily purchase service 1 eventually, because she may prefer balking over purchasing service 1. As a result, these equilibrium arrival rates comprise four different value-based market segmentations as shown in the following.

The specified functional relation between (v_1^e, v_2^e) and (v_1, v_2) takes the following forms.

- 1) If $0 \le v_2 \le v_1 \le 1$, then $v_1^e = v_1$ and $v_2^e = v_2$.
- 2) If $0 \le v_1 \le v_2 \le 1$, then $v_2^e = v_1^e$ and v_1^e is given by

$$\alpha v_1^e - W_1(\mu_1, \lambda_1^e) = \alpha v_1 - W_1(\mu_1, \Lambda(1 - v_1)) + v_2 - v_1.$$
(9)

3) If $v_1 < 0 \le v_2 \le 1$, then $v_2^e = v_1^e$ and v_1^e is given by

$$\alpha v_1^e - W_1(\mu_1, \lambda_1^e) = \alpha v_1 - W_1(\mu_1, \Lambda) + v_2 - v_1.$$
(10)

4) If $0 \le v_2 \le 1 < v_1$, then $v_1^e = 1$ and v_2^e is given by

$$v_2^e - W_2(\mu_2, \lambda_2^e) = p_2. \tag{11}$$

The proof of this Proposition involves lengthy analysis. We put it as a permanent working paper Huang *et al.* (2017). For brevity, we omit it in this paper, and refer to interested readers to Huang *et al.* (2017) for details. \Box

Proof of Lemma 1. 1. Note that if firm 1 chooses any strategy greater than 1, then $\lambda_1 = 0$. Considering this, firm 1's optimal strategy must be no greater than 1, and this includes two cases, $v_1 \ge v_2$ and $v_1 \le v_2$. 1-1) Suppose that firm 1 chooses a strategy from $v_1 \ge v_2$. Then we have $\lambda_1(v_1) = \Lambda(1 - v_1)$, and firm 1's local best response (denoted by $v_1^1(v_2)$) is

$$v_1^1(v_2) = \operatorname*{argmax}_{v_2 \le v_1 \le 1} \pi_1(v_1),$$

where $\pi_1(v_1) = \Lambda(1-v_1)[(\alpha-1)v_1+v_2-W_1(\mu_1,\lambda_1(v_1))]$. Let $\Lambda(1-v_m) = \mu_1$. It is clear that if $v_1 \leq v_m$, then $W_1(\mu_1,\lambda_1(v_1)) = \infty$, and so $\pi_1(v_1) = -\infty$. Thus, the optimal strategy must satisfy $v_1 > v_m$, in which $\pi_1(v_1)$ is continuous in v_1 . Given $v_m < v_1 \leq 1$, it can be easily calculated that

$$\pi_{1}'(v_{1}) = \Lambda(1-v_{1}) \left[\alpha - 1 + \Lambda \frac{\partial W_{1}(\mu_{1},\lambda_{1}(v_{1}))}{\partial \lambda_{1}} \right] - \Lambda[(\alpha-1)v_{1} + v_{2} - W_{1}(\mu_{1},\lambda_{1}(v_{1}))],$$

$$\pi_{1}''(v_{1}) = -\Lambda^{3}(1-v_{1}) \frac{\partial^{2} W_{1}(\mu_{1},\lambda_{1}(v_{1}))}{\partial \lambda_{1}^{2}} - 2\Lambda \left[\alpha - 1 + \Lambda \frac{\partial W_{1}(\mu_{1},\lambda_{1}(v_{1}))}{\partial \lambda_{1}} \right] < 0.$$

Thus, $\pi_1(v_1)$ is a strictly concave function with respect to v_1 given $v_m < v_1 \le 1$. Let $v_1^0(v_2)$ be the stationary point of $\pi_1(v_1)$ with respect to v_1 given $v_m < v_1 \le 1$, which is determined by the FOC $\pi'_1(v_1^0(v_2)) = 0$, i.e.,

$$\Lambda(1 - v_1^0(v_2)) \left[\alpha - 1 + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(v_1^0(v_2)))}{\partial \lambda_1} \right] - \Lambda[(\alpha - 1)v_1^0(v_2) + v_2 - W_1(\mu_1, \lambda_1(v_1^0(v_2)))] = 0.$$
(12)

Note that $\pi_1''(v_1) < 0$ and $\lim_{v_1 \to v_m} \pi_1'(v_1) = +\infty > 0$. It follows that $v_1^0(v_2)$ is well-defined only when $\pi_1'(1) \le 0$; i.e. $v_2 \ge 1 - \alpha + W_1(\mu_1, 0)$. Thus, given $v_1 \in (v_m, 1]$, if $v_2 < 1 - \alpha + W_1(\mu_1, 0)$, then $\pi_1(v_1)$ is increasing in v_1 ; if $v_2 \ge 1 - \alpha + W_1(\mu_1, 0)$, then $\pi_1(v_1)$ peaks at $v_1^0(v_2)$ and $v_m < v_1^0(v_2) \le 1$. Incorporating the constraint $v_2 \le v_1$, $v_1^1(v_2)$ is given by

$$v_1^1(v_2) = \begin{cases} 1, & v_2 < 1 - \alpha + W_1(\mu_1, 0) \\ \max\{v_1^0(v_2), v_2\}, & v_2 \ge 1 - \alpha + W_1(\mu_1, 0) \end{cases}$$
(13)

In what follows, we show how to simplify $v_1^1(v_2)$ with the condition that $v_2 \ge 1 - \alpha + W_1(\mu_1, 0)$. Differentiating (??) with respect to v_2 , we have

$$\left[\Lambda^{2}(1-v_{1}^{0}(v_{2}))\frac{\partial^{2}W_{1}(\mu_{1},\lambda_{1}(v_{1}^{0}(v_{2})))}{\partial\lambda_{1}^{2}}+2\left(\alpha-1+\Lambda\frac{\partial W_{1}(\mu_{1},\lambda_{1}(v_{1}^{0}(v_{2})))}{\partial\lambda_{1}}\right)\right]\frac{\partial v_{1}^{0}(v_{2})}{\partial v_{2}}=-1,$$

and so

$$\frac{\partial v_1^0(v_2)}{\partial v_2} < 0, \ \frac{\partial v_1^0(v_2) - v_2}{\partial v_2} < 0.$$

Thus, there exists at most one solution with respect to v_2 for $v_1^0(v_2) = v_2$. Note that when $v_2 = 1 - \alpha + W_1(\mu_1, 0), v_1^0(v_2) = 1$ and $v_1^0(v_2) - v_2 = \alpha - W_1(\mu_1, 0) > 0$. Note also that when

 $v_2 = 1$, Eq. (??) becomes

$$\Lambda(1-v_1^0(1))\left[\alpha - 1 + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(v_1^0(1)))}{\partial \lambda_1}\right] - \Lambda[(\alpha - 1)v_1^0(1) + 1 - W_1(\mu_1, \lambda_1(v_1^0(1)))] = 0,$$

whose LHS is obviously decreasing in $v_1^0(1)$, and it is negative when $v_1^0(1) = 1$; so $v_1^0(1) < 1$. Thus, when $v_2 = 1$, $v_1^0(v_2) < 1 = v_2$. This means there exists a unique root with respect to v_2 of $v_1^0(v_2) = v_2$ between $1 - \alpha + W_1(\mu_1, 0)$ and 1. Denote such a root as \underline{v}_2 . By Eq. (??), it satisfies the following equation:

$$\Lambda(1-\underline{v}_2)\left[\alpha-1+\Lambda\frac{\partial W_1(\mu_1,\lambda_1(\underline{v}_2))}{\partial\lambda_1}\right] - \Lambda[\alpha\underline{v}_2 - W_1(\mu_1,\lambda_1(\underline{v}_2))] = 0.$$
(14)

By the monotonicity of $v_1^0(v_2) - v_2$, it is clear that $v_1^0(v_2) > v_2$ for $v_2 < \underline{v}_2$. Then, we can specify $v_1^1(v_2)$ (Eq. (7)) as

$$v_1^1(v_2) = \begin{cases} 1, & 0 \le v_2 < 1 - \alpha + W_1(\mu_1, 0) \\ v_1^0(v_2), & 1 - \alpha + W_1(\mu_1, 0) \le v_2 \le \underline{v}_2 \\ v_2, & v_2 > \underline{v}_2 \end{cases}$$
(15)

1-2) Suppose that firm 1 chooses a strategy from $v_1 \leq v_2$. Then we have $\lambda_1 = \Lambda(1 - v_1)$, and firm 1's local best response (denoted by $v_1^2(v_2)$) is

$$v_1^2(v_2) = \operatorname*{argmax}_{0 \le v_1 \le v_2} \pi_1(v_1),$$

where $\pi_1(v_1) = \Lambda(1-v_1)[\alpha v_1 - W_1(\mu_1, \lambda_1(v_1))]$. Given $v_1 \leq 1$, it can be easily calculated that

$$\pi_1'(v_1) = \Lambda(1-v_1) \left[\alpha + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(v_1))}{\partial \lambda_1} \right] - \Lambda[\alpha v_1 - W_1(\mu_1, \lambda_1(v_1))],$$

$$\pi_1''(v_1) = -\Lambda^3(1-v_1) \frac{\partial W_1(\mu_1, \lambda_1(v_1))}{\partial \lambda_1} - 2\Lambda \left[\alpha + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(v_1))}{\partial \lambda_1} \right] < 0.$$

This means that $\pi_1(\cdot)$ is strictly concave. Let v_1^M be the stationary point of $\pi_1(\cdot)$, which is determined with the following FOC:

$$\Lambda(1-v_1^M)\left[\alpha + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(v_1^M))}{\partial \lambda_1}\right] - \Lambda[\alpha v_1^M - W_1(\mu_1, \lambda_1(v_1^M))] = 0.$$
(16)

Furthermore, as $\pi_1''(v_1) < 0$, $\pi_1'(0) > 0$ and $\pi_1'(1) < 0$, it is clear that v_1^M is well-defined, $0 < v_1^M < 1$, and

$$v_1^2(v_2) = \begin{cases} v_2, & 0 \le v_2 < v_1^M \\ v_1^M, & v_2 \ge v_1^M \end{cases}$$
(17)

In the following, we compare the two local best responses and pick the one resulting in larger profit as the global best response. Before this, we first show that $0 < \underline{v}_2 < v_1^M < 1$. Denote

$$f_3(x) := (2\alpha - 1)(1 - x)\Lambda - \alpha\Lambda + \Lambda \left[W_1(\mu_1, \lambda_1(x)) + \Lambda(1 - x) \frac{\partial W_1(\mu_1, \lambda_1(x))}{\partial \lambda_1} \right], \quad (18)$$

$$f_4(x) := 2\alpha(1-x)\Lambda - \alpha\Lambda + \Lambda \left[W_1(\mu_1, \lambda_1(x)) + \Lambda(1-x)\frac{\partial W_1(\mu_1, \lambda_1(x))}{\partial \lambda_1} \right].$$
 (19)

It is easily seen that given $x \in [0, 1]$, $f_3(x)$ and $f_4(x)$ are decreasing in x, and $f_3(x) \leq f_4(x)$ (the equality holds only when x = 1). And, by Eqs. (8) and (??), it is clear that

$$f_3(\underline{v}_2) = 0, \ f_4(v_1^M) = 0.$$

Since

$$f_3(0) = (\alpha - 1)\Lambda + \Lambda \left[W_1(\mu_1, \lambda_1(0)) + \Lambda \frac{\partial W_1(\mu_1, \lambda_1(0))}{\partial \lambda_1} \right] > 0,$$

$$f_4(1) = -\alpha + W_1(\mu_1, 0) < 0.$$

it follows that $0 < \underline{v}_2$, $v_1^M < 1$ and $f_3(v_1^M) < f_4(v_1^M) = 0$. Thus,

$$0 < \underline{v}_2 < v_1^M < 1.$$

Then, we capture firm 1's global best response $(v_1^*(v_2))$ based on the preceding results, the local best response $v_1^1(v_2)$ and $v_1^2(v_2)$ (see Eqs. (9) and (10)).

- a. When $0 \le v_2 < 1 \alpha + W_1(\mu_1, 0)$, $v_1^2(v_2) = v_2$ is a feasible strategy contained by $v_1 \ge v_2$. Note that $v_1^1(v_2)$ is the local best response for all $v_1 \ge v_2$, so $v_1^2(v_2)$ is dominated by $v_1^1(v_2)$, thus indicating that $v_1^*(v_2) = v_1^1(v_2) = 1$.
- b. When $1 \alpha + W_1(\mu_1, 0) \le v_2 \le \underline{v}_2$, we have $v_1^2(v_2) = v_2$. Similar to Case a, it follows that $v_1^*(v_2) = v_1^1(v_2) = v_1^0(v_2)$.
- c. When $\underline{v}_2 < v_2 < v_1^M$, $v_1^1(v_2) = v_2 = v_1^2(v_2)$, and so $v_1^*(v_2) = v_2$.
- d. When $v_2 \ge v_1^M$, $v_1^1(v_2) = v_2$ is a feasible strategy contained by $v_1 \le v_2$. Note that $v_1^2(v_2)$ is the local best response for all $v_1 \le v_2$, so $v_1^1(v_2)$ is dominated by $v_1^2(v_2)$, thus indicating that $v_1^*(v_2) = v_1^2(v_2) = v_1^M$.

2. Given $v_1 \leq 1$, firm 2's revenue (denoted by $\pi_2(v_2)$) can be divided into two cases; that is

$$\pi_2(v_2) = \begin{cases} \Lambda(v_1 - v_2)[v_2 - W_2(\mu_2, \lambda_2(v_2))], & v_2 \le v_1 \\ 0, & v_2 > v_1 \end{cases}$$

.

Obviously, any strategy greater than v_1 is dominated by those no greater than v_1 . Thus, firm 2's best response is

$$v_2^*(v_1) = \operatorname*{argmax}_{0 \le v_2 \le v_1} \pi_2(v_2) = \Lambda(v_1 - v_2)[v_2 - W_2(\mu_2, \lambda_2(v_2))].$$

Given $0 \leq v_2 \leq v_1$, it can be easily calculated that

$$\begin{aligned} \pi_{2}'(v_{2}) &= \Lambda(v_{1} - v_{2}) \left[1 + \Lambda \frac{\partial W_{2}(\mu_{2}, \lambda_{2}(v_{2}))}{\partial \lambda_{2}} \right] - \Lambda[v_{2} - W_{2}(\mu_{2}, \lambda(v_{2}))], \\ \pi_{2}''(v_{2}) &= -\Lambda^{3}(v_{1} - v_{2}) \frac{\partial^{2} W_{2}(\mu_{2}, \lambda_{2}(v_{2}))}{\partial \lambda_{2}^{2}} - 2\Lambda \left[1 + \Lambda \frac{\partial W_{2}(\mu_{2}, \lambda_{2}(v_{2}))}{\partial \lambda_{2}} \right] < 0. \end{aligned}$$

That is, $\pi_2(\cdot)$ is a strictly concave function. Let $v_2^0(v_1)$ be the stationary point of $\pi_2(\cdot)$ with respect to v_2 with the constraint that $0 \le v_2 \le v_1$, which is determined by

$$\Lambda(v_1 - v_2^0(v_1)) \left[1 + \Lambda \frac{\partial W_2(\mu_2, \lambda_2(v_2^0(v_1)))}{\partial \lambda_2} \right] - \Lambda[v_2^0(v_1) - W_2(\mu_2, \lambda(v_2^0(v_1)))] = 0.$$
(20)

Note that $\pi_2''(v_2) < 0$ and $\pi_2'(0) > 0$. $v_2^0(v_1)$ is well-defined only when $\pi_2'(v_1) \ge 0$; i.e., $v_1 \ge W_2(\mu_2, 0)$. Thus, given $0 \le v_2 \le v_1$, if $v_1 < W_2(\mu_2, 0)$, then $\pi_2(v_2)$ is increasing in v_2 ; if $v_1 \ge W_2(\mu_2, 0)$, then $\pi_2(v_2)$ peaks at $v_2 = v_2^0(v_1)$. Thus, $v_2^*(v_1)$ is given by

$$v_2^*(v_1) = \begin{cases} v_1, & 0 \le v_1 < W_2(\mu_2, 0) \\ v_2^0(v_1), & W_2(\mu_2, 0) \le v_1 \le 1 \end{cases}$$
(21)

In particular, if $v_1 = W_2(\mu_2, 0)$, then $v_2^0(v_1) = W_2(\mu_2, 0)$.

Furthermore, differentiating Eq. (??) with respect to v_1 , we have

$$\begin{split} &\Lambda\left[2+2\Lambda\frac{\partial W_{2}(\mu_{2},\lambda_{2}(v_{2}^{0}(v_{1})))}{\partial\lambda_{2}}+\Lambda^{2}(v_{1}-v_{2}^{0}(v_{1}))\frac{\partial^{2}W_{2}(\mu_{2},\lambda_{2}(v_{2}^{0}(v_{1})))}{\partial\lambda_{2}^{2}}\right]\frac{\partial v_{2}^{0}(v_{1})}{\partial v_{1}}\\ &=\Lambda\left[1+2\Lambda\frac{\partial W_{2}(\mu_{2},\lambda_{2}(v_{2}^{0}(v_{1})))}{\partial\lambda_{2}}+\Lambda^{2}(v_{1}-v_{2}^{0}(v_{1}))\frac{\partial^{2}W_{2}(\mu_{2},\lambda_{2}(v_{2}^{0}(v_{1})))}{\partial\lambda_{2}^{2}}\right], \end{split}$$

and so

$$0 < \frac{\partial v_2^0(v_1)}{\partial v_1} < 1.$$

This proves the monotonicity of $v_2^0(v_1)$ with respective to v_1 .

Proof of Proposition 2. In particular, $\mu_2^T(\mu_1)$ is the unique solution to $W_2(\mu_2^T(\mu_1), 0) = 1 - \lambda_1^T / \Lambda$. We first show that $\mu_2 < \mu_2^T(\mu_1)$ is equivalent to $W_2(\mu_2, 0) > v_1^M$. By the definition of $\mu_2^T(\mu_1)$, it is easily seen that $\mu_2 < \mu_2^T(\mu_1)$ indicates

$$4\alpha t - \alpha \Lambda + \Lambda \left[W_1(\mu_1, 2t) + 2t \frac{\partial W_1(\mu_1, 2t)}{\partial \lambda_1} \right] < 0,$$

where $t = \Lambda[1 - W_2(\mu_2, 0)]/2$. By the definition of $f_4(x)$ (see Eq. (??)) and v_1^M , this further indicates that $f_4(W_2(\mu_2, 0)) < 0 = f_4(v_1^M)$. Finally, by the monotonicity of $f_4(\cdot)$, it follows that $W_2(\mu_2, 0) > v_1^M$. According to Lemma 1, we have Figure 9.

Figure 9: The Nash equilibrium

As shown in Figure 9, there exists continuum equilibria, from $(\underline{v}_2, \underline{v}_2)$ to (v_1^M, v_1^M) . Among these equilibria, $\lambda_2^T = 0$ and so $\pi_2 = 0$ holds. As for firm 1, given $v_2 = v_1$, it solves

$$\max_{\underline{v}_2 \le v_1 \le v_1^M} \pi_1(v_1) = \Lambda(1 - v_1)[\alpha v_1 - W_1(\mu_1, \lambda_1(v_1))]$$

By the definition of v_1^M , it is clear that $\pi_1(v_1)$ peaks at v_1^M . Thus, the equilibrium, (v_1^M, v_1^M) , is Pareto dominating. Let $(v_1^*, v_2^*) = (v_1^M, v_1^M)$, it is clear that $\lambda_1^T = \Lambda(1 - v_1^M)$, so we have

$$2\alpha\lambda_1^T - \alpha\Lambda + \Lambda \left[W_1(\mu_1, \lambda_1^T) + \lambda_1^T \frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial \lambda_1} \right] = 0.$$

Proof of Proposition 3. In particular, $\mu_2^{T'}(\mu_1)$ is the unique solution to

$$\alpha - (2\alpha - 1)\frac{\lambda_1^T}{\Lambda} - \left[W_1(\mu_1, \lambda_1^T) + \lambda_1^T \frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial \lambda_1}\right] = 0.$$
(22)

We first show that $\mu_2^T(\mu_1) \leq \mu_2 < \mu_2^{T'}(\mu_1)$ is equivalent to $\underline{v}_2 < W_2(\mu_2, 0) \leq v_1^M$. In the proof of Proposition 2, we showed that $\mu_2^T(\mu_1) \leq \mu_2$ is equivalent to $W_2(\mu_2, 0) \leq v_1^M$, and so we just need to verify that $\mu_2 < \mu_2^{T'}(\mu_1)$ is equivalent to $\underline{v}_2 < W_2(\mu_2, 0)$.

By the definition of $\mu_2^{T'}(\mu_1)$, it is easily seen that $\mu_2 < \mu_2^{T'}(\mu_1)$ indicates

$$2(2\alpha - 1)t - \alpha\Lambda + \Lambda \left[W_1(\mu_1, 2t) + 2t \frac{\partial W_1(\mu_1, 2t)}{\partial \lambda_1} \right] < 0.$$

By the definition of $f_3(x)$ (see Eq. (??)) and \underline{v}_2 (see Eq. (8)), this further indicates that $f_3(W_2(\mu_2, 0)) < 0 = f_3(\underline{v}_2)$. Finally, by the monotonicity of $f_3(\cdot)$, it follows that $W_2(\mu_2, 0) > \underline{v}_2$, and so $\underline{v}_2 < W_2(\mu_2, 0) \le v_1^M$ holds. According to Lemma 1, we have Figure 10.

Figure 10: The Nash equilibrium

As shown in Figure 10, there exist continuum equilibria, from $(\underline{v}_2, \underline{v}_2)$ to $(W_2(\mu_2, 0), W_2(\mu_2, 0))$. Among these equilibria, $\lambda_2^T = 0$, and so $\pi_2 = 0$ holds. As for firm 1, given $v_2 = v_1$, it solves

$$\max_{\underline{v}_2 \le v_1 \le W_2(\mu_2, 0)} \pi_1(v_1) = \Lambda(1 - v_1) [\alpha v_1 - W_1(\mu_1, \lambda_1(v_1))].$$

By the definition of v_1^M (see Eq. (??)), it is clear that given $W_2(\mu_2, 0) \leq v_1^M$, $\pi_1(v_1)$ is increasing in the feasible domain. Thus, the equilibrium, $(W_2(\mu_2, 0), W_2(\mu_2, 0))$, is Pareto dominating. Let $(v_1^*, v_2^*) = (W_2(\mu_2, 0), W_2(\mu_2, 0))$, it is clear that

$$\lambda_1^T = \Lambda(1 - v_1^*) = \Lambda[1 - W_2(\mu_2, 0)], \ \lambda_2^T = 0.$$

Proof of Proposition 4. In particular, $\mu_1^T(\mu_2)$ is the unique solution to $W_1(\mu_1^T(\mu_2), 0) = \alpha - \lambda_2^T / \Lambda$. We first show that $\mu_1 < \mu_1^T(\mu_2)$ is equivalent to $1 - \alpha + W_1(\mu_1, 0) > v_2^0(1)$. By the definition of $\mu_1^T(\mu_2)$, it is easily seen that $\mu_1 < \mu_1^T(\mu_2)$ indicates

$$4s - \Lambda + \Lambda \left[W_2(\mu_2, 2s) + 2s \frac{\partial W_2(\mu_2, 2s)}{\partial \lambda_2} \right] < 0,$$

where $s = \Lambda[\alpha - W_1(\mu_1, 0)]/2$. Let $f_5(x) := 2(1-x)\Lambda - \Lambda + \Lambda \left[W_2(\mu_2, \Lambda(1-x)) + \Lambda(1-x)\frac{\partial W_2(\mu_2, \Lambda(1-x))}{\partial \lambda_2}\right]$. It is clear that $f_5(x)$ is decreasing in x, and $f_5(1-\alpha+W_1(\mu_1, 0)) = 4s - \Lambda + \Lambda \left[W_2(\mu_2, 2s) + 2s\frac{\partial W_2(\mu_2, 2s)}{\partial \lambda_2}\right]$. According to Eq. (??), it is clear that $f_5(v_2^0(1)) = 0$. Thus, we have $f_5(1-\alpha+W_1(\mu_1, 0)) < 0 = f_5(v_2^0(1))$. Finally, by the monotonicity of $f_5(\cdot)$, it follows that $1-\alpha+W_1(\mu_1, 0) > v_2^0(1)$. According to Lemma 1, we have Figure 11.

Figure 11: The Nash equilibrium

As shown in Figure 11, the equilibrium is $(v_1^*, v_2^*) = (1, v_2^0(1))$, and so $\lambda_1^T = 0$ and $\lambda_2^T = \Lambda[1 - v_2^0(1)]$. Let $v_2^0(1) = 1 - \frac{\lambda_2^T}{\Lambda}$ and substitute it into $f_5(v_2^0(1)) = 0$. It follows that

$$2\lambda_2^T - \Lambda + \Lambda \left[W_2(\mu_2, \lambda_2^T) + \lambda_2^T \frac{\partial W_2(\mu_2, \lambda_2^T)}{\partial \lambda_2} \right] = 0.$$

Proof of Proposition 5. By the definition of $\mu_1^T(\mu_2)$ and $\mu_2^{T'}(\mu_1)$, when $\mu_1 \ge \mu_1^T(\mu_2)$ and $\mu_2 \ge \mu_2^{T'}(\mu_1)$, we have the following figure.

Figure 12: The Nash equilibrium

As shown in Figure 12, the equilibrium, (v_1^*, v_2^*) , satisfies

$$\begin{cases} \Lambda(1-v_1^*) \left[\alpha - 1 + \Lambda \frac{\partial W_1(\mu_1, \Lambda(1-v_1^*))}{\partial \lambda_1} \right] - (\alpha - 1)\Lambda v_1^* + \Lambda W_1(\mu_1, \Lambda(1-v_1^*)) - \Lambda v_2^* = 0, \\ \Lambda(v_1^* - v_2^*) \left[1 + \Lambda \frac{\partial W_2(\mu_2, \Lambda(v_1^* - v_2^*))}{\partial \lambda_2} \right] - \Lambda v_2^* + \Lambda W_2(\mu_2, \Lambda(v_1^* - v_2^*)) = 0. \end{cases}$$
(23)

On this occasion, $\lambda_1^T = \Lambda(1 - v_1^*)$ and $\lambda_2^T = \Lambda(v_1^* - v_2^*)$. Hence, we have

$$\begin{cases} (2\alpha - 1)\lambda_1^T + \lambda_2^T - \alpha\Lambda + \Lambda \left[W_1(\mu_1, \lambda_1^T) + \lambda_1^T \frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial \lambda_1} \right] = 0, \\ \lambda_1^T + 2\lambda_2^T - \Lambda + \Lambda \left[W_2(\mu_2, \lambda_2^T) + \lambda_2^T \frac{\partial W_2(\mu_2, \lambda_2^T)}{\partial \lambda_2} \right] = 0. \end{cases}$$

Proof of Proposition 6. 1. According to Eq. (??), it is clear that when $\mu_1 = \underline{\mu_1}$, $\lambda_1^T = 0$, and thus, $\mu_2^T(\mu_1) = \underline{\mu_2}$ ($\mu_2^{T'}(\mu_1) = \underline{\mu_2}$). According to Eq. (??), we have $\mu_2 = \underline{\mu_2}$, $\lambda_2^T = 0$. Thus, $\mu_1^T(\mu_2) = \underline{\mu_1}$.

2. Let

$$f_1(x) = \alpha \left(1 - 2\frac{x}{\Lambda}\right) - \left[W_1(\mu_1, x) + x\frac{\partial W_1(\mu_1, x)}{\partial \lambda_1}\right]$$

It is easy to see that $f'_1(x) < 0$ and $\frac{\partial f_1(x)}{\partial \mu_1} > 0$. According to Eq. (??), it is clear that λ_1^T is increasing in μ_1 . From $W_2(\mu_2^T(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda}$, it is clear that $\mu_2^T(\mu_1)$ is increasing in μ_1 .

Let

$$f_2(x) = \alpha - (2\alpha - 1)\frac{x}{\Lambda} - \left[W_1(\mu_1, x) + x\frac{\partial W_1(\mu_1, x)}{\partial \lambda_1}\right]$$

It is easy to see that $f'_2(x) < 0$ and $\frac{\partial f_2(x)}{\partial \mu_1} > 0$. According to Eq. (??), it is clear that λ_1^T is increasing in μ_1 . From $W_2(\mu_2^{T'}(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda}$, it is clear that $\mu_2^{T'}(\mu_1)$ is increasing in μ_1 .

Let

$$f_3(x) = 1 - 2\frac{x}{\Lambda} - \left[W_2(\mu_2, x) + x\frac{\partial W_2(\mu_2, x)}{\partial \lambda_2}\right].$$

It is easy to see that $f'_3(x) < 0$ and $\frac{\partial f_3(x)}{\partial \mu_2} > 0$. According to Eq. (??), it is clear that λ_2^T is increasing in μ_2 . From $W_1(\mu_1^T(\mu_2), 0) = \alpha - \frac{\lambda_2^T}{\Lambda}$, it is clear that $\mu_2^T(\mu_1)$ is increasing in μ_1 .

3. According to Eq. (??), it is clear that λ_1^T is increasing in α . From $W_2(\mu_2^T(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda}$, it is clear that $\mu_2^T(\mu_1)$ is increasing in α . According to Eq. (??), it is clear that λ_2^T is constant in α . From $W_1(\mu_1^T(\mu_2), 0) = \alpha - \frac{\lambda_2^T}{\Lambda}$, it is clear that $\mu_1^T(\mu_2)$ is decreasing in α .

4. We verify this via a contradiction. Assume that there is at least one intersecting point between $\mu_2 = \mu_2^T(\mu_1)$ and $\mu_1 = \mu_1^T(\mu_2)$. Then there exists a pair of (μ_1, μ_2) such that

$$\underline{\mu_1} < \mu_1 \le \mu_1^T(\mu_2), \ \underline{\mu_2} < \mu_2 \le \mu_2^T(\mu_1).$$
(24)

According to Theorems 2 and 4, this indicates that

$$\lambda_1^T = 0, \ \lambda_2^T = 0. \tag{25}$$

However, this is true only when

$$\mu_1 < \underline{\mu_1} \& \mu_2 < \underline{\mu_2}.$$

Otherwise, the firm can post a small positive price to obtain some customers, and thus, Eq. (14) cannot hold. According to Eq. (13), there is a contradiction. Similarly, we can show that there is no intersecting point between $\mu_2 = \mu_2^{T'}(\mu_1)$ and $\mu_1 = \mu_1^T(\mu_2)$.

To show that there is no intersecting point between $\mu_2 = \mu_2^{T'}(\mu_1)$ and $\mu_2 = \mu_2^{T}(\mu_1)$, it suffices to show that $\mu_2^{T'}(\mu_1) > \mu_2^S(\mu_1)$ for any $\mu_1 > \underline{\mu_1}$. Note that $\mu_2^S(\mu_1)$ is determined by $W_2(\mu_2^S(\mu_1), 0) = 1 - x$, where x satisfies $\alpha \left(1 - 2\frac{x}{\Lambda}\right) - \left[W_1(\mu_1, x) + x\frac{\partial W_1(\mu_1, x)}{\partial \lambda_1}\right]; \ \mu_2^{T'}(\mu_1)$ is determined by $W_2(\mu_2^{T'}(\mu_1), 0) = 1 - y$, where x satisfies $\alpha \left(1 - 2\frac{y}{\Lambda}\right) + \frac{y}{\Lambda} - \left[W_1(\mu_1, y) + y\frac{\partial W_1(\mu_1, y)}{\partial \lambda_1}\right]$. As a result, we need to show that y > x. Recall that $f_1(x) = 0 = f_2(y); \ f_2'(\cdot)$ is decreasing; $f_2(x) - f_1(x) = x/\Lambda > 0$. It follows that $f_2(y) = 0 = f_1(x) < f_2(x)$, and so y > x.

5. From Eq. (??), it is easy to see that $\lambda_1^T < \Lambda/2$, and thus, $W_2(\mu_2^T(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda} > \frac{1}{2}$. From Eq. (??), it is easy to see that $\lambda_1^T < \frac{\alpha}{2\alpha - 1}\Lambda$, and thus, $W_2(\mu_2^{T'}(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda} > \frac{\alpha - 1}{2\alpha - 1}$. From Eq. (??), it is easy to see that $\lambda_1^T < \Lambda/2$, and so $W_2(\mu_2^T(\mu_1), 0) = 1 - \frac{\lambda_1^T}{\Lambda} > \frac{1}{2}$.

Proof of Proposition 7. The proofs of the first three cases are straightforward; thus, we give the last two cases.

For Case 4, differentiating Eq. (1) w.r.t. μ_1 , we have

$$\frac{1}{\Lambda}\frac{\partial\lambda_1^T}{\partial\mu_1} = -\left[\frac{2}{\Lambda} + 2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial\lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial\lambda_2^2}\right]\frac{\partial\lambda_2^T}{\partial\mu_1}$$
(26)

and

$$\frac{1}{\Lambda}\frac{\partial\lambda_2^T}{\partial\mu_1} = -\left[\frac{2\alpha - 1}{\Lambda} + 2\frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial\lambda_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1, \lambda_1^T)}{\partial\lambda_1^2}\right]\frac{\partial\lambda_1^T}{\partial\mu_1} - \left[\frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial\mu_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1, \lambda_1^T)}{\partial\lambda_1 \partial\mu_1}\right]$$
(27)

This gives
$$\frac{\partial \lambda_1^T}{\partial \mu_1} \times \frac{\partial \lambda_2^T}{\partial \mu_1} < 0$$
. Furthermore, substituting $\frac{\partial \lambda_2^T}{\partial \mu_1}$ given in Eq. (??) into Eq. (??), we have

$$\begin{bmatrix} 2\frac{\partial W_1(\mu_1,\lambda_1^T)}{\partial \lambda_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1,\lambda_1^T)}{\partial \lambda_1^2} + \frac{2\alpha - 1}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2^2} + \frac{2}{\Lambda}} \end{bmatrix} \frac{\partial \lambda_1^T}{\partial \mu_1}$$

$$= -\left[\frac{\partial W_1(\mu_1,\lambda_1^T)}{\partial \mu_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1,\lambda_1^T)}{\partial \lambda_1 \partial \mu_1} \right].$$

Note that

$$\frac{2\alpha-1}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2^2} + \frac{2}{\Lambda}} > \frac{2\alpha-1}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{\frac{2}{\Lambda}} > 0.$$

It is clear that $\frac{\partial \lambda_1^T}{\partial \mu_1} > 0$ and $\frac{\partial \lambda_2^T}{\partial \mu_1} < 0$. Now, $\frac{\partial \lambda_1^T}{\partial \mu_1} + \frac{\partial \lambda_2^T}{\partial \mu_1} = \begin{bmatrix} \frac{1}{\Lambda} + 2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2^2} \\ \frac{2}{\Lambda} + 2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2^2} \end{bmatrix} \frac{\partial \lambda_1^T}{\partial \mu_1} > 0.$ Similarly, we can show that $\frac{\partial \lambda_1^T}{\partial \mu_2} < 0$, $\frac{\partial \lambda_2^T}{\partial \mu_2} > 0$ and $\frac{\partial \lambda_1^T}{\partial \mu_2} + \frac{\partial \lambda_2^T}{\partial \mu_2} > 0.$

For Case 5, differentiating Eq. (1) w.r.t. α , we have

$$-\frac{1}{\Lambda}\frac{\partial\lambda_1^T}{\partial\alpha} = \left[2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial\lambda_2} + \lambda_2^T\frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial\lambda_2^2} + \frac{2}{\Lambda}\right]\frac{\partial\lambda_2^T}{\partial\alpha}$$

and

$$1 - 2\frac{\lambda_1^T}{\Lambda} = \left[2\frac{\partial W_1(\mu_1, \lambda_1^T)}{\partial \lambda_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1, \lambda_1^T)}{\partial \lambda_1^2} + \frac{2\alpha - 1}{\Lambda}\right] \frac{\partial \lambda_1^T}{\partial \alpha} + \frac{1}{\Lambda} \frac{\partial \lambda_2^T}{\partial \alpha}.$$

This gives $\frac{\partial \lambda_1^T}{\partial \alpha} \times \frac{\partial \lambda_2^T}{\partial \alpha} < 0, \ \frac{\partial (\lambda_1^T + \lambda_2^T)}{\partial \alpha} = -\left[2\Lambda \frac{\partial W_2(\mu_2, \lambda_2^T)}{\partial \lambda_2} + \Lambda \lambda_2^T \frac{\partial^2 W_2(\mu_2, \lambda_2^T)}{\partial \lambda_2^2} + 1\right] \frac{\partial \lambda_2^T}{\partial \alpha}$ and

$$\left[2\frac{\partial W_1(\mu_1,\lambda_1^T)}{\partial \lambda_1} + \lambda_1^T \frac{\partial^2 W_1(\mu_1,\lambda_1^T)}{\partial \lambda_1^2} + \frac{2\alpha - 1}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{2\frac{\partial W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2} + \lambda_2^T \frac{\partial^2 W_2(\mu_2,\lambda_2^T)}{\partial \lambda_2^2} + \frac{2}{\Lambda}}\right] \frac{\partial \lambda_1^T}{\partial \alpha} = 1 - 2\frac{\lambda_1^T}{\Lambda}.$$

Thus, if $1 - 2\frac{\lambda_1^T}{\Lambda} \ge 0$, then $\frac{\partial\lambda_1^T}{\partial\alpha} \ge 0$, $\frac{\partial\lambda_2^T}{\partial\alpha} \le 0$, and $\frac{\partial(\lambda_1^T + \lambda_2^T)}{\partial\alpha} \ge 0$; if $1 - 2\frac{\lambda_1^T}{\Lambda} < 0$, then $\frac{\partial\lambda_1^T}{\partial\alpha} < 0$, $\frac{\partial\lambda_2^T}{\partial\alpha} > 0$ and $\frac{\partial(\lambda_1^T + \lambda_2^T)}{\partial\alpha} < 0$. According to Proposition 7, it is clear that as μ_2 increases, λ_1^T first remains unchanged, then increases, and then decreases. In particular, λ_1^T peaks at $\mu_2 = \mu_2^{T'}(\mu_1)$ with value $\Lambda[1 - W_2(\mu_2^{T'}(\mu_1), 0)]$. Let $1 - 2\frac{\Lambda[1 - W_2(\mu_2^{T'}(\mu_1), 0)]}{\Lambda} > 0$. We have $W_2(\mu_2^{T'}(\mu_1), 0) > 1/2$. Recall that $\mu_2^{T'}(\mu_1)$ is increasing in μ_1 . Thus, when μ_1 is small, $W_2(\mu_2^{T'}(\mu_1), 0) > 1/2$ holds, and so $\frac{\partial\lambda_1^T}{\partial\alpha} \ge 0$, $\frac{\partial\lambda_2^T}{\partial\alpha} \le 0$ and $\frac{\partial(\lambda_1^T + \lambda_2^T)}{\partial\alpha} \ge 0$. In contrast, when μ_1 is large, $W_2(\mu_2^{T'}(\mu_1), 0) \le 1/2$ holds. Note also that λ_1^T is decreasing in μ_2 for $\mu_2 \ge \mu_2^{T'}(\mu_1)$. It follows that (1) when μ_2 is small, $1 - 2\frac{\lambda_1^T}{\Lambda} \le 0$, and so $\frac{\partial\lambda_1^T}{\partial\alpha} \le 0$ and $\frac{\partial(\lambda_1^T + \lambda_2^T)}{\partial\alpha} \ge 0$ and $\frac{\partial(\lambda_1^T + \lambda_2^T)}{\partial\alpha} \ge 0$. \square **Proof of Lemma 2.** Differentiating (2) with respect to p_1 , we have

$$1 = \left[-\alpha \frac{1}{\Lambda} - \frac{\partial W_1(\mu_1, \lambda_1)}{\partial \lambda_1} \right] \frac{\partial \lambda_1}{\partial p_1} - \frac{1}{\Lambda} \frac{\partial \lambda_2}{\partial p_1},$$

$$0 = -\frac{1}{\Lambda} \frac{\partial \lambda_1}{\partial p_1} + \left[-\frac{1}{\Lambda} - \frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2} \right] \frac{\partial \lambda_2}{\partial p_1}.$$

From the second equation, we have $sign[\frac{\partial \lambda_1}{\partial p_1}] = -sign[\frac{\partial \lambda_2}{\partial p_1}]$. Combining these equations and eliminating $\frac{\partial \lambda_2}{\partial p_1}$, we have

$$1 = \left[-(\alpha - 1)\frac{1}{\Lambda} - \frac{\partial W_1(\mu_1, \lambda_1)}{\partial \lambda_1} - \frac{1}{\Lambda} + \frac{\left(\frac{-1}{\Lambda}\right)^2}{\frac{1}{\Lambda} + \frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2}} \right] \frac{\partial \lambda_1}{\partial p_1}$$

This gives $\frac{\partial \lambda_1}{\partial p_1} < 0$ and $\frac{\partial \lambda_2}{\partial p_1} > 0$. Moreover, we have

$$\frac{\partial \lambda_1}{\partial p_1} + \frac{\partial \lambda_2}{\partial p_1} = \left[\frac{\frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2}}{\frac{1}{\Lambda} + \frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2}}\right] \frac{\partial \lambda_1}{\partial p_1} < 0.$$

In the same way, it can be shown that $\frac{\partial \lambda_1}{\partial p_2} > 0$, $\frac{\partial \lambda_2}{\partial p_2} < 0$ and $\frac{\partial \lambda_1}{\partial p_2} + \frac{\partial \lambda_2}{\partial p_2} < 0$.

Proof of Lemma 3. According to

$$\pi_1(\lambda_1) = \lambda_1 \left[\alpha - \alpha \frac{\lambda_1}{\Lambda} - \frac{\lambda_2}{\Lambda} - W_1(\mu_1, \lambda_1) \right],$$

we have

$$\pi_1'(\lambda_1) = \alpha - 2\alpha \frac{\lambda_1}{\Lambda} - \frac{\lambda_2}{\Lambda} - W_1(\mu_1, \lambda_1) - \lambda_1 \frac{\partial W_1(\mu_1, \lambda_1)}{\partial \lambda_1} - \pi_1''(\lambda_1) = -2\frac{\alpha}{\Lambda} - 2\frac{\partial W_1(\mu_1, \lambda_1)}{\partial \lambda_1} - \lambda_1 \frac{\partial^2 W_1(\mu_1, \lambda_1)}{\partial \lambda_1^2} < 0.$$

This proves the concavity of $\pi_1(\lambda_1)$ in λ_1 . As for $\pi_2(\lambda_2)$, we have

$$\pi_2'(\lambda_2) = 1 - 2\frac{\lambda_2}{\Lambda} - \frac{\lambda_1}{\Lambda} - W_2(\mu_2, \lambda_2) - \lambda_2 \frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2}$$
$$\pi_2''(\lambda_2) = -\frac{2}{\Lambda} - 2\frac{\partial W_2(\mu_2, \lambda_2)}{\partial \lambda_2} - \lambda_2 \frac{\partial^2 W_2(\mu_2, \lambda_2)}{\partial \lambda_2^2} < 0.$$

This proves the concavity of $\pi_2(\lambda_2)$ in λ_2 .

Proof of Lemma 4. Note that each firm's best response is characterized by the FOC. Firm 1's best response, say $\lambda_1^*(\lambda_2)$, is given by

$$\alpha - 2\alpha \frac{\lambda_1^*(\lambda_2)}{\Lambda} - \frac{\lambda_2}{\Lambda} - W_1(\mu_1, \lambda_1^*(\lambda_2)) - \lambda_1^*(\lambda_2) \frac{\partial W_1(\mu_1, \lambda_1^*(\lambda_2))}{\partial \lambda_1} = 0,$$

and firm 2's best response, say $\lambda_2^*(\lambda_1)$, is given by

$$1 - 2\frac{\lambda_2^*(\lambda_1)}{\Lambda} - \frac{\lambda_1}{\Lambda} - W_2(\mu_2, \lambda_2^*(\lambda_1)) - \lambda_2^*(\lambda_1)\frac{\partial W_2(\mu_2, \lambda_2^*(\lambda_1))}{\partial \lambda_2} = 0.$$

This gives

$$\frac{\partial \lambda_1^*(\lambda_2)}{\partial \lambda_2} = -\frac{1}{2\alpha + 2\Lambda \frac{\partial W_1(\mu_1, \lambda_1^*(\lambda_2))}{\partial \lambda_1} + \lambda_1^*(\lambda_2) \frac{\partial^2 W_1(\mu_1, \lambda_1^*(\lambda_2))}{\partial \lambda_1^2}} < 0, \ |\frac{\partial \lambda_1^*(\lambda_2)}{\partial \lambda_2}| < 1,$$

and

$$\frac{\partial \lambda_2^*(\lambda_1)}{\partial \lambda_1} = -\frac{1}{2 + 2\Lambda \frac{\partial W_2(\mu_2, \lambda_2^*(\lambda_1))}{\partial \lambda_2} + \lambda_2^*(\lambda_1) \frac{\partial^2 W_2(\mu_2, \lambda_2^*(\lambda_1))}{\partial \lambda_2^2}} < 0, \ |\frac{\partial \lambda_2^*(\lambda_1)}{\partial \lambda_1}| < 1.$$

Proof of Proposition 8.

• For Region (I), firm 1's effective arrival rate λ_1^S is given by

$$\alpha \left(1 - 2\frac{\lambda_1^S}{\Lambda}\right) - \left[W_1(\mu_1, \lambda_1^S) + \lambda_1^S \frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1}\right] = 0.$$
(28)

• For Region (II), firm 2's effective arrival rate λ_2^S is given by

$$\left(1 - 2\frac{\lambda_2^S}{\Lambda}\right) - \left[W_2(\mu_2, \lambda_2^S) + \lambda_2^S \frac{\partial W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2}\right] = 0.$$
(29)

• For Region (III), λ_1^S and λ_2^S are given by

$$\begin{cases} \frac{\lambda_2^S}{\Lambda} = \alpha \left(1 - 2\frac{\lambda_1^S}{\Lambda} \right) - \left[W_1(\mu_1, \lambda_1^S) + \lambda_1^S \frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1} \right], \\ \frac{\lambda_1^S}{\Lambda} = \left(1 - 2\frac{\lambda_2^S}{\Lambda} \right) - \left[W_2(\mu_2, \lambda_2^S) + \lambda_2^S \frac{\partial W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2} \right]. \end{cases}$$
(30)

• $\mu_2^S(\mu_1)$ and $\mu_1^S(\mu_2)$ are the solutions to $W_2(\mu_2^S(\mu_1), 0) = 1 - \lambda_1^S/\Lambda$ and $W_1(\mu_1^S(\mu_2), 0) = \alpha - \lambda_2^S/\Lambda$, respectively, where λ_1^S is determined by (15) and λ_2^S is determined by (16).

According to Lemmas 3 and 4, the equilibrium of the effective arrival rates $(\lambda_1^S, \lambda_2^S)$ is derived from $\pi'_1(\lambda_1^S) = 0$ and $\pi'_2(\lambda_2^S) = 0$; i.e.,

$$\frac{\lambda_2^S}{\Lambda} = \alpha \left(1 - 2\frac{\lambda_1^S}{\Lambda} \right) - \left[W_1(\mu_1, \lambda_1^S) + \lambda_1^S \frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1} \right],\tag{31}$$

$$\frac{\lambda_1^S}{\Lambda} = \left(1 - 2\frac{\lambda_2^S}{\Lambda}\right) - \left[W_2(\mu_2, \lambda_2^S) + \lambda_2^S \frac{\partial W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2}\right].$$
(32)

Next, we derive the condition for $\lambda_i^S \ge 0$ for i = 1, 2. We begin by showing that $\frac{\partial \lambda_1}{\partial \mu_1} > 0$ and $\frac{\partial \lambda_2}{\partial \mu_2} > 0$. Differentiating Eq. (??) w.r.t. μ_1 , we have

$$\frac{1}{\Lambda}\frac{\partial\lambda_1}{\partial\mu_1} = -\left[\frac{2}{\Lambda} + 2\frac{\partial W_2(\mu_2,\lambda_2^S)}{\partial\lambda_2} + \lambda_2^S \frac{\partial^2 W_2(\mu_2,\lambda_2^S)}{\partial\lambda_2^2}\right]\frac{\partial\lambda_2}{\partial\mu_1}.$$
(33)

This gives $\frac{\partial \lambda_1}{\partial \mu_1} \times \frac{\partial \lambda_2}{\partial \mu_1} < 0$. Furthermore, differentiating Eq. (??) w.r.t. μ_1 and substituting $\frac{\partial \lambda_2}{\partial \mu_1}$ given in Eq. (??), we have

$$\begin{split} & \left[2 \frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1} + \lambda_1^S \frac{\partial^2 W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1^2} + \frac{2\alpha}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{2 \frac{\partial W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2} + \lambda_2^S \frac{\partial^2 W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2^2} + \frac{2}{\Lambda}} \right] \frac{\partial \lambda_1}{\partial \mu_1} \\ & = - \left[\frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \mu_1} + \lambda_1^S \frac{\partial^2 W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1 \partial \mu_1} \right]. \end{split}$$

Note that

=

$$2\frac{\partial W_1(\mu_1,\lambda_1^S)}{\partial \lambda_1} + \lambda_1^S \frac{\partial^2 W_1(\mu_1,\lambda_1^S)}{\partial \lambda_1^2} + \frac{2\alpha}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{2\frac{\partial W_2(\mu_2,\lambda_2^S)}{\partial \lambda_2} + \lambda_2^S \frac{\partial^2 W_2(\mu_2,\lambda_2^S)}{\partial \lambda_2^2} + \frac{2}{\Lambda}} > \frac{2\alpha}{\Lambda} - \frac{1}{\Lambda} \frac{1/\Lambda}{\frac{2}{\Lambda}} > 0.$$

It is clear that $\frac{\partial \lambda_1}{\partial \mu_1} > 0$ and $\frac{\partial \lambda_2}{\partial \mu_1} < 0$. Similarly, we can show that $\frac{\partial \lambda_1}{\partial \mu_2} < 0$ and $\frac{\partial \lambda_2}{\partial \mu_2} > 0$.

Let $\lambda_2^S = 0$. According to Eqs. (??) and (??), we have

$$1 - \frac{\lambda_1^S}{\Lambda} = W_2(\mu_2, 0), \tag{34}$$

$$\alpha \left(1 - 2\frac{\lambda_1^S}{\Lambda}\right) - \left[W_1(\mu_1, \lambda_1^S) + \lambda_1^S \frac{\partial W_1(\mu_1, \lambda_1^S)}{\partial \lambda_1}\right] = 0.$$
(35)

Thus, $\lambda_2^S \ge 0$ if and only if $\mu_2 \ge \mu_2^S(\mu_1)$, where $\mu_2^S(\mu_1)$ satisfies $W_2(\mu_2^S(\mu_1), 0) = 1 - \frac{\lambda_1^S}{\Lambda}$ with λ_1^S determined by Eq. (19). Let $\lambda_1^S = 0$. We have

$$\alpha - \frac{\lambda_2^S}{\Lambda} = W_1(\mu_1, 0), \tag{36}$$

$$\left(1 - 2\frac{\lambda_2^S}{\Lambda}\right) - \left[W_2(\mu_2, \lambda_2^S) + \lambda_2^S \frac{\partial W_2(\mu_2, \lambda_2^S)}{\partial \lambda_2}\right] = 0.$$
(37)

Then, $\lambda_1^S \ge 0$ if and only if $\mu_1 \ge \mu_1^S(\mu_2)$, where $\mu_1^S(\mu_2)$ satisfies $W_1(\mu_1^S(\mu_2), 0) = \alpha - \frac{\lambda_2^S}{\Lambda}$ with λ_2^S determined by Eq. (21). Thus, $\lambda_i^D \ge 0$ if and only if both $\mu_2 \ge \mu_2^S(\mu_1)$ and $\mu_1 \ge \mu_1^S(\mu_2)$ hold. Moreover, if one of them does not hold, the market structure becomes a monopoly. In particular, it is easy to show that if $\mu_2 < \mu_2^S(\mu_1)$, λ_1^S is exactly characterized by Eq. (19); if $\mu_1 < \mu_1^S(\mu_2)$, λ_2^S is exactly characterized by Eq. (21).

Proof of Proposition 9. We omit this proof because it is similar to but less complicated than that of Proposition 6. □

Proof of Proposition 10. We omit this proof because it is similar to but less complicated than that of Proposition 7. \Box

Proof of Proposition 11. It follows immediately from Propositions 2 and 4 and Parts (1) and (2) of Proposition 8. □

Proof of Proposition 12. The proof is divided into two cases: (1) $\mu_2^T(\mu_1) < \mu_2 < \mu_2^{T'}(\mu_1)$; (2) $\mu_1 > \mu_1^T(\mu_2)$ and $\mu_2 \ge \mu_2^{T'}(\mu_1)$. (1) When $\mu_2^T(\mu_1) < \mu_2 < \mu_2^{T'}(\mu_1)$, we have $\lambda_2^T = 0 < \lambda_2^S$. Note that $\lambda_1^T = \lambda_1^S$ when $\mu_2 = \mu_2^T(\mu_1)$. Note also that when $\mu_2^T(\mu_1) < \mu_2 < \mu_2^{T'}(\mu_1)$, $\partial \lambda_1^T/\partial \mu_2 > 0$ and $\partial \lambda_1^S/\partial \mu_2 < 0$. It is immediate that $\lambda_1^T > \lambda_1^S$. (2) When $\mu_1 > \mu_1^T(\mu_2)$ and $\mu_2 \ge \mu_2^{T'}(\mu_1)$, the equilibrium market structure is a duopoly in the value-based and size-based competitions and $\lambda_i^j > 0$, i = 1, 2 and j = T, S. We prove by contradiction that $\lambda_1^T > \lambda_1^S$. Suppose otherwise that $\lambda_1^T \le \lambda_1^S$. In the previous case, we have shown that $\lambda_1^T > \lambda_1^S$ when $\mu_2 = \mu_2^{T'}(\mu_1)$. By the continuity of λ_1^T and λ_1^S . There exists at least one threshold with respect to μ_2 such that $\lambda_1^T = \lambda_1^S$. Then from the second line of Eqs. (1) and (17), we have $\lambda_2^T = \lambda_2^S$, which, according to the first line of Eqs. (1) and (17), gives us $\lambda_1^T = \lambda_1^S = 0$, thus contradicting with $\lambda_1^T > 0$ and $\lambda_1^S > 0$. Therefore, we have $\lambda_1^T > \lambda_1^S$ and from the second line of Eqs. (1) and (17), we have $\lambda_2^T = \lambda_2^S$.

Proof of Proposition 13. Note from Proposition 12 that $\lambda_2^S > \lambda_2^T$, and thus, we can immediately conclude that $p_2^T < p_2^S$ since $p_2^j = \frac{\lambda_2^j}{\Lambda} + \lambda_2^j \frac{\partial W_2(\mu_2, \lambda_2^j)}{\partial \lambda_2}$ is increasing in λ_2^j for j = S, T. Next, we prove $p_1^T < p_1^S$ by contradiction. Note that the equilibrium effective arrival rates and prices in a duopoly satisfy (2). Suppose now that $p_1^T \ge p_1^S$. Recall that $p_2^T < p_2^S$. From Lemma 2, we have λ_1 increases in p_2 and decreases in p_1 . Thus, $p_2^T < p_2^S$ and $p_1^T \ge p_1^S$ result in $\lambda_1^T < \lambda_1^S$, which contradicts $\lambda_1^T > \lambda_1^S$. Hence, $p_1^T < p_1^S$ holds. Now, we have $p_1^T < p_1^S$ and $p_2^T < p_2^S$, from Lemma 2, it is clear that $\lambda_1^T + \lambda_2^T > \lambda_1^S + \lambda_2^S$.