Table S1. The adsorption energies (E_{ads}) (kJ/mol) and the geometrical parameters (bond lengths (R) is in Å) for the PEN drug molecule and γ -Fe₂O₃ before and after the adsorption process in the gas phase and water solution.

Configuration		Eads	Interaction	Bond	R in y-Fe2O3	R incomplex	Bond	$\mathbf{R}_{in PEN}$	R incomplex
GAS		-69.246	N65-H43 = 1.84	O41-H43	0.968	0.991	C61-N65	1.464	1.469
	А		O3 -H73 = 1.90	O3-H60	0.966	0.969	N65-H73	1.015	1.029
			O67-H24 = 1.93	O23-H24	0.967	0.975	C62-O67	1.214	1.222
			O67-H60 = 2.21	O03-H60	0.966	0.969	C62-O67	1.214	1.222
	В	-46.444	O67-H43 = 1.74	O41-H43	0.968	0.988	C62-O67	1.214	1.229
			O19-H71 = 1.85	O19-H20	0.966	0.966	O64-H71	0.973	1.020
			N65-H58 = 1.80	O04-H58	0.968	1.006	C61-N65	1.464	1.481
			O3-H73 = 2.16	O3-H60	0.966	0.966	N65-H73	1.017	1.025
	С	0.996	S66-H43 = 2.61	O41-H43	0.968	0.974	S66-H74	1.348	1.355
			O9-H74 = 2.10	Fe6-O09	1.820	1.888	S66-H74	1.348	1.355
PCM -	A	-65.597	N65-H43 = 1.76	O41-H43	0.968	1.003	C61-N65	1.464	1.472
			O3-H73 = 2.14	O03-H60	0.968	0.970	N65-H73	1.019	1.023
			O67-H24 = 1.99	O23-H24	0.968	0.975	C62-O67	1.216	1.224
			O67-H60 = 2.17	O3-H60	0.968	0.970	C62-O67	1.216	1.224
	В	-31.305	O67-H43 = 1.73	O41-H43	0.968	0.992	C62-O67	1.216	1.237
			O19-H71 = 1.47	O19-H20	0.968	0.967	O64-H71	0.974	1.051
	С	11.924	S66-H43 = 3.47	O41-H43	0.968	0.968	S66-H74	1.347	1.348
	v		O9-H78 = 2.62	O9-H50	0.974	0.974	C69-H78	1.094	1.093

Table S2. the calculated thermodynamic properties, i.e., the free Gibbs (ΔG) and enthalpy (ΔH) energies (kJ/mol), the chemical potential (μ), chemical hardness (η) and the stretching frequencies (Δv , in cm⁻¹), for the pristine γ -Fe2O3, PEN and the PEN/ γ -Fe₂O₃ complexes in the gas phase and water solution.

Phase Model		μ	η	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	$\Delta \mathbf{v}$
	γ-Fe ₂ O ₃	-4.882	0.526	-	-	-
GAS	PEN	-3.239	3.147	-	-	-
	Α	-4.606	0.591	-87.156	-26.137	$v_{\text{N-H}}: 3493.92 {\rightarrow} 3300.45 = -424.27$
	В	-4.891	0.574	-81.955	-22.661	$v_{O-H}: 3738.13 \rightarrow 2840.92 = -897.21$
	С	-4.880	0.526	-9.447	34.538	$\nu_{\text{S-H}}: 2686.91 \rightarrow 2596.92 \text{=-}89.99$
	γ-Fe ₂ O ₃	-5.024	0.550	-	-	-
РСМ	PEN	-3.392	3.238	-	-	-
	Α	-5.051	0.566	-82.262	-19.400	$v_{N-H}: 3363.71 \rightarrow 2770.15 = -593.56$
	В	-5.130	0.588	-53.978	-4.001	$v_{\text{O-H}}$: 3724.72 \rightarrow 2291.78 = -1432.94
	С	-5.053	0.566	4.889	48.446	v_{S-H} : 2693.88 \rightarrow 2680.93= -12.95

Table S3. The topological parameters, the density of the total energy of electrons (H_{BCP}) and its two components, the kinetic (G_{BCP}) and potential (V_{BCP}) electron energy densities (all in a.u.), the hydrogen bond energy (E_{HB} , in kJ/mol) The values of the LUMO, the HOMO, energy gap (E_g) for PEN, the pristine γ -Fe2O3 nanoparticle and the considered complexes in the gas phase and water solution.

γ -Fe ₂ O ₃ (O,N,Cl) _{PEN}											
		Bond	ρ_{BCP}	$\pmb{\nabla}^2 \rho_{BCP}$	H _{BCP}	V _{BCP}	G _{BCP}	E _{HB}	E _{LUMO}	E _{HOMO}	$\mathbf{E}_{\mathbf{g}}$
	γ-Fe2O3	-	-	-	-	-	-	-	-4.356	-5.408	1.052
	PEN	-	-	-	-	-	-	-	-0.092	-6.386	6.294
	Α	N ₆₅ H ₄₃	0.0396	0.0913	-0.0056	-0.0340	0.0284	-44.601	-4.014	-5.197	1.183
		O 3H ₇₃	0.0306	0.0852	-0.0015	-0.0243	0.0228	-31.911			
		O ₆₇ H ₂₄	0.0236	0.0759	0.0007	-0.0175	0.0182	-22.986			
		O ₆₇ H ₆₀	0.0157	0.0502	-0.0014	-0.0098	0.0112	-12.876			
GAS	В	O ₆₇ H ₄₃	0.0396	0.1240	-0.0029	-0.0098	0.0339	-48.205	-4.317	-5.465	1.148
GAS		O ₁₉ H ₇₁	0.0525	0.1361	-0.0098	-0.0537	0.0438	-72.427			
		N ₆₅ H ₅₈	0.0429	0.0920	-0.0075	-0.0379	0.0305	-49.761			
		O 3H73	0.0184	0.0534	0.0008	-0.0118	0.0126	-15.524			
	С	S ₆₆ H ₄₃	0.0126	0.0360	-0.0010	-0.0069	0.0080	-9.081	-4.364	-5.396	1.032
	-	O 9H74	0.0212	0.0516	-0.0004	-0.0136	0.0133	-17.873			
	γ-Fe2O3	-	-	-	-	-	-	-	-4.474	-5.575	1.101
	PEN	-	-	-	-	-	-	-	-0.154	-6.630	6.476
	Α	N ₆₅ H ₄₃	0.0484	0.1027	-0.0099	-0.0455	0.0356	-59.675	-4.536	-5.567	1.031
		O 3H73	0.0187	0.0543	0.0007	-0.0121	0.0128	-15.851			
		O ₆₇ H ₂₄	0.0216	0.0681	-0.0009	-0.0153	0.0162	-20.076			
РСМ		O ₆₇ H ₆₀	0.0165	0.0502	-0.0011	-0.0103	0.0114	-13.526			
	В	O ₆₇ H ₄₃	0.0425	0.1271	-0.0043	-0.0403	0.0360	-52.903	-4.542	-5.718	
		O ₁₉ H ₇₁	0.0820	0.1455	-0.0323	-0.1010	0.0687	-132.607			1.176
	С	O19H74	0.0082	0.0253	0.0012	-0.0040	0.0052	-5.267	-4.487	-5.620	1.133
	-	O	0.0072	0.0231	0.0012	-0.0035	0.0046	-4.532			
		O12 H	0.0066	0.0212	0.0011	-0.0031	0.0042	-4.082			
		0131175									

Table S4. The second-order perturbation energy ($E^{(2)}$, kcal/mol) corresponds to charge transfer between the oxygen lone pairs and σ^*O-H anti-bonding orbital for three models of the PEN/ γ -Fe₂O₃ complexes.

		Charge transfer	E ⁽²⁾
	Α	LP N65 $\rightarrow \sigma^*$ O41-H43	28.04
		LP O67 $\rightarrow \sigma^*$ O23- H24	6.82
GAS	В	$LP \ N65 \rightarrow \sigma^* \ O4 - H58$	23.00
		LP $O67 \rightarrow \sigma^* O41-H43$	11.08
	С	LP $S66 \rightarrow \sigma^* \text{ O41- H43}$	4.60
	Α	LP N65 $\rightarrow \sigma^*$ O41-H43	30.51
		$LP \text{ O67} \rightarrow \sigma^* \text{ O23- H24}$	4.53
РСМ	В	$LP \ N65 \rightarrow \sigma^* O4 - H58$	16.99
		LP $O67 \rightarrow \sigma^* O41-H43$	11.24
	С	$LP S66 \rightarrow \sigma^* \text{ O41- H43}$	0.25

Figure S1. The RDG vs sign $(\lambda_2)\rho$ plots for complex **A**.

Figure S2. RMSD curve for the simulated system as a function of time.