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A Appendix: Basic Model-Free and Limit Model-Free

Bootstrap Algorithms

This section describes in detail algorithms A.1 and A.2 for the construction of Model-Free

and Limit Model-Free algorithms as described in (Politis, 2015).

Define the predictive root to be the error in prediction, i.e.,

Yn+1 − Π(ĝn+1, Y n, F̂n) (1)

where Π(ĝn+1, Y n, F̂n) is our chosen point predictor of Yn+1, and ĝn+1 is our estimate of

function gn+1 based on the data Y n.

Given bootstrap data Y ∗n and Y ∗n+1, the bootstrap predictive root is the error in predic-

tion in the bootstrap world, i.e.,

Y ∗n+1 − Π(ĝ∗n+1, Y n, F̂n) (2)

where ĝ∗n+1 is our estimate of function gn+1 based on the bootstrap data Y ∗n.

Remark A.1 Note that eq. (2) depends on the bootstrap data Y ∗n only through the es-

timated function ĝ∗n+1; both the predictor Π(ĝ∗n+1, Y n, F̂n) and the construction of future

value Y ∗n+1 in the sequel are based on the true dataset Y n in order to give validity to the

prediction intervals conditionally on the data Y n.

Algorithm A.1 Model-free bootstrap for prediction intervals for Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1n by Ĥn

and Ĥ−1n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε
(n)
1 , ..., ε

(n)
n )′ = Ĥn(Y n). By construc-

tion, the variables ε
(n)
1 , ..., ε

(n)
n are approximately i.i.d.; let F̂n denote their empirical

distribution.

(a) Sample randomly (with replacement) the data ε
(n)
1 , ..., ε

(n)
n to create the bootstrap

pseudo-data ε∗1, ..., ε
∗
n.
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(b) Use the inverse transformation Ĥ−1n to create pseudo-data in the Y domain, i.e.,

let Y ∗n = (Y ∗1 , ..., Y
∗
n )′ = Ĥ−1n (ε∗1, ..., ε

∗
n).

(c) Calculate a bootstrap pseudo-response Y ∗n+1 as the point ĝn+1(Y n, ε) where ε is

drawn randomly from the set (ε
(n)
1 , ..., ε

(n)
n ).

(d) Based on the pseudo-data Y ∗n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (2).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1− α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π + q(1− α/2)] (3)

where Π is short-hand for Π(ĝn+1, Y n, F̂n).

Sometimes, the empirical distribution F̂n converges to a limit distribution F that is of

known form (perhaps after estimating a finite-dimensional parameter). Using it instead

of the empirical F̂n results into the Limit Model-Free (LMF) resampling algorithm that is

given below. Note that now the point predictor Π is no more a function of F̂n but of F .

Hence, the LMF predictive root is denoted by

Yn+1 − Π(ĝn+1, Y n, F ) (4)

whose distribution can be approximated by that of the LMF bootstrap predictive root

Y ∗n+1 − Π(ĝ∗n+1, Y n, F ). (5)
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Algorithm A.2 Limit Model-free (LMF) bootstrap for prediction intervals

for Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1n by Ĥn

and Ĥ−1n respectively. In addition, estimate gn+1 by ĝn+1.

2. (a) Generate bootstrap pseudo-data ε∗1, ..., ε
∗
n in an i.i.d. manner from F .

(b) Use the inverse transformation Ĥ−1n to create pseudo-data in the Y domain, i.e.,

let Y ∗n = (Y ∗1 , ..., Y
∗
n )′ = Ĥ−1n (ε∗1, ..., ε

∗
n).

(c) Calculate a bootstrap pseudo-response Y ∗n+1 as the point ĝn+1(Y n, ε) where ε is a

random draw from distribution F .

(d) Based on the pseudo-data Y ∗n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (5).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1− α)100% equal-tailed prediction interval for Yn+1 is given by

[Π + q(α/2), Π + q(1− α/2)] (6)

where Π is short-hand for Π(ĝn+1, Y n, F ).

B Appendix: RAMPFIT algorithm for analyzing cli-

mate data with transitions

The RAMPFIT algorithm which can handle uneven time-spacing in observations was

proposed by (Mudelsee, 2000) for performing regression on climate data which shows tran-

sitions such as the speleothem dataset considered in this paper. However RAMPFIT was

not originally designed to handle arbitrary local stationarity which may be present in data.
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Here we briefly outline the steps in RAMPFIT used to obtain point prediction estimates

which are used for comparison with their Model-Based and Model-Free counterparts.

Define x(i) = X(t(i)) where (Xt, t ∈ R) is an underlying continuous-time stochastic pro-

cess. For a time series x(i) measured at times t(i), i = 1, . . . , n, the model under consider-

ation is (Mudelsee, 2000):

x(i) = xfit(i) + ε(i) (7)

It is assumed that the errors ε(i) are heteroskedastic and are distributed as N(0, σ(i)2).

The fitted model is a ramp function as defined below:

xfit(t) =


x1, for t ≤ t1,

x1 + (t− t1)(x2− x1)/(t2− t1), for t1 ≤ t ≤ t2,

x2, for t ≥ t2

(8)

Here t1 and t2 denote the start and end of the ramp and x1, x2 denote the corresponding

values at those points. The regression model is fitted to data {t(i), x(i)}ni=1 by minimizing

the weighted sum of squares as given below:

SSQW (t1, x1, t2, x2) =
n∑

i=1

[x(i)− xfit(i)]2

σ(i)2
(9)

Owing to the non-differentiabilities at t1 and t2, RAMPFIT does a search over a range

of values supplied for these 2 values and chooses the values (t̂1, x̂1, t̂2, x̂2) for which the

SSQW is minimum. In addition since σ(i) is not known an initial guess of this is supplied to

the algorithm following which the σ(i) values are recalculated from the obtained residuals.

The estimates (t̂1, x̂1, t̂2, x̂2) are then regenerated. These steps are repeated till MSE values

of point prediction converge. The full algorithm is described below:
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Algorithm B.1 RAMPFIT REGRESSION

1. Set initial estimate of σ(i) = i with i = 1, . . . , n

2. Set search ranges [t1min, t1max] and [t2min,t2max] for values of t1 and t2

3. Calculate SSQW using (8) and (9) over this grid of t1 and t2 values; denote a typical

point in this grid as (t̄1, t̄2)

4. Determine (t̂1, x̂1, t̂2, x̂2) = argmin [SSQW (t̄1, x̂1, t̄2, x̂2)] and obtain xfit

5. Calculate residuals e(i) = x(t(i))− xfit(t(i))

6. Re-estimate the variance σ(i) from e(i) using k-nearest-neighbour smoothing

7. Repeat steps (2) to (6) above till MSE values converge.

C Appendix: Diagnostics for Model-Free Inference

The steps outlined in Section 3.1 for Model-Free inference describe a transformation of the

data first to uniform, and then to standard normal distributions. Since the transformation

involves quantities that need to be estimated, some diagnostics are suggested to ensure

that the practical, data-based transformation gives the desired results.

C.1 QQ-plots after uniformization

The success of the uniformization step outlined in Section 3.1 can be visually verified using

QQ-plots of the obtained uniform samples versus samples obtained from an ideal uniform

distribution which is available in standard statistical software such as R. Any deviations in

these curves from linearity should be closely investigated for possible issues wrt choice of

bandwidth during cross-validation as it can impact both point prediction and prediction

interval generation.
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C.2 Shapiro-Wilk test for joint normality

As discussed before a convenient way to ensure both the smoothness and data-based con-

sistent estimation of L(Yt, Yt−1, . . . , Yt−m+1) for any m is to assume that, for all t,

Yt = ft(Wt) (10)

for some function ft(w) that is smooth in both arguments t and w, and some strictly

stationary and weakly dependent, univariate time series Wt; without loss of generality, we

will assume that Wt is a Gaussian time series. In the Model-free setup, assuming Eq. (10)

cannot be seen as restrictive; indeed, Yt can have an arbitrary marginal distribution—that is

time-changing as well—and the underlying dependence can be strong (or not), as inherited

by the Wt. Therefore, it should not be surprising that it is difficult to check whether a

general condition such as (10) holds for a particular dataset at hand.

Note, however, that assumption (10) was invoked in order to ensure the joint normality

of the elements of Zn = (Z1, . . . , Zn)′ defined in Section 3.6; see Lemma 3.1. Hence, we

may check Zn for normality which would then serve as an implicit diagnostic as to whether

Eq. (10) holds true or not.

Marginal normality of the Zt can be verified by gauging linearity of QQ-plots versus

the standard normal distribution. Furthermore, by the Cramer-Wold device, any linear

combination of jointly normal variables is univariate normal; this can be used to empirically

verify whether the joint normality requirement is violated by taking an arbitrary linear

combination i.e. for example a pair or triplet of variables from the set Zn = (Z1, . . . , Zn)′,

and gauging its normality using the Shapiro-Wilk test. An example is provided in Figure 1

where, for a given λ, we form the linear combination (1−λ)Zt+λZt+1 for all t, and calculate

the mean value of the associated Shapiro-Wilk test statistic; this can be done over a range

of λ values. As can be seen from the plot, sufficiently high values of the test statistic are

obtained indicating that we can not reject the hypothesis of joint normality. Further tests

can be done by forming linear combinations over pairs of non-successive values of Zt, i.e.,

checking the normality of (1− λ)Zt + λZt+k for some different values of k.
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C.3 Kolomogorov-Smirnov test for i.i.d. standard normal sam-

ples

Provided that the inputs are jointly normal the whitening transformation described in

Section 3.6 produces i.i.d. standard normal variables. The covariance matrix used in this

step can be derived either by fitting a causal AR(p) model to Zn = (Z1, . . . , Zn)′ or using

the flat-top kernel banded, tapered estimator outlined in (McMurry & Politis, 2010). To

verify that the data generated after whitening are standard normal a Kolmogorov-Smirnov

test can be used with the reference distribution as N [0, 1].

C.4 Independence test of standard normal samples

The success of the Model-Free procedure involves the ability to produce i.i.d. data af-

ter a series of invertible transformations. In the case of Locally Stationary Time Series

independence of the data produced at the final step after applying the whitening transfor-

mation can be verified visually using an autocorrelation function (ACF) plot as the data

are approximately standard normal. An example is given in Figure 2 where it can be no-

ticed from the ACF plot that the Model-Free transformations were successful in producing

decorrelated (and therefore i.i.d.) normal data.
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Figure 1: Values of Shapiro-Wilk test statistic for joint normality test. Note that corre-
sponding p-values range from 0.09 to 0.29.

Figure 2: Autocorrelation plot showing decorrelation/independence of data after whitening
transformation
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