Supplementary Material: ''Generalized Link-Based
Additive Survival Models with Informative

Censoring"’

Supplementary Material A: Software

The models proposed in this article can be employed via the gamlss () function in the R package

GJRM (Marra & Radice, 2019). As an example, consider the following call

fl<-1list(u ~ s(u, bs = "mpi") + z1 + s(z2), u ~ s(u, bs = "mpi") + z1 + s(z2))
M1l <-gamlss (fl, data = data, surv = TRUE, margin = "PH", margin2 = "PH"
cens = delta, informative = "yes", inform.cov = c("z1l"))

where f1 is a list containing the two additive predictors of the informative model, and s (u,

bs = "mpi") represents the monotonic P-spline function which models a transformation of
the baseline survival function. As for s (z2), the default is bs = "tp" (penalized low rank
thin plate spline) with k = 10 (number of basis functions) and m = 2 (order of derivatives).

However, argument b s can also be set to, for example, cr (penalized cubic regression spline), ps
(P-spline) and mr £ (Markov random field), to name but a few. In the gamlss function, surv =
TRUE indicates that a survival model is fitted. The arguments margin ="PH" and margin?2
="PH" specify the link functions for the survival and censoring times, respectively. Table 1 shows
the possible choices for the links that have been implemented for this article. In this example, we
specify the proportional hazard link ("PH") for the two equations. Argument cens = deltais
a binary censoring indicator; this variable has to be equal to 1 if the event occurred and 0 otherwise.
Finally, informative = "yes" indicates that we are fitting a survival model with informative

censoring, and inform.cov = c ("z1") specifies the set of informative covariates.



Model ‘ Link g(95) ‘ Inverse link g71(¢) = G(¢) ‘ G'(¢) ‘

Prop.hazards ("PH") | log {—1log(S)} exp {—exp(§)} —G(&) exp(§)
Prop.odds ("PO") —log (%) ﬁ%p_(é)@ _G2(§) exp(—§)
Probit ("probit™") —d71(9) o(—=¢) —¢(=§)

Table 1: Link functions implemented in GJRM. ¢ and ¢ are the cumulative distribution and density func-
tions of a univariate standard normal distribution. Alternative links can be implemented. The first two
functions can be called log-log and -logit links, respectively.

Supplementary Material B: Scores and Hessians

In this section, the detailed derivations of the informative and non-informative Scores and Hessians

are presented.

B.1. Informative and Non-informative Scores

If censoring is informative then «; and ~, would have some components in common. Because the

first () components of =, are the same as the first () components of «,, we have

T 0T 1T
Q" =Q;, v+ 9, a,.

Therefore, defining o = (o), @] , ¢ )", the informative penalized log-likelihood function can

be written as
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The gradient of equation (1) can be calculated as

Vaoly(a) = Vo l(a) — a8,
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of equations (2), (3) and (4) allow to express Vo, {(ax), V4, l(ax) and V ,,¢(x) as follow
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where Q’,0(y;) can be conveniently obtained using a finite-difference method. Moreover, we

define the design vectors Q"% (y;) and Qf,%/(y,-) as
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On the other hand, when censoring is non-informative the penalized log-likelihood function is
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The gradient of (5) can be calculated as
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the scalar derivatives of V., ¢() and V., () can be obtained as
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where Q) (y;) can also be calculated using a finite-difference method.
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B.2. Informative and Non-informative Hessians

The informative penalized Hessian can be obtained as

Vaalp(a) = Voo l(a) — S,

where Vo /() is
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for all v = 0,1,2 and k = 0,1,2. This expression is
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In equation (9), the scalar derivatives of V o 0,l(@), Vasaol(@), Vagarl(), Va,a, () and

V asar (), can be calculated as
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Furthermore, the scalar derivatives of V. ., () and V.., {(-y) are
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The last terms of equations (15) and (16) allow to express V., () and V., ¢(y) as
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where Q%" (y;) and Q%" (y;) can be calculated as
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Supplementary Material C: Estimation Algorithm

The optimization method used is the trust region algorithm. At iteration a, for a given vector o
and maintaining X fixed at a vector of values, equation (13) in the main paper (or generally, any

of the models’ likelihoods considered in the paper) is maximized using

ol = arg min £,(a!®),
ellel| <&l
where ,(al) = —{(,(a!) + eTg, (o) + leTH,(a)e}, g, (al)) = glal”) — Sal’,

H,y(al)) = H(all) — 8. Vector g(al®)) consists of g, (al) = Vo, ()] o=l and g, (al?) =
Vayé(a)\ayza[a], and H(al¥),; = Vaal(a)| (a] ,where [,j = 0,1,2and v = 1, 2.

a=a; o=
e

The euclidean norm is
which is adjusted through the iterations. Close to the solution, the trust region algorithms behaves
as a classic Newton-Raphson unconstrained method (Nocedal & Wright, 2006).

Estimation of A is achieved by adapting the general and automatic multiple smoothing param-
eter estimation method of (Marra et al., 2017) to the context of the proposed survival models. The
smoothing criterion is based on the knowledge of g(ca) and H (). The main ideas and some
useful results are given here.

To simplify the notation, g, (), g(al), H,(!?)) and H (c!9)) are denoted as g][pa}, gldl, ’HI[)“]
and H!7, First, it is necessary to express the parameter estimator in terms of g and ’H
achieve this, a first order Taylor expansion of gl[) 1 about a!® is used, which yields the following
expression: 0 = g™ ~ gl (alot1] — al)H [, After some manipulations, alat1 = (—H +

1

)’1\/—7-( la] [\/—’H[“]a[“} ++v/ —H g[a}] is obtained, which then becomes a/l¢t1] = (—’H[a] +
1

S) ' —HIIZl where 214 = b4 4 ¢l Bl = /_yllgld and €l = /ol gl

Eigenvalue decomposition is used to obtain the square root of —7 ant its inverse. Furthermore,
from likelihood theory, & ~ N(0,1) and Z ~ N (v, 1), where vz = v/—Ha', o is the true
parameter vector and I is the identity matrix. ©z = /—Hé& = BZ is the predicted value vector
for Z, where B = /—H(—H + S)'v/—H. Since our objective is to estimate X so that the

smooth terms’ complexity which is not supported by the data is removed, the following criterion
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is used
E(|lvz - vz|?) = E(| 2 — BZ|?) — i + 2tx(B), (17)

where 1 = 2n and tr(B) represent the number of effective degrees of freedom of the penalized

model. In applications, A is estimated by minimizing an estimate of equation (17), in other words
vz — Oz||> = |2 — BZ|]> — & + 2tr(B). (18)

The RHS of equation (18) depends on A through B while Z is associated with the un-penalized
part of the model. Equation (17) is approximately equivalent to the AIC (Akaike, 1973). This
implies that A is estimated by minimizing what is effectively the AIC with number of parameters

given by tr(1B). Holding the model’s parameter vector value fixed at a!*™), the following problem
}‘[a-‘rl} = arg min ||Z[a+1] . B[a+1]z[a+1] ||2 - 2tr(3[a+1]) (19)
A

is solved using the automatic efficient and stable computational method proposed by Wood (2004).
This approach uses the performance iteration idea of Gu (1992), which is based on Newton’s
method and can evaluate in an efficient and stable way the components in (19) along with their
first and second derivatives with respect to log(\), because the smoothing parameters can only
take positive values.

The methods for estimating o« and X are iterated until the algorithm satisfies the criterion
[0(al ) — ¢(al)| / (0.1 + [¢(al*t)]) < (1e — 0.7). Starting values are obtained by fitting

two non-informative models for the survival and censoring times.
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Supplementary Material D: Proofs of the Theorems

This section provides the proofs of Theorems 1, 2 and 3 stated in Section 2.4. First, we establish
the main set of assumptions (regularity conditions and vanishing penalties), then the main results

are presented.

D.1. Assumptions

Since the same set of assumptions are used to proof Theorems 1 and 2, we use 6 to represents the
generic vector of parameters. In particular, @ = o in Theorem 1 and & = = in Theorem 2. Hence,

the generic log-likelihood function can be written as
() = Zlog [[fl(yi|zi; 01)52(vilzi; 92)]51i [fo(yil2zi; 02) 51 (yi|2:; 91)]621} : (20)
i=1

In (20), it has been assumed that z;; = zy;. In what follows ((6) = >  logw(w;; @), where
w(w;0) = w(ylz;0) = [[fl(yi|zi;91)52<yi|zi;02>]51i [f2(3/z’|zz’;92)51(yz'|lz';91)]§2i} and w; =
(yi,z])" € Ry x R, and Ry = (0,00). In addition, {(w;;0) = logw(w;;0), £,(0) =

B ol(w;; 0) 00,(0) 0?0(w;; 0)
LS 0(wi: 0), Vel(ws: Y _ Vool(w:0) — ;
' - o 9)’025 02( 79 00 on(0) 00 ’ 00l (W;; 0) 00007
and V g/, (0) = 8Og<0T)' The penalised likelihood is £,(0) = (,(0) — 10" S6.

Assumption 1 (Regularity Conditions).

(i) The parameter space ®y is a compact subset of R”.

(ii) For all w;, w(w;; 0) is continuous in 8. Furthermore, w(w;; @) is measurable in w; for all 8

€ Q.
(iii) Identification condition. Plw(w;;0) # w(w;; 0*)] > 0 for all @ # 68* € O,.
(iv) Dominance. E{supy.g,|((Wi; 0)]} < oo

(v) The true vector of parameters 8* is in the interior of ®y, and © is an open neighbourhood

around 0*.

(vi) Forall w;, w(w;; 0) is three times continuously differentiable in  in an open neighbourhood

around 6*. That is w(w;; 0) € C3(Oy)
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(vil) [ supgeg, [|Vol(Wi;0)] dw; < oo and [ supyeq, [|Voal(Ws; 0)| dw; < co.

(viii) For 6 € ©y, Z(8*) = Cov{Vl(w;; )} = E{{Vol(wi; 0°)—E[Vol(w;; 0%)]}{ Vol(w;; 0%)—

E[Vol(w,;;0%)]} T} exists and is positive-definite.

(ix) Forall1 <e, f,h < p+ 1, there exist a function ¢ : R, x R? — R such that, for 8 € ©,

dw, R, x Ry, | ZEWii0)
anaws < B xR 1 96,00,00,

< o(w;), with E[¢p(w;)] < oc.

Assumption 2. XA = o(n~'/?).
In addition, the following lemmas are required to prove Theorems 1, 2 and 3.

Lemma 1. Let s(w, @) be a continuously differentiable function, a.s. dw, on 8 € ©,.

0 0
If [ SUPgeo, %ﬂ” dw < 0o, then for 0 € O,

(i) [ s(w,@)dw is continuously differentiable.

(i) [[Os(w,0)/00)dw = [ s(w,0)dw]/d6.
Proof. Newey & McFadden (1994, Lemma 3.6). O
Lemma 2. If Assumption 1 hold, then

(i) E[Vel(w;0%)] =0

(i) E[=Vgol(w;0%)] = Z(6%)
Proof.

(i) Since w(y|z; ) is a hypothetical density, its integral is unity:

[ wtolz:0)dy = 1.

This is an identity, valid for any @ € ®y. Differentiating both sides of this identity with

respect to 6, we obtain
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(ii)

Then, by Assumptions 1(vi) and 1(vii), and Lemma 1 (the order of differentiation and inte-

gration can be interchanged), the following expression is obtained

0 0
o T @

By the definition of the score, we have Vol(w; 0)w(y|z;0) = a%w(y|z; 0). Substituting

into (21), we obtain
/ Vol(w; 0)w(ylz; 0)dy = 0. (22)

This holds for any 8 € ©,, in particular, for 8*. Setting 8 = 6*, the following equation is

obtained
/Vgﬁ(w; 0% )w(y|z; 0% )dy = E[Vel(w;0%)|z] = 0.
Then, applying the Law of Total Expectations, we obtain the required result

E[Vol(w; 6%)] = E{E[Vol(w; 8%)|z]} = 0.

Differentiating both sides of identity (22) and by Assumptions 1(vi) and 1(vii), and Lemma

1, we obtain

0
/ 7 [Val(w; O)w(y[z; 0)]dy = 0. (23)

The integrand of (23) can be written as 50+ [V ol(W; 8)w(y|z; 8)] = Vool (W; O)w(y|z; 0) +

Vol (w;0)Vol(w; 0)Tw(y|z; 0). Substituting into (23), we obtain

- / Vool (w: 0)w (y|z: 0)dy — / Vol(w:0)Vol(w:0) w(ylz: 0)dy  (24)
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Setting 8 = 0*, the following equation is obtained
E[—Vgol(W; 0%)|z] = E[Vol(w;0%)Vol(w;0%)" |2].
Then, applying the Law of Total Expectations, we obtain the desired result

E{E[—Vggg(w; 0*)‘Z]} = E{E[ng(w; 9*)V9€(W, 0*)T|Z]}
E[—Vggg(w, 0*)] = E[Vgé(w, 0*)V9€(W, 9*)T]

E[-Vel(w;0%)] = Z(6%)

]

~1/2 and center 6%,

Lemma 3. Let » € R, and ©, be the surface of a sphere with radius rn
thatis ©®, = {6 € Op : @ = 6* +n~'/%r ||r| = r}. For any € > 0, there exist r such that

P ( sup £,(0) < E,,(O*)) > 1 — ¢, when n is large enough.
0cO,

Proof. We define n(,(0) —nl,(6*) = nl,(0) —nl,(0*) — 2[0'SO — 0*'S6*|. A Third Order
Taylor expansion around 6* yields

nl,(0) — nl,(0*) =nVel,(0%)T (6 — 0%) + 2(6' —0%)"Vol,,(0%)(0 — %) — nO*'S(6 — 6%)

+ ZZZ@ 0%).(0 — 6%) (6 — 0%), agéaiale 2(9—0*)T5(9—0*).

(25)
Let @ = 6* +n~/?r € ©,. Then (25) becomes in
nly(0) — nl,(0%) = n'/?Vel, (%) r + —rTV(,gE TTh e £n(6)
P P aa .00,0,0
n'/20*" Sr — %TTS’I"
5
nly(0) — nly(0%) =Y Cin(r)
i=1
where @ lies between 6% and 0% + n~'/2r. For the first term, |C1,(r)] = O,(1) | 7| since

by Lemma 2(i), Assumption 1(vii) and the CLT, n'/2Vg(,(6%) % N [0,Z(6%)]. By Lemma
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2(ii) and the LLN, n'/?V g/, (0%) £ —Z(6*), which (by the continuous mapping theorem)

yields Co,(r) & —1rTZ(0*)r. Thus, by Assumption 1(viii), C2, (") < —2(min |7||*, where

9%0,(0)
80680f(99h -
1571 éd(w;) 5 E[gp(w;)] < oo. This fact and the Cauchy-Schwarz inequality imply that [Ca,, ()| 5

Cmin > 0 is the smallest eigenvalue of Z(6*). By Assumption 1(ix) and the LLN,

0. Finally, by Assumption 2 we have that |Cy, ()| 2 0 and |C5,,(r)| = 0. Therefore, combining

all of these results, we have
. 1
nly(8) = nly(8%) < Op(1) |7 = Guin 17 (26)
for large enough n. Since the choice of @ was arbitrary, (26) becomes in

sup nl,(0) — nl,(60%) < C,
0c®,

where C = O,(1) [|7|| — 3Cnin |7||*. This implies that P < sup £,,(0 ) > P(C <0).
0co,
Therefore, because for all € > 0, there exists a ||7|| € R, such that P [C < 0] > 1 — ¢, we obtain

P ( sup £,(0) < EP(O*)) > 1 — €, as required. O
0cO,

Lemma 4. (Delta Method). Suppose that 8,, is a sequence of k-dimensional random vectors and
0* be a constant k-vector such that \/n(60, — 60*) N N(0,9) for some k x k matrix €. Let

g : R¥ — R’ be continuously differentiable at *. Then

Vil(g(8,) — g(8%) % N(0,GQGT)

0
where G = aaggT) is the [ x k Jacobian matrix.
Proof. Hayashi (2000, Lemma 2.5). O

D.2. Theorems

Theorem 1 (Asymptotic properties of the IPMLE estimator).

Proof. Under Assumptions 1(i), 1(ii) and Gourieroux & Monfort (1995, Property 24.1), there ex-

ists a well defined random variable (measurable function) & that solves the optimization problem
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in equation (13). Due to Lemma 3, the informative penalized log-likelihood function has a local

maximum ¢ in the interior of a sphere centered on a*. Then, ||& — a*|| = O,(n"'/?), implying

that & is a \/n-consistent estimator. Furthermore, by Assumption 1(iii) and Newey & McFadden

(1994, Lemma 2.2), a* is the unique maximizer of Q* () = E[{(w;; at)].

(1) To prove the asymptotic normality of the informative penalized likelihood estimator, we

take the derivative of the log-likelihood function in equation (13) to obtain

0= Val,(&) — Sé. 27)

Applying a second order Taylor expansion in equation (27) yields

0= Valy(a?) — Sa* + Vaaln(a®) (& — a*) — S(é— a*) + A,  (28)

where the last term is defined as

(@ — a*)T[V2V b, (@)1 (& — a¥)
A= : : (29)

(& — a*)T[VQVaZn(O_‘)]p(OA‘ —a¥)

and & lies between a* and &, therefore | — a*|| < ||&@ — a*||. We can rewrite equation

(28) to obtain

0=V l(a*) —Sa* + Vauln(a®)(ad—a*) —S(a—a*)+ Ay(a—a¥), (30)

where A, is defined as
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(i)

Multiplying the right hand side of equation (30) by /n, leads
[Vaaln(e®) =8+ AyJv/n(& — a) = Vn[Sa* — Val,(a¥)] 31

By assumption 2, S & 0 and Sa* % 0. Furthermore, by assumption 1(ix), A, 500.
As earlier mentioned, by Lemma 2(i), Assumption 1(vii) and the CLT, nt/ 2V ol () 4
N[0, Z(c*)], and by Lemma 2(ii) and the LLN, n'/?V oo 0, (a*) & —Z(a*). Finally, by

Slutsky’s theorem, we obtain
V(e — o) 5 N {0, [Z(a)] '},

as required.

Under Theorem 1, /n(& — a*) KN N {0, [Z(a*)]7'}. In particular, for aig € & we
have /n(a,0 — o) A NH{0,[Z(ai,)]"'}. In addition, S : R* — R is continuously
!/

differentiable at a,, with gradient defined as V, ,S(a)) = G ols(a’)]|Va,s(al).

Then, we can applied Lemma 4 to obtain

~

VilSuo(6u0) = Suo(aio)] < N{0, Gl [s(650)] Ve s(eo) L (o)) ™ Vaes(ao) Ghols(er;

Furthermore, we know that V,,,¢(a) = 0, therefore E[—V 4, ,¢(c)] = 0. This also
implies that E[—V 4,0y (c0)] = 0, which means that a1y and g are independent. Then,

S(ayp) and S(agp) are also independent, as required.

Theorem 2 (Asymptotic properties of the NPMLE estimator).

Proof. This proof follows similar arguments of Theorem 1. ]

Theorem 3 (Efficiency of the IPMLE estimator).

Proof. For v = 1,2, we define v, = (v.,4™)" so that Q~, = Q""~* + Q! 4. Where

Y, =

neT neT )T

(Veds oY) and )t = (V){hs1ys - 706,) | are the informative and non-informative
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parameters of the non-informative model respectively

2(ii), Z(*) can be written as

I ML AL I ne 0 0
I(v)y=| " T , (32)
0 0 I’yé IA/éa,;u
I 0 0 Typeyy Ty |
where Z,, = Z(v;"), Zyne = Z(v;™) and Loy = Z(v;™,;"). Taking the inverse of (32), we
obtain
Z,yiiéb Eviﬂvf'ru 0 0
E *ne ¥t E *ne 0 0
ZH )= : (33)
| 0 0 E,Y;L,y;'ru 27§:€nb |
where Z'Yjﬂ = [I%L/ —I,YHLMI;;LIW%]A, E,YZZGL,YZ%M = —Z,Yzﬂz'%ﬁghz;;u Z‘yf“'}‘f‘ — _I’;;}LI'}';“WLL,Z‘ny
al‘ld E,YZKnL == I.;;LIL + I;;L:ZﬂygbﬂybzvaI'yll;—ygLI;{l}L.
On the other hand, also by Assumption 1(viii) and Lemma 2(ii), Z(a*) can be written as
Iao Iaoal Iaoa2
I(a*) = Ialao :Z-al O Y (34)
Iazao 0 Iaz
where Zo, = Z(), Za, = Z(}), Zaga, = Z(af, o) and T, 0, = Z(ak, o). Taking the
inverse of (34), yields
0 0™"1 0 =2
\1—1 __
@)™ = | Sprar  Tas 0 |, (35)
Yook 0 Y
20 2
where Eagf = [Zay _IaomI;llImao _Ia0a2It;211.0¢2040]71’ Ea§a§ = _Eagfzaoauzc;ul’ Eafa?f =
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T a0 S and Sor =T51 + 15170005 02 Lage, L

v &XQ g 0xv—~xy *

Thus, by (14), (15), (16), (17), (18) and using that ;5 = 9, we obtain Z,, = Zy: + L,

Towaw = Iypypes Loy = Lypiyy and T, = Zyye. This and the fact that ¥~} and Z;; are

0
positive definite matrices, imply that [X_s. — Zaaté] is positive definite. Therefore, £,z < X_ .

Using this reasoning, we conclude that Eaffaf < Zﬁzﬂﬁm, Zafaff < Zﬁm 0 and Za;:e <

ol

3 zne, as required. [

The proof of Lemma 3 in the context of informative and non-informative censoring models
was adapted from Xingwei et al. (2010) and Vatter & Chavez-Demoulin (2015). The proofs of
the asymptotic normality (part (i) of Theorems 1 and 2) are based on Vatter & Chavez-Demoulin

(2015).
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Supplementary Material E: Confidence Intervals

At convergence, point-wise intervals for linear and non-linear functions for both the non-informative
and informative models’ parameters can be obtained using the following Bayesian large sample

approximation
6~ N(6,%;), (36)

where 35 = [’Hp(é)]’l. For generalised additive models, intervals derived using equation (36)
have good frequentist properties, since they account for both smoothing bias and sampling vari-
ability (Marra & Wood, 2012). For the non-informative and informative models, equation (36)
can be verified using the distribution of Z (described in Supplementary Material C), making the
large sample assumption that 74(6) can be treated as fixed, and making the usual prior Bayesian
assumption for smooth models 8 ~ N'(0, S™"), where S™! is the Moore-Penrose pseudoinverse of
S (Silverman, 1985; Wood, 2017). In equation (36), smoothing parameter uncertainty is neglected.
Nevertheless, according to Marra & Wood (2012) this is not problematic if heavy over-smoothing
is avoided so that the smoothing bias is not a large proportion of the sampling variability. See also
Marra et al. (2017) for an application of this approach to a more general smoothing spline context.

Following Pya & Wood (2015), confidence interval estimates for the monotonic smooth terms
in the models can be obtained using the distribution of B,,O (defined in Section 2.3 of the main

paper) since all smooth components would then depend linearly on B.o. Such distribution is

BVO ~ N(/éVOa Ef}yo)a

where X5 = diag(T,0) [’Hp(ﬁl,o)] “! diag(T' ). The derivation of this result can be found in Pya
& Wood (2015).

P-values for the smooth components in the non-informative and informative models are ob-
tained by adapting the results discussed in Wood (2013) to the present context, where X5 ' is used
for the calculations. The reader is referred to the above citation for the definition of reference

degrees of freedom.
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Supplementary Material F: Model Selection

In practical situations, it is important to detect if ZkKllzl S1k, (X1x,:) and 2522:1 Sok, (Xok,:) have
components in common. This is basically a model selection problem and, to this end, we propose
using the AIC, BIC and K-Fold Cross validation criterion (TKCV). The AIC and BIC can be
defined as

AIC = —2((6) + 2 EDF,

BIC = —2((0) + log(n) EDF,

where the log-likelihood is evaluated at the penalized parameter estimates and EDF = tr( B ) with
B defined in Supplementary Material C.

As for TXCV (Stone, 1974), we first randomly divide the set of observations in K groups (folds)
of approximately equal size. Each fold is then in turn treated as a validation set, and the IPMLE for
a given model is used to estimate the vector of parameters a using the remaining K —1 folds. The

so obtained estimates are denoted as dsk and d,\,k, and the log-likelihood function is calculated as

Gi [u(éy" @) pe, (e, 6t
(@) = dlog Gy [&i(&(\)k,d}’“ﬂ +d1log § — [ VAV ] L . )
g1 [&i(ao ;O )] Yi
G | &l 63") 0 (e, &
+ ]_Og g2 [522(&(\)]67&;]{:)] _|_ 522' log _ |: A\k A\k :| 521( a0 '7 2 ) ,
Go [&i(ao ; Oty )} Yi
and TXCV given by
K
KOV _ Zek(d\k). (37)
k=1

We choose the model which maximizes (37). The same procedure is used when TKCV ig calculated

for the non-informative model. In such a case we have

Gy |6:(®)| g (4
0,3V = L log Gy [éu(’?l\k)] + 613 log _gi Elgi\k& aflé(;l )
G |&2i(%:") (A\E

st e -£ i}

28



and therefore TXCV = 32K 4, (%

\k).

Model Non-Inf. Covariates Inf. Covariates | Link Ty; | Link Ts; AIC TKCV BIC
1 s (wmonth) s (mthage) PH PH 13775.68 | -6924.20 | 14015.53
region alcohol nsibs
2 s (wmonth) s (mthage) PO PH 13776.87 | -8396.57 | 14016.51
region alcohol nsibs
3 s (wmonth) s (mthage) alcohol PH PH 13772.60 | —6922.63 | 13981.42
nsibs region
4 s (wmonth) s (mthage) alcohol PO PH 13773.80 | —=8392.31 | 13982.51
nsibs region

Table 2: Values of three model selection criteria (AIC, BIC and YXCV) for the best informative and non-informative models fitted
to the real data application of this paper. The models were fitted using gamlss () in GJRM by employing different combinations
of covariates and link functions.
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Supplementary Material G: Additional simulation results for
DGP1 and DGP2 and findings from a simulation study with mild
censoring rate

In the DGP presented in this section (DGP3), zy; is informative, z,; is informative and a mild
censoring rate (about 47%) is considered. T7; and T5; were generated using the model defined
in equation (19) of the main paper. The baseline survival functions were defined as Sio(t1;) =
0.8 exp (—0.4t3;°) + 0.2 exp (—0.1¢1;°) and Sag(ta;) = 0.99 exp (—0.05¢3;%) + 0.01 exp (—0.4¢3;").
The informative covariates, z1; and 2o;, were generated using a binomial and a uniform distribution
respectively. Also, s11(29;) = s12(22;) = sin(272;), apr = —0.10, age = —0.25 and a7 = a9 =
—1.5.

The main findings are:

e Figure 1 and Table 4 show that overall the mean estimates for the two estimators are very
close to the respective true values and improve as the sample size increases. However, even
though the variability of the estimates (IPMLE and NPMLE) decreases as the sample size
grows large, the IPMLE is slightly more efficient than the NPMLE in recovering the true
linear effects for all sample sizes examined here. In particular, the RMSE of the IPMLE is

slightly smaller than the RMSE of the NPMLE for all sample sizes considered.

e Figures 2 and 3, and Table 4 show that overall the true functions are recovered well by
the IPMLE and NPMLE and that the results improve in terms of bias and efficiency as the
sample size increases. Furthermore, the IPMLE is slightly more efficient than the NPMLE
in recovering the non-linear covariate effects for all sample sizes examined in this section
(Table 4). However, this gain in efficiency by the IPMLE is not too significant when a mild

censoring rate (47%) is examined.
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Figure 1: Linear coefficient estimates obtained by applying gamlss () to informative survival data simulated accord-
ing to DGP3 characterised by a censoring rate of about 47%. Circles indicate mean estimates while bars represent
the estimates’ ranges resulting from 5% and 95% quantiles. True values are indicated by black solid horizontal lines.
Black circles and vertical bars refer to the results obtained for n = 500, whereas those for n = 1000 and n = 4000
are given in dark gray and blue, respectively.
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Figure 2: Smooth function estimates for the IPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. True functions are represented by black
solid lines, mean estimates by dashed lines and pointwise ranges resulting from 5% and 95% quantiles by shaded
areas. The results in the first row refer to n = 500, whereas those in the second and third rows to n = 1000 and

n = 4000.
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(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)

Bias RMSE
n=>500 n=1000 n =4000 | n= 500 n=1000 n = 4000
arp -0.024 -0.014 -0.006 0.138 0.100 0.049
S1 0.039 0.025 0.012 0.154 0.114 0.059
h1o 0.084 0.048 0.035 0.262 0.144 0.083
S10 0.028 0.020 0.017 0.063 0.050 0.031
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE
n=>500 n=1000 n =4000 | n= 500 n=1000 n = 4000
apr - -0.045 -0.017 -0.007 0.208 0.144 0.071
s1 0.085 0.068 0.044 0.191 0.206 0.111
hio 0.085 0.057 0.033 0.195 0.292 0.083
S10 0.027 0.021 0.015 0.058 0.068 0.033

Table 3: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying the gamlss () to informative survival data simulated according to DGP2
characterised by a censoring rate of about 74%. Further details are given in the caption of

Table 1.
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Figure 3: Smooth function estimates for the NPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. Further details are given in the caption
of Figure 2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE
n=>500 n=1000 n =4000 | n= 500 n=1000 n = 4000
ay; -0.012 -0.006 0.003 0.121 0.058 0.045
S1 0.031 0.021 0.015 0.124 0.091 0.051
h1o 0.040 0.027 0.026 0.135 0.088 0.058
S10 0.003 0.008 0.015 0.057 0.047 0.030
(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE
n=>500 n=1000 n =4000 | n=>500 n=1000 n =4000
ay; -0.022 0.001 0.007 0.140 0.100 0.050
S1 0.036 0.027 0.014 0.142 0.104 0.055
h1o 0.037 0.027 0.027 0.131 0.089 0.056
S10 0.004 0.008 0.017 0.065 0.047 0.032

Table 4: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying gamlss () to informative survival data simulated according to DGP3 charac-
terised by a censoring rate of about 47%. Further details are given in the caption of Table
1.
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Figure 4: Linear coefficient estimates obtained by applying gamlss () to informative survival data simulated ac-
cording to DGP1 which is characterised by a censoring rate of about 78%. Further details are given in the caption of
Figure 1.
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Figure 5: Linear coefficient estimates obtained by applying gamlss () to informative survival data simulated ac-
cording to DGP2 which is characterised by a censoring rate of about 74%. Further details are given in the caption of
Figure 1.
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Figure 6: Smooth function estimates for the IPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.
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Figure 7: Smooth function estimates for the NPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.

37



— — o o
© _
S o | |
o - o - = -
(%)) g . < N () o ]
o | o | <
© T T T T T © T T T T T I T T T T T T
0 2 4 6 8 0 2 4 6 8 0.0 02 04 06 0.8 1.C
tq t 22
— — N
«© _| —
o - o <7 S
(%)) g . < N () &
Q : e < :
© T T T T T © T T T T T ! T T T T T T
0 2 4 6 8 0 2 4 6 8 0.0 0.2 04 06 0.8 1.C
tq t Z2
— — o o
o) —
S o | |
o — o — -~
— < A T~ —
wn S = H n (\Il B
o o <
© T T T T T © T T T T T ! T T T T T T
0 2 4 6 8 0 2 4 6 8 0.0 0.2 04 06 0.8 1.C
tq t z2

Figure 8: Smooth function estimates for the IPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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Figure 9: Smooth function estimates for the NPMLE obtained by applying gamlss () to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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