
Supplementary Material: "Generalized Link-Based

Additive Survival Models with Informative

Censoring"

Supplementary Material A: Software

The models proposed in this article can be employed via the gamlss() function in the R package

GJRM (Marra & Radice, 2019). As an example, consider the following call

fl <- list(u ~ s(u, bs = "mpi") + z1 + s(z2), u ~ s(u, bs = "mpi") + z1 + s(z2))

M1 <- gamlss(fl, data = data, surv = TRUE, margin = "PH", margin2 = "PH"

cens = delta, informative = "yes", inform.cov = c("z1"))

where fl is a list containing the two additive predictors of the informative model, and s(u,

bs = "mpi") represents the monotonic P-spline function which models a transformation of

the baseline survival function. As for s(z2), the default is bs = "tp" (penalized low rank

thin plate spline) with k = 10 (number of basis functions) and m = 2 (order of derivatives).

However, argument bs can also be set to, for example, cr (penalized cubic regression spline), ps

(P-spline) and mrf (Markov random field), to name but a few. In the gamlss function, surv =

TRUE indicates that a survival model is fitted. The arguments margin ="PH" and margin2

="PH" specify the link functions for the survival and censoring times, respectively. Table 1 shows

the possible choices for the links that have been implemented for this article. In this example, we

specify the proportional hazard link ("PH") for the two equations. Argument cens = delta is

a binary censoring indicator; this variable has to be equal to 1 if the event occurred and 0 otherwise.

Finally, informative = "yes" indicates that we are fitting a survival model with informative

censoring, and inform.cov = c("z1") specifies the set of informative covariates.
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Model Link g(S) Inverse link g−1(ξ) = G(ξ) G′(ξ)

Prop.hazards ("PH") log {− log(S)} exp {− exp(ξ)} −G(ξ) exp(ξ)

Prop.odds ("PO") − log
(

S
1−S

)
exp(−ξ)

1+exp(−ξ) −G2(ξ) exp(−ξ)

Probit ("probit") −Φ−1(S) Φ(−ξ) −φ(−ξ)

Table 1: Link functions implemented in GJRM. Φ and φ are the cumulative distribution and density func-
tions of a univariate standard normal distribution. Alternative links can be implemented. The first two
functions can be called log-log and -logit links, respectively.

Supplementary Material B: Scores and Hessians

In this section, the detailed derivations of the informative and non-informative Scores and Hessians

are presented.

B.1. Informative and Non-informative Scores

If censoring is informative then γ1 and γ2 would have some components in common. Because the

first Q components of γ1 are the same as the first Q components of γ2, we have

Q>νiγν = Q0>
i α0 + Q1>

νi αν .

Therefore, defining α = (α>0 ,α
>
1 ,α

>
2 )>, the informative penalized log-likelihood function can

be written as

`p(α) = `(α)− 1

2
α>Sα, (1)

where `(α) is defined as

`(α) =
n∑
i=1

{
log G1 [ξ1i(α0,α1)] + δ1i log

{
−G

′
1 [ξ1i(α0,α1)]

G1 [ξ1i(α0,α1)]

∂ξ1i(α0,α1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(α0,α2)] + δ2i log

{
−G

′
2 [ξ2i(α0,α2)]

G2 [ξ2i(α0,α2)]

∂ξ2i(α0,α2)

∂yi

}}
.

The gradient of equation (1) can be calculated as

∇α`p(α) = ∇α`(α)−αS,
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where ∇α`(α) =
(
∇α0`(α)>,∇α1`(α)>,∇α2`(α)>

)>. where ∇α0`(α), ∇α1`(α) and ∇α2`(α)

can be obtained as
∂`(α)

∂α0

=

[
∂`(α)

∂α011

· · · ∂`(α)

∂α0QJQ

]>
,
∂`(α)

∂α1

=

[
∂`(α)

∂α111

· · · ∂`(α)

∂α1Q1J1Q1

]>
and

∂`(α)

∂α2

=

[
∂`(α)

∂α21

· · · ∂`(α)

∂α2Q2J2Q2

]>
. In particular, the scalar derivatives of ∇α0`(α), ∇α1`(α)

and ∇α2`(α) can be calculated as

∂`(α)

∂α0j

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α0j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂α0j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂α0j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂α0j

]}

+
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α0j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂α0j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂α0j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂α0j

]}

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α0j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂α0j

− G
′
1

G1
∂ξ1i
∂α0j

+
∂2ξ1i
∂yi∂α0j

(
∂ξ1i
∂yi

)−1]}

+
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α0j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂α0j

− G
′
2

G2
∂ξ2i
∂α0j

+
∂2ξ2i
∂yi∂α0j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α0j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+
∂ξ2i
∂α0j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∆1 +
∂ξ2i
∂α0j

∆2

}
,

(2)

∂`(α)

∂α1j

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α1j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂α1j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂α1j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂α1j

]}

=
n∑
i=1

{
G ′1
G1

∂ξ1i
∂α1j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂α1j

− G
′
1

G1
∂ξ1i
∂α1j

+
∂2ξ1i
∂yi∂α1j

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α1j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+

∂2ξ1i
∂yi∂α1j

δ1i

(
∂ξ1i
∂yi

)−1}

=
n∑
i=1

{
∂ξ1i
∂α1j

∆1 +
∂2ξ1i
∂yi∂α1j

Ω1

}
,

(3)
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∂`(α)

∂α2j

=
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α2j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂α2j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂α2j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂α2j

]}

=
n∑
i=1

{
G ′2
G2

∂ξ2i
∂α2j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂α2j

− G
′
2

G2
∂ξ2i
∂α2j

+
∂2ξ2i
∂yi∂α2j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂α2j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
+

∂2ξ2i
∂yi∂α2j

δ2i

(
∂ξ2i
∂yi

)−1}

=
n∑
i=1

{
∂ξ2i
∂α2j

∆2 +
∂2ξ2i
∂yi∂α2j

Ω2

}
,

(4)

where ξνi = ξνi(α0,αν), ∆ν =

[
G ′ν
Gν

+ δνi

(
G ′′ν
G ′ν
− G

′
ν

Gν

)]
and Ων = δνi

(
∂ξνi
∂yi

)−1
. The last terms

of equations (2), (3) and (4) allow to express ∇α0`(α), ∇α1`(α) and ∇α2`(α) as follow

∇α0`(α) =
n∑
i=1

[
∆1

∂ξ1i
∂α0

+ ∆2
∂ξ2i
∂α0

]
,

∇α1`(α) =
n∑
i=1

[
∆1

∂ξ1i
∂α1

+ Ω1
∂2ξ1i
∂yi∂α1

]
,

∇α2`(α) =
n∑
i=1

[
∆2

∂ξ2i
∂α2

+ Ω2
∂2ξ2i
∂yi∂α2

]
,

where, for all i = 1, ..., n and ν = 1, 2,
∂ξνi
∂α0

=

[
∂ξνi
∂α011

· · · ∂ξνi
∂α0QJQ

]>
,
∂ξνi
∂αν

=

[
∂ξνi
∂αν11

· · · ∂ξνi
∂ανQνJνQν

]>
and

∂2ξνi
∂yi∂αν

=

[
∂2ξνi

∂yi∂αν11
· · · ∂2ξνi

∂yi∂ανQνJνQν

]>
. These expressions can be calculated using the

design vectors defined in Section 2.2 as

∂ξνi
∂α0

=
(
Q1(x0

1i)
>, . . . ,QQ(x0

Qi)
>)> = Q0

i ,

∂ξνi
∂yi

= lim
ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0α̃ν0 = Q′ν0(yi)>Γν0α̃ν0,

∂ξνi
∂ανqν

=


Qι4

ν0 (yi) if ανqν = αν0

Qνqν (x1
νqν i) otherwise,

∂2ξνi
∂yi∂ανqν

=


Qι4′

ν0 (yi) if ανqν = αν0

0 otherwise,
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where Q′ν0(yi) can be conveniently obtained using a finite-difference method. Moreover, we

define the design vectors Qι4
ν0 (yi) and Qι4′

ν0 (yi) as

Qι4
ν0 (yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (αν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (αν03)]

...

Qν0Jν0(yi) exp (αν0Jν0)


Qι4′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0
(yi)[∑Jν0

jν0=2Q′
ν0jν0

(yi)
]

exp (αν02)[∑Jν0
jν0=3Q′

ν0jν0
(yi)
]

exp (αν03)]

...

Q′
ν0Jν0

(yi) exp (αν0Jν0)


.

On the other hand, when censoring is non-informative the penalized log-likelihood function is

`p(γ) = `(γ)− 1

2
γ>Sγ, (5)

where `(γ) can be written as

`(γ) =
n∑
i=1

{
log G1 [ξ1i(γ1)] + δ1i log

{
−G

′
1 [ξ1i(γ1)]

G1 [ξ1i(γ1)]

∂ξ1i(γ1)

∂yi

}}
+

n∑
i=1

{
log G2 [ξ2i(γ2)] + δ2i log

{
−G

′
2 [ξ2i(γ2)]

G2 [ξ2i(γ2)]

∂ξ2i(γ2)

∂yi

}}
.

The gradient of (5) can be calculated as

∇γ`p(γ) = ∇γ`(γ)− γS,

where ∇γ`(γ) =
(
∇γ1`(γ)>, ∇γ2`(γ)>

)>. In addition, ∇γ1`(γ) and ∇γ2`(γ) can be calcu-

lated as
∂`(γ)

∂γ1
=

[
∂`(γ)

∂γ111
· · · ∂`(γ)

∂γ1K1J1K1

]>
and

∂`(γ)

∂γ2
=

[
∂`(γ)

∂γ211
· · · ∂`(γ)

∂γ2K2J2K2

]>
. Furthermore,
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the scalar derivatives of ∇γ1`(γ) and ∇γ2`(γ) can be obtained as

∂`(γ)

∂γ1j
=

n∑
i=1

{
G ′1
G1
∂ξ1i
∂γ1j

}
+

n∑
i=1

δ1i

{[
−G

′
1

G1
∂ξ1i
∂yi

]−1 [
−G

′′
1

G1
∂ξ1i
∂γ1j

∂ξ1i
∂yi

+
G ′21
G21

∂ξ1i
∂γ1j

∂ξ1i
∂yi
− G

′
1

G1
∂2ξ1i
∂yi∂γ1j

]}

=
n∑
i=1

{
G ′1
G1
∂ξ1i
∂γ1j

+ δ1i

[
G ′′1
G ′1

∂ξ1i
∂γ1j

− G
′
1

G1
∂ξ1i
∂γ1j

+
∂2ξ1i
∂yi∂γ1j

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂γ1j

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
+

∂2ξ1i
∂yi∂γ1j

δ1i

(
∂ξ1i
∂yi

)−1}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∆1 +
∂2ξ1i
∂yi∂γ1j

Ω1

}
,

(6)

∂`(γ)

∂γ2j
=

n∑
i=1

{
G ′2
G2
∂ξ2i
∂γ2j

}
+

n∑
i=1

δ2i

{[
−G

′
2

G2
∂ξ2i
∂yi

]−1 [
−G

′′
2

G2
∂ξ2i
∂γ2j

∂ξ2i
∂yi

+
G ′22
G22

∂ξ2i
∂γ2j

∂ξ2i
∂yi
− G

′
2

G2
∂2ξ2i
∂yi∂γ2j

]}

=
n∑
i=1

{
G ′2
G2
∂ξ2i
∂γ2j

+ δ2i

[
G ′′2
G ′2

∂ξ2i
∂γ2j

− G
′
2

G2
∂ξ2i
∂γ2j

+
∂2ξ2i
∂yi∂γ2j

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂γ2j

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
+

∂2ξ2i
∂yi∂γ2j

δ2i

(
∂ξ2i
∂yi

)−1}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∆2 +
∂2ξ2i
∂yi∂γ2j

Ω2

}
,

(7)

where ξνi = ξνi(γν). The last terms of equations (6) and (7) allow ∇γ1`(γ) and ∇γ2`(γ) to be

expressed as

∇γ1`(γ) =
n∑
i=1

[
∆1

∂ξ1i
∂γ1

+ Ω1
∂2ξ1i
∂yi∂γ1

]
∇γ2`(γ) =

n∑
i=1

[
∆2

∂ξ2i
∂γ2

+ Ω2
∂2ξ2i
∂yi∂γ2

]
,

where
∂ξνi
∂γυ

=

[
∂ξνi
∂γν11

· · · ∂ξνi
∂γνKνJνKν

]>
and

∂2ξνi
∂yi∂γν

=

[
∂2ξνi

∂yi∂γν11
· · · ∂2ξνi

∂yi∂γνKνJνKν

]>
for all

i = 1, ..., n and ν = 1, 2. Furthermore,
∂ξνi(γν)

∂yi
, can be generically calculated using

∂ξνi(γν)

∂yi
= lim

ε→0

{
Qν0(yi + ε)−Qν0(yi − ε)

2ε

}>
Γν0γ̂ν0 = Q′ν0(yi)>Γν0γ̂ν0,
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where Q′ν0(yi) can also be calculated using a finite-difference method. The design vectors for
∂ξνi(γν)

∂γν
and

∂2ξνi(γν)

∂yi∂γν
can be obtained using

∂ξνi(γν)

∂γνkν
=


Q4ν0(yi) if γνkν = γν0

Qνkν (xνkν i) otherwise,

∂2ξνi(γν)

∂yi∂γνkν
=


Q4

′

ν0 (yi) if γνkν = γν0

0 otherwise.

Finally, we have that

Q4ν0(yi) =



∑Jν0
jν0=1Qν0jν0(yi)[∑Jν0

jν0=2Qν0jν0(yi)
]

exp (γν02)[∑Jν0
jν0=3Qν0jν0(yi)

]
exp (γν03)]

...

Qν0Jν0(yi) exp (γν0Jν0)


Q4

′

ν0 (yi) =



∑Jν0
jν0=1Q′

ν0jν0
(yi)[∑Jν0

jν0=2Q′
ν0jν0

(yi)
]

exp (γν02)[∑Jν0
jν0=3Q′

ν0jν0
(yi)
]

exp (γν03)]

...

Q′
ν0Jν0

(yi) exp (γν0Jν0)


.

B.2. Informative and Non-informative Hessians

The informative penalized Hessian can be obtained as

∇αα`p(α) = ∇αα`(α)− S,

where ∇αα`(α) is

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) ∇α1α2`(α)

∇α2α0`(α) ∇α2α1`(α) ∇α2α2`(α)

 . (8)
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In addition, ∇αυακ`(α) =
∂2`(α)

∂αυ∂α>κ
, for all υ = 0, 1, 2 and κ = 0, 1, 2. This expression is

calculated using

∇αυακ`(α) =



∂2`(α)

∂αυ11∂ακ11
. . .

∂2`(α)

∂αυ11∂ακQκJκQκ

. . .
. . . . . .

∂2`(α)

∂αυQυJυQυ∂ακ11
. . .

∂2`(α)

∂αυQυJυQυ∂ακQκJκQκ

 .

Sinceα1 appears only in ξ1i(α0,α1) andα2 only in ξ2i(α0,α2), then ∇α1α2`(α) = ∇α2α1`(α) =

0. Hence, (8) can be written as

∇αα`(α) =


∇α0α0`(α) ∇α0α1`(α) ∇α0α2`(α)

∇α1α0`(α) ∇α1α1`(α) 0

∇α2α0`(α) 0 ∇α2α2`(α)

 . (9)

In equation (9), the scalar derivatives of ∇α0α0`(α), ∇α1α0`(α), ∇α0α2`(α), ∇α1α1`(α) and

∇α2α2`(α), can be calculated as

∂2`(α)

∂α0j∂α0k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′2
1

G21
∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

− G
′′
1

G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′21
G21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α0k

+
G ′1
G1

∂2ξ1i
∂α0j∂α0k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α0j∂α0k

− G
′
1

G1
δ1i

∂2ξ1i
∂α0j∂α0k

}

+
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′2
2

G22
∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

− G
′′
2

G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′22
G22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α0k

+
G ′2
G2

∂2ξ2i
∂α0j∂α0k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α0j∂α0k

− G
′
2

G2
δ2i

∂2ξ2i
∂α0j∂α0k

}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α0k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂ξ2i
∂α0j

∂ξ2i
∂α0k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α0k

Φ1 +
∂ξ2i
∂α0j

∂ξ2i
∂α0k

Φ2

}
,

(10)
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∂2`(α)

∂α0j∂α1k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′2
1

G21
∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

− G
′′
1

G1
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′21
G21
δ1i

∂ξ1i
∂α0j

∂ξ1i
∂α1k

+
G ′1
G1

∂2ξ1i
∂α0j∂α1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α0j∂α1k

− G
′
1

G1
δ1i

∂2ξ1i
∂α0j∂α1k

}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]}

=
n∑
i=1

{
∂ξ1i
∂α0j

∂ξ1i
∂α1k

Φ1

}
,

(11)

∂2`(α)

∂α0j∂α2k

=
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′2
2

G2
2

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

− G
′′
2

G2
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′22
G22
δ2i

∂ξ2i
∂α0j

∂ξ2i
∂α2k

+
G ′2
G2

∂2ξ2i
∂α0j∂α2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α0j∂α2k

− G
′
2

G2
δ2i

∂2ξ2i
∂α0j∂α2k

}

=
n∑
i=1

{
∂ξ2i
∂α0j

∂ξ2i
∂α2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]}

=
n∑
i=1

{
∂ξ2i
∂α0j

∂ξ2i
∂α2k

Φ2

}
,

(12)
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∂2`(α)

∂α1j∂α1k

=
n∑
i=1

{
G ′′1
G1

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′2
1

G21
∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′′′1
G1
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′′2
1

G ′21
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

− G
′′
1

G1
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′21
G21
δ1i

∂ξ1i
∂α1j

∂ξ1i
∂α1k

+
G ′1
G1

∂2ξ1i
∂α1j∂α1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂α1j∂α1k

− G
′
1

G1
δ1i

∂2ξ1i
∂α1j∂α1k

+
∂3ξ1i

∂yi∂α1j∂α1k

δ1i

(
∂ξ1i
∂yi

)−1
− ∂2ξ1i
∂yi∂α1k

∂2ξ1i
∂yi∂α1j

δ1i

(
∂ξ1i
∂yi

)−2}

=
n∑
i=1

{
∂ξ1i
∂α1j

∂ξ1i
∂α1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂2ξ1i

∂α1j∂α1k

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
− ∂2ξ1i
∂yi∂α1k

∂2ξ1i
∂yi∂α1j

[
δ1i

(
∂ξ1i
∂yi

)−2]

+
∂3ξ1i

∂yi∂α1j∂α1k

[
δ1i

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂α1j

∂ξ1i
∂α1k

Φ1 +
∂2ξ1i

∂α1j∂α1k

∆1 −
∂2ξ1i

∂yi∂α1k

∂2ξ1i
∂yi∂α1j

Ψ1 +
∂3ξ1i

∂yi∂α1j∂α1k

Ω1

}
,

(13)

∂2`(α)

∂α2j∂α2k

=
n∑
i=1

{
G ′′2
G2

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′2
2

G22
∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′′′2
G2
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′′2
2

G ′22
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

− G
′′
2

G2
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′22
G22
δ2i

∂ξ2i
∂α2j

∂ξ2i
∂α2k

+
G ′2
G2

∂2ξ2i
∂α2j∂α2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂α2j∂α2k

− G
′
2

G2
δ2i

∂2ξ2i
∂α2j∂α2k

+
∂3ξ2i

∂yi∂α2j∂α2k

δ2i

(
∂ξ2i
∂yi

)−1
− ∂2ξ2i
∂yi∂α2k

∂2ξ2i
∂yi∂α2j

δ2i

(
∂ξ2i
∂yi

)−2}

=
n∑
i=1

{
∂ξ2i
∂α2j

∂ξ2i
∂α2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]

+
∂2ξ2i

∂α2j∂α2k

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
− ∂2ξ2i
∂yi∂α2k

∂2ξ2i
∂yi∂α2j

[
δ2i

(
∂ξ2i
∂yi

)−2]

+
∂3ξ2i

∂yi∂α2j∂α2k

[
δ2i

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂α2j

∂ξ2i
∂α2k

Φ2 +
∂2ξ2i

∂α2j∂α2k

∆2 −
∂2ξ2i

∂yi∂α2k

∂2ξ2i
∂yi∂α2j

Ψ2 +
∂3ξ2i

∂yi∂α2j∂α2k

Ω2

}
,

(14)
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where Φν = δνi

(
G ′′′ν
Gν
− G

′′2
ν

G ′2ν
− G

′′
ν

Gν
+
G ′2ν
G2ν

)
and Ψν =

[
δνi

(
∂ξνi
∂yi

)−2]
. Collecting the last terms

of (10), (11), (12), (13) and (14), we obtain

∂2`(α)

∂α0∂α>0
=

n∑
i=1

{
Φ1

∂ξ1i
∂α0

[
∂ξ1i
∂α0

]>
+ Φ2

∂ξ2i
∂α0

[
∂ξ2i
∂α0

]>}
,

∂2`(α)

∂α0∂α>ν
=

n∑
i=1

{
Φν

∂ξνi
∂α0

[
∂ξνi
∂αν

]>}
,

∂2`(α)

∂αν∂α>ν
=

n∑
i=1

{
Φν

∂ξνi
∂αν

[
∂ξνi
∂αν

]>
+ ∆ν

∂2ξνi
∂αν∂α>ν

− Ψν
∂2ξνi
∂yi∂αν

[
∂2ξνi
∂yi∂αν

]>
+ Ων

∂3ξνi
∂yi∂αν∂α>ν

}
,

where

∂2ξνi
∂αν∂α>ν

=



∂2ξνi(αν)

∂αν11∂αν11
. . .

∂2ξνi(αν)

∂αν11∂ανQνJνQν

. . .
. . . . . .

∂2ξνi(αν)

∂ανQνJνQν ∂αν11
. . .

∂2ξνi(αν)

∂ανQνJνQν ∂ανQνJνQν

 ,

∂3ξνi
∂yi∂αν∂α>ν

=



∂3ξνi(αν)

∂yi∂αν11∂αν11
. . .

∂3ξνi(αν)

∂yi∂αν11∂ανQνJνQν

. . .
. . . . . .

∂3ξνi(αν)

∂yi∂ανQνJνQν ∂αν11
. . .

∂3ξνi(αν)

∂yi∂ανQνJνQν ∂ανQνJνQν

 .

In particular, the design sub-matrices of
∂2ξνi

∂αν∂α>ν
and

∂3ξνi
∂yi∂αν∂α>ν

are calculated using

∂2ξνi(α0,αν)

∂ανqν∂α
>
νsν

=


Qι44

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,

∂3ξνi(α0,αν)

∂yi∂ανqνα
>
νsν

=


Qι44′

ν0 (yi) if ανqν = ανsν = αν0

0 otherwise,

11



where Qι44
ν0 (yi) and Qι44′

ν0 (yi) are defined as

Qι44
ν0 (yi) =


∂2ξνi

∂αν0jν0∂αν0kν0
=
[∑Jν0

jν0
Qν0jν0(yi)

]
exp (αν0jν0) if j = k 6= 1

∂2ξνi
∂αν0jν0∂αν0kν0

= 0 otherwise,

Qι44′

ν0 (yi) =


∂3ξνi

∂yiαν0jν0∂αν0kν0
=
[∑Jν0

jν0
Q′ν0jν0(yi)

]
exp (αν0jν0) if j = k 6= 1

∂3ξνi
∂yiαν0jν0∂αν0kν0

= 0 otherwise.

On the other hand, the non-informative penalized Hessian is

∇γγ`p(γ) = ∇γγ`(γ)− S.

Since ξ1i(γ1) and ξ2i(γ2)) do not have parameters in common, ∇γγ`(γ) can be written as

∇γγ`(γ) =

∇γ1γ1`(γ) 0

0 ∇γ2γ2`(γ)

 ,

where ∇γνγν`(γ) =
∂2`(γ)

∂γν∂γ>ν
. This expression can be obtained using

∇γνγν`(γ) =



∂2`(γ)

∂γν11∂γν11
. . .

∂2`(γ)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2`(γ)

∂γνKνJνKν ∂γν11
. . .

∂2`(γ)

∂γνKνJνKν ∂γνKνJνKν

 .
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Furthermore, the scalar derivatives of ∇γ1γ1`(γ) and ∇γ2γ2`(γ) are

∂2`(γ)

∂γ1j∂γ1k
=

n∑
i=1

{
G ′′1
G1

∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′2
1

G21
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′′′1
G1
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′′2
1

G ′21
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

− G
′′
1

G1
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′21
G21
δ1i
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

+
G ′1
G1

∂2ξ1i
∂γ1j∂γ1k

+
G ′′1
G ′1
δ1i

∂2ξ1i
∂γ1j∂γ1k

− G
′
1

G1
δ1i

∂2ξ1i
∂γ1j∂γ1k

+
∂3ξ1i

∂yi∂γ1j∂γ1k
δ1i

(
∂ξ1i
∂yi

)−1
− ∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

δ1i

(
∂ξ1i
∂yi

)−2}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

[(
G ′′1
G1
− G

′2
1

G21

)
+ δ1i

(
G ′′′1
G1
− G

′′2
1

G ′21
− G

′′
1

G1
+
G ′21
G21

)]

+
∂2ξ1i

∂γ1j∂γ1k

[
G ′1
G1

+ δ1i

(
G ′′1
G ′1
− G

′
1

G1

)]
− ∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

[
δ1i

(
∂ξ1i
∂yi

)−2]

+
∂3ξ1i

∂yi∂γ1j∂γ1k

[
δ1i

(
∂ξ1i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ1i
∂γ1j

∂ξ1i
∂γ1k

Φ1 +
∂2ξ1i

∂γ1j∂γ1k
∆1 −

∂2ξ1i
∂yi∂γ1k

∂2ξ1i
∂yi∂γ1j

Ψ1 +
∂3ξ1i

∂yi∂γ1j∂γ1k
Ω1

}
,

(15)

∂2`(γ)

∂γ2j∂γ2k
=

n∑
i=1

{
G ′′2
G2

∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′2
2

G22
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′′′2
G2
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′′2
2

G ′22
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

− G
′′
2

G2
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′22
G22
δ2i
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

+
G ′2
G2

∂2ξ2i
∂γ2j∂γ2k

+
G ′′2
G ′2
δ2i

∂2ξ2i
∂γ2j∂γ2k

− G
′
2

G2
δ2i

∂2ξ2i
∂γ2j∂γ2k

+
∂3ξ2i

∂yi∂γ2j∂γ2k
δ2i

(
∂ξ2i
∂yi

)−1
− ∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

δ2i

(
∂ξ2i
∂yi

)−2}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

[(
G ′′2
G2
− G

′2
2

G22

)
+ δ2i

(
G ′′′2
G2
− G

′′2
2

G ′22
− G

′′
2

G2
+
G ′22
G22

)]

+
∂2ξ2i

∂γ2j∂γ2k

[
G ′2
G2

+ δ2i

(
G ′′2
G ′2
− G

′
2

G2

)]
− ∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

[
δ2i

(
∂ξ2i
∂yi

)−2]

+
∂3ξ2i

∂yi∂γ2j∂γ2k

[
δ2i

(
∂ξ2i
∂yi

)−1]}

=
n∑
i=1

{
∂ξ2i
∂γ2j

∂ξ2i
∂γ2k

Φ2 +
∂2ξ2i

∂γ2j∂γ2k
∆2 −

∂2ξ2i
∂yi∂γ2k

∂2ξ2i
∂yi∂γ2j

Ψ2 +
∂3ξ2i

∂yi∂γ2j∂γ2k
Ω2

}
.

(16)
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The last terms of equations (15) and (16) allow to express ∇γ1γ1`(γ) and ∇γ2γ2`(γ) as

∇γνγν`(γ) =
n∑
i=1

{
Φνi

∂ξνi
∂γν

[
∂ξνi
∂γν

]>
+ ∆νi

∂2ξνi
∂γν∂γ>ν

−Ψνi
∂2ξνi
∂yi∂γν

[
∂2ξνi
∂yi∂γν

]>
+ Ωνi

∂3ξνi
∂yi∂γν∂γ>ν

}
,

where

∂2ξνi
∂γν∂γ>ν

=



∂2ξνi(γν)

∂γν11∂γν11
. . .

∂2ξνi(γν)

∂γν11∂γνKνJνKν

. . .
. . . . . .

∂2ξνi(γν)

∂γνKνJνKν ∂γν11
. . .

∂2ξνi(γν)

∂γνKνJνKν ∂γνKνJνKν

 ,

∂3ξνi
∂yi∂γν∂γ>ν

=



∂3ξνi(γν)

∂yi∂γν11∂γν11
. . .

∂3ξνi(γν)

∂yi∂γν11∂γνKνJνKν

. . .
. . . . . .

∂3ξνi(γν)

∂yi∂γνKνJνKν ∂γν11
. . .

∂3ξνi(γν)

∂yi∂γνKνJνKν ∂γνKνJνKν

 .

In addition, the design sub-matrices of
∂2ξνi(γν)

∂γν∂γ>ν
and

∂3ξνi(γν)

∂yi∂γν∂γ>ν
can be obtained using the

following equations

∂2ξνi(γν)

∂γνkν∂γ
>
νsν

=


Q44ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,

∂3ξνi(γν)

∂yi∂γνkνγ
>
νsν

=


Q44

′

ν0 (yi) if γνkν = γνsν = γν0

0 otherwise,
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where Q44ν0 (yi) and Q44
′

ν0 (yi) can be calculated as

Q44ν0 (yi) =


∂2ξνi

∂γν0jν0∂γν0kν0
=
[∑Jν0

jν0
Qν0jν0(yi)

]
exp (γν0jν0) if j = k 6= 1

∂2ξνi
∂γν0jν0∂γν0kν0

= 0 otherwise,

Q44
′

ν0 (yi) =


∂3ξνi

∂yiγν0jν0∂γν0kν0
=
[∑Jν0

jν0
Q′ν0jν0(yi)

]
exp (γν0jν0) if j = k 6= 1

∂3ξνi
∂yiγν0jν0∂γν0kν0

= 0 otherwise.
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Supplementary Material C: Estimation Algorithm

The optimization method used is the trust region algorithm. At iteration a, for a given vector α

and maintaining λ fixed at a vector of values, equation (13) in the main paper (or generally, any

of the models’ likelihoods considered in the paper) is maximized using

α[a+1] = arg min
ε:‖ε‖≤Ξ[a]

¯̀
p(α

[a]),

where ¯̀
p(α

[a]) = −
{
`p(α

[a]) + ε>gp(α[a]) + 1
2
ε>Hp(α

[a])ε
}

, gp(α[a]) = g(α[a]) − Sα[a],

Hp(α
[a]) = H(α[a])− S. Vector g(α[a]) consists of g0(α

[a]) = ∇α0`(α)|
α0=α

[a]
0

and gν(α[a]) =

∇αν`(α)|
αν=α

[a]
ν

, and H(α[a])l,j = ∇αlαj`(α)|
αl=α

[a]
l ,αj=α

[a]
j

, where l, j = 0, 1, 2 and ν = 1, 2.

The euclidean norm is denoted by ‖·‖, and the radius of the trust region is represented by Ξ[a]

which is adjusted through the iterations. Close to the solution, the trust region algorithms behaves

as a classic Newton-Raphson unconstrained method (Nocedal & Wright, 2006).

Estimation of λ is achieved by adapting the general and automatic multiple smoothing param-

eter estimation method of (Marra et al., 2017) to the context of the proposed survival models. The

smoothing criterion is based on the knowledge of g(α) and H(α). The main ideas and some

useful results are given here.

To simplify the notation, gp(α[a]), g(α[a]), Hp(α
[a]) and H(α[a]) are denoted as g[a]

p , g[a], H[a]
p

and H[a]. First, it is necessary to express the parameter estimator in terms of g[a]
p and H[a]

p . To

achieve this, a first order Taylor expansion of g[a+1]
p about α[a] is used, which yields the following

expression: 0 = g[a+1]
p ≈ g[a]

p (α[a+1] − α[a])H[a]
p . After some manipulations, α[a+1] = (−H[a] +

S)-1
√
−H[a]

[√
−H[a]α[a]+

√
−H[a]

-1
g[a]
]

is obtained, which then becomesα[a+1] = (−H[a]+

S)-1
√
−H[a]Z [a], where Z [a] = υ

[a]
Z + ξ

[a]
Z , υ[a]

Z =
√
−H[a]α[a] and ξ[a]Z =

√
−H[a]

-1
g[a].

Eigenvalue decomposition is used to obtain the square root of −H[a] ant its inverse. Furthermore,

from likelihood theory, ξ ∼ N (0, I) and Z ∼ N (υN , I), where υZ =
√
−Hα0, α0 is the true

parameter vector and I is the identity matrix. υ̂Z =
√
−Hα̂ = BZ is the predicted value vector

for Z , where B =
√
−H(−H + S)-1

√
−H. Since our objective is to estimate λ so that the

smooth terms’ complexity which is not supported by the data is removed, the following criterion

16



is used

E
(
‖υZ − υ̂Z‖2

)
= E

(
‖Z −BZ‖2

)
− n̄ + 2tr(B), (17)

where n̄ = 2 n and tr(B) represent the number of effective degrees of freedom of the penalized

model. In applications, λ is estimated by minimizing an estimate of equation (17), in other words

‖ ̂υZ − υ̂Z‖2 = ‖Z −BZ‖2 − n̄ + 2tr(B). (18)

The RHS of equation (18) depends on λ through B while Z is associated with the un-penalized

part of the model. Equation (17) is approximately equivalent to the AIC (Akaike, 1973). This

implies that λ is estimated by minimizing what is effectively the AIC with number of parameters

given by tr(B). Holding the model’s parameter vector value fixed atα[a+1], the following problem

λ[a+1] = arg min
λ

‖Z [a+1] −B[a+1]Z [a+1]‖2 − n̄ + 2tr(B[a+1]) (19)

is solved using the automatic efficient and stable computational method proposed by Wood (2004).

This approach uses the performance iteration idea of Gu (1992), which is based on Newton’s

method and can evaluate in an efficient and stable way the components in (19) along with their

first and second derivatives with respect to log(λ), because the smoothing parameters can only

take positive values.

The methods for estimating α and λ are iterated until the algorithm satisfies the criterion∣∣`(α[a+1])− `(α[a])
∣∣ / (0.1 +

∣∣`(α[a+1])
∣∣) ≤ (1e− 0.7). Starting values are obtained by fitting

two non-informative models for the survival and censoring times.
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Supplementary Material D: Proofs of the Theorems

This section provides the proofs of Theorems 1, 2 and 3 stated in Section 2.4. First, we establish

the main set of assumptions (regularity conditions and vanishing penalties), then the main results

are presented.

D.1. Assumptions

Since the same set of assumptions are used to proof Theorems 1 and 2, we use θ to represents the

generic vector of parameters. In particular, θ = α in Theorem 1 and θ = γ in Theorem 2. Hence,

the generic log-likelihood function can be written as

`(θ) =
n∑
i=1

log
[
[f1(yi|zi;θ1)S2(yi|zi;θ2)]δ1i [f2(yi|zi;θ2)S1(yi|zi;θ1)]δ2i

]
. (20)

In (20), it has been assumed that z1i = z2i. In what follows `(θ) =
∑n

i=1 logω(wi;θ), where

ω(wi;θ) = ω(y|z;θ) =
[
[f1(yi|zi;θ1)S2(yi|zi;θ2)]δ1i [f2(yi|zi;θ2)S1(yi|zi;θ1)]δ2i

]
and wi =

(yi, z>i )> ∈ R+ × Rp, and R+ = (0,∞). In addition, `(wi;θ) = logω(wi;θ), `n(θ) =

n−1
∑n

i=1 `(wi;θ), ∇θ`(wi;θ) =
∂`(wi;θ)

∂θ
, ∇θ`n(θ) =

∂`n(θ)

∂θ
, ∇θθ`(wi;θ) =

∂2`(wi;θ)

∂θ∂θ>

and ∇θθ`n(θ) =
∂2`n(θ)

∂θ∂θ>
. The penalised likelihood is `p(θ) = `n(θ)− 1

2
θ>Sθ.

Assumption 1 (Regularity Conditions).

(i) The parameter space Θθ is a compact subset of Rp.

(ii) For all wi, ω(wi;θ) is continuous in θ. Furthermore, ω(wi;θ) is measurable in wi for all θ

∈Θθ.

(iii) Identification condition. P[ω(wi;θ) 6= ω(wi;θ
>)] > 0 for all θ 6= θ> ∈Θθ.

(iv) Dominance. E{supθ∈Θθ
|`(wi;θ)|} <∞

(v) The true vector of parameters θ> is in the interior of Θθ, and Θ0 is an open neighbourhood

around θ>.

(vi) For all wi,ω(wi;θ) is three times continuously differentiable in θ in an open neighbourhood

around θ>. That is ω(wi;θ) ∈ C3(Θ0)
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(vii)
∫

supθ∈Θ0
‖∇θ`(wi;θ)‖ dwi <∞ and

∫
supθ∈Θ0

‖∇θθ`(wi;θ)‖ dwi <∞.

(viii) For θ ∈Θ0, I(θ>) = Cov{∇θ`(wi;θ)} = E{{∇θ`(wi;θ
>)−E[∇θ`(wi;θ

>)]}{∇θ`(wi;θ
>)−

E[∇θ`(wi;θ
>)]}>} exists and is positive-definite.

(ix) For all 1 ≤ e, f, h ≤ p+ 1, there exist a function φ : R+ ×Rp −→ R such that, for θ ∈Θ0

and wi ∈ R+ × Rp,
∣∣∣∣ ∂3`(wi;θ)

∂θe∂θf∂θh

∣∣∣∣ ≤ φ(wi), with E[φ(wi)] <∞.

Assumption 2. λ = o(n−1/2).

In addition, the following lemmas are required to prove Theorems 1, 2 and 3.

Lemma 1. Let s(w,θ) be a continuously differentiable function, a.s. dw, on θ ∈Θ0.

If
∫

supθ∈Θ0

∥∥∥∥∂s(w,θ)

∂θ

∥∥∥∥ dw <∞, then for θ ∈Θ0,

(i)
∫
s(w,θ)dw is continuously differentiable.

(ii)
∫

[∂s(w,θ)/∂θ]dw = ∂[
∫
s(w,θ)dw]/∂θ.

Proof. Newey & McFadden (1994, Lemma 3.6).

Lemma 2. If Assumption 1 hold, then

(i) E[∇θ`(w;θ>)] = 0

(ii) E[−∇θθ`(w;θ>)] = I(θ>)

Proof.

(i) Since ω(y|z;θ) is a hypothetical density, its integral is unity:

∫
ω(y|z;θ)dy = 1.

This is an identity, valid for any θ ∈ Θθ. Differentiating both sides of this identity with

respect to θ, we obtain

∂

∂θ

∫
ω(y|z;θ)dy = 0.
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Then, by Assumptions 1(vi) and 1(vii), and Lemma 1 (the order of differentiation and inte-

gration can be interchanged), the following expression is obtained

∂

∂θ

∫
ω(y|z;θ)dy =

∫
∂

∂θ
ω(y|z;θ)dy. (21)

By the definition of the score, we have ∇θ`(w;θ)ω(y|z;θ) = ∂
∂θ
ω(y|z;θ). Substituting

into (21), we obtain

∫
∇θ`(w;θ)ω(y|z;θ)dy = 0. (22)

This holds for any θ ∈ Θ0, in particular, for θ>. Setting θ = θ>, the following equation is

obtained

∫
∇θ`(w;θ>)ω(y|z;θ>)dy = E[∇θ`(w;θ>)|z] = 0.

Then, applying the Law of Total Expectations, we obtain the required result

E[∇θ`(w;θ>)] = E{E[∇θ`(w;θ>)|z]} = 0.

(ii) Differentiating both sides of identity (22) and by Assumptions 1(vi) and 1(vii), and Lemma

1, we obtain

∫
∂

∂θ>
[∇θ`(w;θ)ω(y|z;θ)]dy = 0. (23)

The integrand of (23) can be written as ∂
∂θ>

[∇θ`(w;θ)ω(y|z;θ)] = ∇θθ`(w;θ)ω(y|z;θ)+

∇θ`(w;θ)∇θ`(w;θ)>ω(y|z;θ). Substituting into (23), we obtain

−
∫

∇θθ`(w;θ)ω(y|z;θ)dy =

∫
∇θ`(w;θ)∇θ`(w;θ)>ω(y|z;θ)dy (24)
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Setting θ = θ>, the following equation is obtained

E[−∇θθ`(w;θ>)|z] = E[∇θ`(w;θ>)∇θ`(w;θ>)>|z].

Then, applying the Law of Total Expectations, we obtain the desired result

E{E[−∇θθ`(w;θ>)|z]} = E{E[∇θ`(w;θ>)∇θ`(w;θ>)>|z]}.

E[−∇θθ`(w;θ>)] = E[∇θ`(w;θ>)∇θ`(w;θ>)>].

E[−∇θθ`(w;θ>)] = I(θ>)

Lemma 3. Let r ∈ R+, and Θr be the surface of a sphere with radius rn−1/2 and center θ>,

that is Θr = {θ ∈ Θθ : θ = θ> + n−1/2r, ‖r‖ = r}. For any ε > 0, there exist r such that

P
(

sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ 1− ε, when n is large enough.

Proof. We define n`p(θ)−n`p(θ>) = n`n(θ)−n`n(θ>)− n
2
[θ>Sθ−θ>>Sθ>]. A Third Order

Taylor expansion around θ> yields

n`p(θ)− n`p(θ>) = n∇θ`n(θ>)>(θ − θ>) +
n

2
(θ − θ>)>∇θθ`n(θ>)(θ − θ>)− nθ>>S(θ − θ>)

+
n

6

∑
e

∑
f

∑
h

(θ − θ>)e(θ − θ>)f (θ − θ>)h
∂3`n(θ̄)

∂θe∂θf∂hθ
− n

2
(θ − θ>)>S(θ − θ>).

(25)

Let θ = θ> + n−1/2r ∈Θr. Then (25) becomes in

n`p(θ)− n`p(θ>) = n1/2∇θ`n(θ>)>r +
1

2
r>∇θθ`n(θ>)r +

n−1/2

6

∑
e

∑
f

∑
h

rerfrh
∂3`n(θ̄)

∂θe∂θf∂hθ

− n1/2θ>>Sr − 1

2
r>Sr

n`p(θ)− n`p(θ>) =
5∑
i=1

Cin(r),

where θ̄ lies between θ> and θ> + n−1/2r. For the first term, |C1n(r)| = Op(1) ‖r‖ since

by Lemma 2(i), Assumption 1(vii) and the CLT, n1/2∇θ`n(θ>)
d→ N [0, I(θ>)]. By Lemma
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2(ii) and the LLN, n1/2∇θθ`n(θ>)
p→ −I(θ>), which (by the continuous mapping theorem)

yields C2n(r)
p→ −1

2
r>I(θ>)r. Thus, by Assumption 1(viii), C2n(r) ≤ −1

2
ζmin ‖r‖2, where

ζmin > 0 is the smallest eigenvalue of I(θ>). By Assumption 1(ix) and the LLN,
∣∣∣∣ ∂3`n(θ̄)

∂θe∂θf∂θh

∣∣∣∣ ≤
1
n

∑n
1 φ(wi)

p→ E[φ(wi)] <∞. This fact and the Cauchy-Schwarz inequality imply that |C3n(r)| p→

0. Finally, by Assumption 2 we have that |C4n(r)| p→ 0 and |C5n(r)| p→ 0. Therefore, combining

all of these results, we have

n`p(θ)− n`p(θ>) ≤ Op(1) ‖r‖ − 1

2
ζmin ‖r‖2 (26)

for large enough n. Since the choice of θ was arbitrary, (26) becomes in

sup
θ∈Θr

n`p(θ)− n`p(θ>) ≤ C,

where C = Op(1) ‖r‖ − 1
2
ζmin ‖r‖2. This implies that P

(
sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ P (C < 0).

Therefore, because for all ε > 0, there exists a ‖r‖ ∈ R+ such that P [C < 0] ≥ 1 − ε, we obtain

P
(

sup
θ∈Θr

`p(θ) < `p(θ
>)

)
≥ 1− ε, as required.

Lemma 4. (Delta Method). Suppose that θn is a sequence of k-dimensional random vectors and

θ> be a constant k-vector such that
√
n(θn − θ>)

d→ N (0,Ω) for some k × k matrix Ω. Let

g : Rk → Rl be continuously differentiable at θ>. Then

√
n(g(θn)− g(θ>)

d→ N (0, GΩG>)

where G =
∂g(θ)

∂θ>

∣∣∣∣
θ=θ>

is the l × k Jacobian matrix.

Proof. Hayashi (2000, Lemma 2.5).

D.2. Theorems

Theorem 1 (Asymptotic properties of the IPMLE estimator).

Proof. Under Assumptions 1(i), 1(ii) and Gourieroux & Monfort (1995, Property 24.1), there ex-

ists a well defined random variable (measurable function) α̂ that solves the optimization problem
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in equation (13). Due to Lemma 3, the informative penalized log-likelihood function has a local

maximum α̂ in the interior of a sphere centered on α>. Then, ‖α̂−α>‖ = Op(n−1/2), implying

that α̂ is a
√
n-consistent estimator. Furthermore, by Assumption 1(iii) and Newey & McFadden

(1994, Lemma 2.2), α> is the unique maximizer of Q>(α) = E[`(wi;α)].

(i) To prove the asymptotic normality of the informative penalized likelihood estimator, we

take the derivative of the log-likelihood function in equation (13) to obtain

0 = ∇α`n(α̂)− Sα̂. (27)

Applying a second order Taylor expansion in equation (27) yields

0 = ∇α`n(α>)− Sα> + ∇αα`n(α>)(α̂−α>)− S(α̂−α>) + ∆, (28)

where the last term is defined as

∆ =


(α̂−α>)>[∇2∇α`n(ᾱ)]1(α̂−α>)

...

(α̂−α>)>[∇2∇α`n(ᾱ)]p(α̂−α>)

 , (29)

and ᾱ lies between α> and α̂, therefore ‖ᾱ−α>‖ ≤ ‖α̂−α>‖. We can rewrite equation

(28) to obtain

0 = ∇α`n(α>)− Sα> + ∇αα`n(α>)(α̂−α>)− S(α̂−α>) + ∆p(α̂−α>), (30)

where ∆p is defined as

∆p =


(α̂−α>)>[∇∇αα`n(ᾱ)]1

...

(α̂−α>)>[∇∇αα`n(ᾱ)]p

 .
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Multiplying the right hand side of equation (30) by
√
n, leads

[∇αα`n(α>)− S + ∆p]
√
n(α̂−α>) =

√
n[Sα> −∇α`n(α>)] (31)

By assumption 2, S p→ 0 and Sα> p→ 0. Furthermore, by assumption 1(ix), ∆p
p→ 0.

As earlier mentioned, by Lemma 2(i), Assumption 1(vii) and the CLT, n1/2∇α`n(α>)
d→

N [0, I(α>)], and by Lemma 2(ii) and the LLN, n1/2∇αα`n(α>)
p→ −I(α>). Finally, by

Slutsky’s theorem, we obtain

√
n(α̂−α>)

d→ N
{
0, [I(α>)]−1

}
,

as required.

(ii) Under Theorem 1,
√
n(α̂ − α>)

d→ N {0, [I(α>)]−1}. In particular, for α̂ν0 ∈ α̂ we

have
√
n(α̂ν0 − α>

ν0)
d→ N {0, [I(α>

ν0)]
−1}. In addition, S : Rk → R is continuously

differentiable at α>
ν0, with gradient defined as ∇αν0S(α>

ν0) = G ′ν0[s(α>
ν0)]∇αν0s(α

>
ν0).

Then, we can applied Lemma 4 to obtain

√
n[Ŝν0(α̂ν0)− Sν0(α>

ν0)]
d→ N

{
0,G ′ν0[s(α>

ν0)]∇αν0s(α
>
ν0)[I(α>

ν0)]
−1∇αν0s(α

>
ν0)
>G ′ν0[s(α>

ν0)]
}
.

Furthermore, we know that ∇α1α2`(α) = 0, therefore E[−∇α1α2`(α0)] = 0. This also

implies that E[−∇α10α20`(α0)] = 0, which means that α10 and α20 are independent. Then,

S(α10) and S(α20) are also independent, as required.

Theorem 2 (Asymptotic properties of the NPMLE estimator).

Proof. This proof follows similar arguments of Theorem 1.

Theorem 3 (Efficiency of the IPMLE estimator).

Proof. For ν = 1, 2, we define γν = (γιν ,γ
nι
ν )> so that Q>i γν = Q0>

i γ
ι
ν + Q1>

νi γ
nι
ν . Where

γιν = (γι>ν1 , ...,γ
ι>
νQ)> and γnιν = (γnι>ν(Q+1), ...,γ

nι>
νQν

)> are the informative and non-informative
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parameters of the non-informative model respectively. Thus, under Assumption 1(viii) and Lemma

2(ii), I(γ>) can be written as

I(γ>) =



Iγι1 Iγι1γnι1
0 0

Iγnι1 γ
ι
1
Iγnι1

0 0

0 0 Iγι2 Iγι2γnι2

0 0 Iγnι2 γ
ι
2
Iγnι2


, (32)

where Iγιν = I(γ>ι
ν ), Iγnιν = I(γ>nι

ν ) and Iγινγnιν = I(γ>nι
ν ,γ>ι

ν ). Taking the inverse of (32), we

obtain

[I(γ>)]−1 =



Σγ>ι
1

Σγ>ι
1 γ>nι

1
0 0

Σγ>nι
1 γ>ι

1
Σγ>nι

1
0 0

0 0 Σγ>ι
2

Σγ>ι
2 γ>nι

2

0 0 Σγ>ι
2 γ>nι

2
Σγ>nι

2


, (33)

where Σγ>ι
ν

= [Iγιν−Iγινγnιν I
−1
γnιν
Iγnιν γιν ]−1, Σγ>ι

ν γ
>nι
ν

= −Σγ>ι
ν
Iγινγnιν I

−1
γnιν

, Σγ>nι
ν γ>ι

ν
= −I−1γnιν Iγnιν γινΣγ>ι

ν

and Σγ>nι
ν

= I−1γnιν + I−1γnιν Iγnιν γινΣγ>ι
ν
Iγινγnιν I

−1
γnιν

.

On the other hand, also by Assumption 1(viii) and Lemma 2(ii), I(α>) can be written as

I(α>) =


Iα0 Iα0α1 Iα0α2

Iα1α0 Iα1 0

Iα2α0 0 Iα2

 , (34)

where Iα0 = I(α>
0 ), Iαν = I(α>

ν ), Iα0αν = I(α>
0 ,α

>
ν ) and Iανα0 = I(α>

ν ,α
>
0 ). Taking the

inverse of (34), yields

[I(α>)]−1 =


Σα>

0
Σα>

0 α
>
1

Σα>
0 α

>
2

Σα>
1 α

>
0

Σα>
1

0

Σα>
2 α

>
0

0 Σα>
2

 , (35)

where Σα>
0

= [Iα0−Iα0α1I−1α1
Iα1α0−Iα0α2I−1α2

Iα2α0 ]
−1, Σα>

0 α
>
ν

= −Σα>
0
Iα0ανI−1αν , Σα>

ν α
>
0

=
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−I−1αν Iανα0Σα>
0

and Σα>
ν

= I−1αν + I−1αν Iανα0Σα>
0
Iα0ανI−1αν .

Thus, by (14), (15), (16), (17), (18) and using that γnιν0 = αν0, we obtain Iα0 = Iγι1 + Iγι2 ,

Iα0αν = Iγινγnιν , Iανα0 = Iγnιν γιν and Iαν = Iγnιν . This and the fact that Σ−1
α>

0

and Σ−1
γ>ι
ν

are

positive definite matrices, imply that [Σγ>ι
ν
− Σα>

0
] is positive definite. Therefore, Σα>

0
< Σγ>ι

ν
.

Using this reasoning, we conclude that Σα>
0 α

>
ν
< Σγ>ι

ν γ
>nι
ν

, Σα>
ν α

>
0
< Σγ>nι

ν γ>ι
ν

and Σα>
ν
<

Σγ>nι
ν

, as required.

The proof of Lemma 3 in the context of informative and non-informative censoring models

was adapted from Xingwei et al. (2010) and Vatter & Chavez-Demoulin (2015). The proofs of

the asymptotic normality (part (i) of Theorems 1 and 2) are based on Vatter & Chavez-Demoulin

(2015).
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Supplementary Material E: Confidence Intervals

At convergence, point-wise intervals for linear and non-linear functions for both the non-informative

and informative models’ parameters can be obtained using the following Bayesian large sample

approximation

θ ∼ N (θ̂,Σθ̂), (36)

where Σθ̂ = [Hp(θ̂)]-1. For generalised additive models, intervals derived using equation (36)

have good frequentist properties, since they account for both smoothing bias and sampling vari-

ability (Marra & Wood, 2012). For the non-informative and informative models, equation (36)

can be verified using the distribution of Z (described in Supplementary Material C), making the

large sample assumption that H(θ) can be treated as fixed, and making the usual prior Bayesian

assumption for smooth models θ ∼ N (0,S-1), where S-1 is the Moore-Penrose pseudoinverse of

S (Silverman, 1985; Wood, 2017). In equation (36), smoothing parameter uncertainty is neglected.

Nevertheless, according to Marra & Wood (2012) this is not problematic if heavy over-smoothing

is avoided so that the smoothing bias is not a large proportion of the sampling variability. See also

Marra et al. (2017) for an application of this approach to a more general smoothing spline context.

Following Pya & Wood (2015), confidence interval estimates for the monotonic smooth terms

in the models can be obtained using the distribution of β̃ν0 (defined in Section 2.3 of the main

paper) since all smooth components would then depend linearly on β̃ν0. Such distribution is

β̃ν0 ∼ N ( ˆ̃βν0,Σβ̃ν0
),

where Σβ̃ν0
= diag(Γν0) [Hp(β̂ν0)]

-1 diag(Γν0). The derivation of this result can be found in Pya

& Wood (2015).

P-values for the smooth components in the non-informative and informative models are ob-

tained by adapting the results discussed in Wood (2013) to the present context, where Σβ̃ν0
is used

for the calculations. The reader is referred to the above citation for the definition of reference

degrees of freedom.
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Supplementary Material F: Model Selection

In practical situations, it is important to detect if
∑K1

k1=1 s1k1(x1k1i) and
∑K2

k2=1 s2k2(x2k2i) have

components in common. This is basically a model selection problem and, to this end, we propose

using the AIC, BIC and K-Fold Cross validation criterion
(
ΥKCV

)
. The AIC and BIC can be

defined as

AIC = −2`(θ̂) + 2 EDF,

BIC = −2`(θ̂) + log(n) EDF,

where the log-likelihood is evaluated at the penalized parameter estimates and EDF = tr(B̂) with

B̂ defined in Supplementary Material C.

As for ΥKCV (Stone, 1974), we first randomly divide the set of observations in K groups (folds)

of approximately equal size. Each fold is then in turn treated as a validation set, and the IPMLE for

a given model is used to estimate the vector of parameters α using the remaining K−1 folds. The

so obtained estimates are denoted as α̂\k0 and α̂\kν , and the log-likelihood function is calculated as

`k(α̂
\k) =

log G1
[
ξ1i(α̂

\k
0 , α̂

\k
1 )
]

+ δ1i log

−G
′
1

[
ξ1i(α̂

\k
0 , α̂

\k
1 )
]

G1
[
ξ1i(α̂

\k
0 , α̂

\k
1 )
] ∂ξ1i(α̂\k0 , α̂\k1 )

∂yi




+

log G2
[
ξ2i(α̂

\k
0 , α̂

\k
2 )
]

+ δ2i log

−G
′
2

[
ξ2i(α̂

\k
0 , α̂

\k
2 )
]

G2
[
ξ2i(α̂

\k
0 , α̂

\k
2 )
] ∂ξ2i(α̂\k0 , α̂\k2 )

∂yi


 ,

and ΥKCV given by

ΥKCV =
K∑
k=1

`k(α̂
\k). (37)

We choose the model which maximizes (37). The same procedure is used when ΥKCV is calculated

for the non-informative model. In such a case we have

`k(γ̂
\k) =

log G1
[
ξ1i(γ̂

\k
1 )
]

+ δ1i log

−G
′
1

[
ξ1i(γ̂

\k
1 )
]

G1
[
ξ1i(γ̂

\k
1 )
] ∂ξ1i(γ̂\k1 )

∂yi




+

log G2
[
ξ2i(γ̂

\k
2 )
]

+ δ2i log

−G
′
2

[
ξ2i(γ̂

\k
2 )
]

G2
[
ξ2i(γ̂

\k
2 )
] ∂ξ2i(γ̂\k2 )

∂yi


 ,
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and therefore ΥKCV =
∑K

k=1 `k(γ̂
\k).

Model Non-Inf.Covariates Inf.Covariates Link T1i Link T2i AIC ΥKCV BIC

1 s(wmonth) s(mthage) · · · PH PH 13775.68 -6924.20 14015.53

region alcohol nsibs

2 s(wmonth) s(mthage) · · · PO PH 13776.87 -8396.57 14016.51

region alcohol nsibs

3 s(wmonth) s(mthage) alcohol PH PH 13772.60 -6922.63 13981.42

nsibs region

4 s(wmonth) s(mthage) alcohol PO PH 13773.80 -8392.31 13982.51

nsibs region

Table 2: Values of three model selection criteria (AIC, BIC and ΥKCV) for the best informative and non-informative models fitted
to the real data application of this paper. The models were fitted using gamlss() in GJRM by employing different combinations
of covariates and link functions.
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Supplementary Material G: Additional simulation results for

DGP1 and DGP2 and findings from a simulation study with mild

censoring rate

In the DGP presented in this section (DGP3), z1i is informative, z2i is informative and a mild

censoring rate (about 47%) is considered. T1i and T2i were generated using the model defined

in equation (19) of the main paper. The baseline survival functions were defined as S10(t1i) =

0.8 exp (−0.4t2.51i ) + 0.2 exp (−0.1t1.01i ) and S20(t2i) = 0.99 exp (−0.05t2.32i ) + 0.01 exp (−0.4t1.12i ).

The informative covariates, z1i and z2i, were generated using a binomial and a uniform distribution

respectively. Also, s11(z2i) = s12(z2i) = sin(2πzi), α01 = −0.10, α02 = −0.25 and α11 = α12 =

−1.5.

The main findings are:

• Figure 1 and Table 4 show that overall the mean estimates for the two estimators are very

close to the respective true values and improve as the sample size increases. However, even

though the variability of the estimates (IPMLE and NPMLE) decreases as the sample size

grows large, the IPMLE is slightly more efficient than the NPMLE in recovering the true

linear effects for all sample sizes examined here. In particular, the RMSE of the IPMLE is

slightly smaller than the RMSE of the NPMLE for all sample sizes considered.

• Figures 2 and 3, and Table 4 show that overall the true functions are recovered well by

the IPMLE and NPMLE and that the results improve in terms of bias and efficiency as the

sample size increases. Furthermore, the IPMLE is slightly more efficient than the NPMLE

in recovering the non-linear covariate effects for all sample sizes examined in this section

(Table 4). However, this gain in efficiency by the IPMLE is not too significant when a mild

censoring rate (47%) is examined.
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Figure 1: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated accord-
ing to DGP3 characterised by a censoring rate of about 47%. Circles indicate mean estimates while bars represent
the estimates’ ranges resulting from 5% and 95% quantiles. True values are indicated by black solid horizontal lines.
Black circles and vertical bars refer to the results obtained for n = 500, whereas those for n = 1000 and n = 4000
are given in dark gray and blue, respectively.
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Figure 2: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. True functions are represented by black
solid lines, mean estimates by dashed lines and pointwise ranges resulting from 5% and 95% quantiles by shaded
areas. The results in the first row refer to n = 500, whereas those in the second and third rows to n = 1000 and
n = 4000.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.024 -0.014 -0.006 0.138 0.100 0.049
s1 0.039 0.025 0.012 0.154 0.114 0.059
h10 0.084 0.048 0.035 0.262 0.144 0.083
S10 0.028 0.020 0.017 0.063 0.050 0.031

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.045 -0.017 -0.007 0.208 0.144 0.071
s1 0.085 0.068 0.044 0.191 0.206 0.111
h10 0.085 0.057 0.033 0.195 0.292 0.083
S10 0.027 0.021 0.015 0.058 0.068 0.033

Table 3: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying the gamlss() to informative survival data simulated according to DGP2
characterised by a censoring rate of about 74%. Further details are given in the caption of
Table 1.
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Figure 3: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP3 characterised by a censoring rate of about 47%. Further details are given in the caption
of Figure 2.

(a) Informative Penalized Maximum Log-likelihood Estimator (IPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.012 -0.006 0.003 0.121 0.058 0.045
s1 0.031 0.021 0.015 0.124 0.091 0.051
h10 0.040 0.027 0.026 0.135 0.088 0.058
S10 0.003 0.008 0.015 0.057 0.047 0.030

(b) Non-informative Penalized Maximum Log-likelihood Estimator (NPMLE)
Bias RMSE

n = 500 n = 1000 n = 4000 n = 500 n = 1000 n = 4000

α11 -0.022 0.001 0.007 0.140 0.100 0.050
s1 0.036 0.027 0.014 0.142 0.104 0.055
h10 0.037 0.027 0.027 0.131 0.089 0.056
S10 0.004 0.008 0.017 0.065 0.047 0.032

Table 4: Bias and root mean squared error (RMSE) for the IPMLE and NPMLE obtained
by applying gamlss() to informative survival data simulated according to DGP3 charac-
terised by a censoring rate of about 47%. Further details are given in the caption of Table
1.
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Figure 4: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated ac-
cording to DGP1 which is characterised by a censoring rate of about 78%. Further details are given in the caption of
Figure 1.
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Figure 5: Linear coefficient estimates obtained by applying gamlss() to informative survival data simulated ac-
cording to DGP2 which is characterised by a censoring rate of about 74%. Further details are given in the caption of
Figure 1.
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Figure 6: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.
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Figure 7: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP1 characterised by a censoring rate of about 78%. Further details are given in the caption
of Figure 2.
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Figure 8: Smooth function estimates for the IPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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Figure 9: Smooth function estimates for the NPMLE obtained by applying gamlss() to informative survival data
simulated according to DGP2 characterised by a censoring rate of about 74%. Further details are given in the caption
of Figure 2
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