
Appendix 1: Proof of proposition 1

Proposition 1. For arbitrary DMUj, the necessary and sufficient condition of it’s efficient is that all its sub-units are efficient. 

Proof: 
Here we first prove the necessity. As we have 
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. In addition, according to the constraints of Model (8), we know that 
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Then, if 
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 will also equal to 1. The proof of sufficiency is done. 

Q.E.D. 
Appendix 2: Analysis of unique result of efficiency decomposition
We will detail analyze the reason of inartificial uniqueness of efficiency decomposition in this Appendix 2. 
As we express 
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, the issue of whether the efficiency decomposition is unique can be turned into the issue of whether 
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 has unique optimal solution 
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 we divide 30 NBA teams into four cases based on the sub-units they contained:

Case (1) teams has no All-Stars and didn’t participate in the playoffs; 

Case (2) teams with no All-Stars and participated in the playoffs; 

Case (3) teams has All-Stars and didn’t participate in the playoffs; 

Case (4) teams has All-Stars and participated in the playoffs. 
Table 8. Four cases of NBA teams and the contained sub-units
	Case
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	Team number

	1
	{3}
	1,2,8,11,13,24,25,26,28

	2
	{3, 4}
	6,20,22

	3
	{1, 3}
	12,15,17,23,29

	4
	{1, 2, 3, 4}
	3,4,5,7,9,10,14,16,18,19,21,27,30


Next, for each case in table 8, we will analyze the expression of 
[image: image24.wmf])})

(

|

({

)

,

(

j

S

k

f

k

j

Î

v

u

e

 and the property of its domain of definition 
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, then propose the reason of DMUs' unique optimal solution. 

A.1 Case 1

As DMUj in case 1 has only one 
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A.2 Case 2
DMUj in case 2 has two sub-units which share single input subset A2 and produce two different output sets B1 and B2  ( i.e., 
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 in this case. 
Based on definition 4, the weight-based efficiency of DMUj and its two sub-units in this case are as follows: 
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Due to the C-C transformation procedure, the denominator 
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 is equal to 1 in the model (8). Then, it is equivalent to rewrite the above expressions as below:
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 can be expressed as a linear combination function 
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Then, denoting 
[image: image48.wmf]}

Θ

)

(

|

)

,

{(

Ξ

4

)

(

3

)

(

4

,

3

j

,

j

,

j

j

,

Î

=

v

u

v

u

v

u

e

e

 as the domain of definition, i.e., the feasible region of 
[image: image49.wmf])

,

(

4

)

(

3

)

(

v

u

v

u

,

j

,

j

e

e

, model (8) in case 2 can be rewritten as follows: 


[image: image50.wmf]4

3

4

)

(

3

)

(

}

4

,

3

{

)

(

Ξ

)

,

(

s.t.

max

,

j

,

j

,

j

k

k

,

j

k

j

Î

å

Î

v

u

v

u

r

u

e

e

e

a

   (10)

To give an intuitive impression of 
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Fig. 5. Geometric representation of 
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 of team Nets
In figure 5, the implication of coordinate of point a and b is (
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Form figure 5, we can observe that 
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, 0.539 is the overall efficiency of Nets) which intersects this convex region at single point b (0.693, 0.079), i.e., the unique efficiency decomposition of Nets. This geometric representation intuitively explains the uniqueness of the efficiency decomposition and explain that why there may has trade-off between the overall efficiency and the sub-efficiency. 

Furthermore, we can extend the above example to a general circumstance. To each DMUj in case 2, when 
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Proposition A1. For the DMUj that is formed by 2 sub-units (indexed as k1, k2) sharing the same empirical input subset and producing different empirical output subsets, the feasible region of the weight-based efficiencies of its sub-units is a polyhedron. 

Proof of Proposition A1. 

It suffices to show that 
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Therefore, we have the following Proposition A2. 

Proposition A2. For DMUj that is formed by 2 sub-units (indexed as k1, k2) sharing the same type of empirical input subset and producing different empirical output subsets, the sufficient and necessary condition of multiple efficiency composition is that there exist one line on the boundary of the polyhedron 
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Proof of Proposition A2. 

Optimization program (9) has a objective linear function 
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It should be noted that 
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 is rare. In other word, the chance of multiple efficiency decomposition of DMU is rare, which is consistent with the results of the current application where all teams of case 2 have unique efficiency decomposition. 

A.3 Case 3 

DMUj in case 3 consisting of 2 sub-units which use different input set A1 and A2 to produce single output subset B1 (i.e., 
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To give an intuitive impression of 
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Fig. 6. 
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 of team Timberwolves
The description of elements in figure 6 is similar with figure 4 and will not be repeated here. It can be observed that the green line 
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Therefore, we have the following Proposition A4. 
Proposition A4. For the DMUj that is formed by 2 sub-units (indexed as k1, k2) producing the same type of empirical output subset and sharing different type of empirical input subset, the sufficient and necessary conditions of multiple efficiency compositions is that there exist one line on the boundary of the polyhedron 
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Proof of Proposition A4. 
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A.4 Case 4
DMUj in case 4 consisting of 4 sub-units (
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Proposition A5. For the DMUj in case 3 consisting of 4 sub-units, the sufficient and necessary condition for the uniqueness of its efficiency composition is that virtual “weight based efficiency” 
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Proof of Proposition A5. 

We first prove that 
[image: image203.wmf]4

,...,

2

,

1

,

)

,

(

k

k

k

k

k

=

v

u

j

E

 have unique value is a sufficient condition for the uniqueness of DMUj’s efficiency composition in case 3.
We have the following equations. 
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The necessity of the condition is evident according to Equations (14). 
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