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A.1 Dual problem

Define

L(Σ,A(1), . . . ,A(p−1)) =
1

2
‖S−Σ‖2

F + λ〈
p−1∑
`=1

W(`) ∗A(`),Σ〉.

Observe that

‖(W(`) ∗Σ)g`‖2 = max
A(`)

{
〈W(`) ∗A(`),Σ〉 s.t. ‖A(`)

g`
‖2 ≤ 1, A

(`)
gc`

= 0
}
.

It follows that (2.1) is equivalent to

min
Σ

{
max
A(`)

[
L(Σ,A(1), . . . ,A(p−1)) s.t. ‖A(`)

g`
‖2 ≤ 1,A

(`)
g`c

= 0
]}

.

We get the dual problem by interchanging the min and max. The inner minimization gives
the primal-dual relation given in the theorem (by strong duality) and the following dual
function:

min
Σ

L(Σ,A(1), . . . ,A(p−1)) = −1

2
‖S− λ

p−1∑
`=1

W(`) ∗A(`)‖2
F +

1

2
‖S‖2

F .

A.2 Ellipsoid projection

To update Â(`) in Algorithm A.1, we must solve a problem of the form

Â(`)
g`

= arg min
a∈R|g`|

‖R̂(`)
g`
− λD(`)a‖2

2 s.t. ‖a‖2
2 ≤ 1,

which (in a change of coordinates) is the projection of a point onto an ellipsoid. Clearly,

if ‖D(`)−1
R̂

(`)
g` ‖ ≤ λ, then Â

(`)
g` = D(`)−1

R̂
(`)
g` /λ. Otherwise, we use the method of Lagrange

multipliers (to solve the problem with an equality constraint):

L(a, ν) = ‖R̂(`)
g`
− λD(`)a‖2

2 + νλ2(‖a‖2
2 − 1)
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whence

0 = 2λD(`)(λD(`)â− R̂(`)
g`

) + 2νλ2a =⇒ â = (D(`)2 + νI|g`|)
−1λ−1D(`)R̂(`)

g`
.

That is,

Â(`)
sm =

w`m
λ(w2

`m + ν̂`)
R̂(`)
sm

where ν̂` is such that Â
(`)
g` has unit norm, i.e. such that h`(ν̂`) = λ2 where h` is defined in

(3.2). We compute this root numerically. We can get limits within which ν̂` must lie. For
example, replacing w`m by w` = maxmw`m makes the RHS smaller whereas replacing it by
0 makes the RHS larger:∑`

m=1w
2
`m‖R̂

(`)
sm‖2

(w2
` + ν)2

=: hL` (ν) ≤ h`(ν) ≤ hU` (ν) :=

∑`
m=1w

2
`m‖R̂

(`)
sm‖2

(0 + ν)2
.

Now, since h`(ν) is a decreasing function, we know that ν̂L` ≤ ν̂` ≤ ν̂U` , where hL` (ν̂L` ) = λ2 =
hU` (ν̂U` ). From this, it follows that

√√√√∑̀
m=1

w2
`m‖R̂

(`)
sm‖2 − λw2

`


+

≤ λν̂` ≤

√√√√∑̀
m=1

w2
`m‖R̂

(`)
sm‖2.

Noting that
∑`

m=1 w
2
`m‖R̂

(`)
sm‖2 = ‖D(`)R̂

(`)
g` ‖2

2, this simplifies to

‖D(`)R̂(`)
g`
‖2 − λw2

` ≤ λν̂` ≤ ‖D(`)R̂(`)
g`
‖2.

To summarize, we have for 1 ≤ m ≤ ` ≤ p− 1,

Â(`)
sm =

{
R̂

(`)
sm/(λw`m) if ‖D(`)−1

R̂
(`)
g` ‖2 ≤ λ

w`m

λ(w2
`m+ν̂`)

R̂
(`)
sm otherwise

and Â
(`)
gc`

= 0. This can be written more simply as w`m

λ(w2
`m+[ν̂`]+)

R̂
(`)
sm if we note that ‖D(`)−1

R̂
(`)
g` ‖2 ≤

λ is equivalent to h`(0) ≤ λ2 and that in this case ν̂` ≤ 0, since h` is nonincreasing. It turns

out that often we will be able to get ν̂` in closed form. First, h1(ν) = w2
1‖R̂

(1)
s1 ‖2/(w2

1 + ν)2,

so ν̂1 = w1(‖R̂(1)
s1 ‖/λ − w1). Furthermore, for ` ≥ 1, if ν̂` ≤ 0 then for all m ≤ `, we have

R̂
(`+1)
sm = 0. This means that h`+1(ν) =

w2
`

(w2
`+ν)2

‖R̂(`+1)
s`+1 ‖2 whence

ν̂`+1 = w`+1

(
‖R̂(`+1)

s`+1
‖/λ− w`+1

)
Thus, we only need to perform numerical root-finding when ` = p− 1− K̂.
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A.3 Proof of tapering theorem (Theorem 2)

Proof. By Proposition 5 in Jenatton et al. (2011), we can get Σ̂ by a single pass as in
Algorithm 1. We begin with R̂(1) = S and then for ` = 1, . . . , p − 1, (and for each m ≤ `),
we have

R̂(`+1)
sm = R̂(`)

sm − λw`mÂ(`)
sm =

[ν̂`]+
w2
`m + [ν̂`]+

R̂(`)
sm . (A.3.1)

The optimality conditions give Σ̂ = R̂(p), so that we have

Σ̂sm =

p−1∏
`=m

[ν̂`]+
w2
`m + [ν̂`]+

· Ssm (A.3.2)

which establishes this as an adaptively tapered estimator.

A.4 Bounds on maxij |Sij −Σ∗ij|
Theorem A.1. Assume log p ≤ γn for some constant γ > 0 and maxj |Σ∗jj| ≤M for some
constant M . Let D = maxi,j |Sij −Σ∗ij|. There exists some constant c > 0 such that for
sufficiently large x > 0,

P
(
D > x

√
log(p ∨ n)/n

)
≤ c

p ∨ n
(A.4.1)

and
ED2 · 1{

D>x
√

log(p∨n)/n
} ≤ c

n(p ∨ n)
(A.4.2)

Proof. By Lemma A.1 below, there exist constants ci, i = 1, 2, 3, 4 such that, for any 0 <
t < 2M ,

P (D > t) ≤ p2c1 exp{−c2nt
2}+ pc3 exp{−c4nt}.

Hence,

P
(
D > x

√
log(p ∨ n)/n

)
≤ p2c1 exp{−c2x

2 log(p ∨ n)}+ pc3 exp{−c4x log(p ∨ n)
√
n/ log(p ∨ n)}

≤ c1(p ∨ n)2−c2x2 + c3(p ∨ n)1−c4x
√
n/ log(p∨n).

Next we derive that

ED2 · 1{
D>x
√

log(p∨n)/n
} =

∫ ∞
x2 log(p∨n)/n

P(D2 ≥ y)dy

≤
∫ ∞
x2 log(p∨n)/n

(
p2c1 exp{−c2nt}+ pc3 exp{−c4n

√
t}
)

dt

=
p2c1 exp{−c2nx

2 log(p ∨ n)/n}
c2n

+
pc3 exp{−c4nx

√
log(p ∨ n)/n}

c4n

(
x
√

log(p ∨ n)/n+
1

c4n

)
≤ c1(p ∨ n)2−c2x2

c2n
+
c3(p ∨ n)1−c4x

√
n/ log(p∨n)

c4n

(
x
√

log(p ∨ n)/n+
1

c4n

)
.
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Hence if x is sufficiently large and by the assumption that log p ≤ γn, the inequalities in the
lemma holds for some constant c.

Lemma A.1. There exist two constants c1 and c2 such that

P
(

max
ij
|Sij −Σ∗ij| > t

)
≤ 2p2 exp

(
− c2nt

2

maxj Σ∗jj

)
+ 8p exp

(
− c1nt

maxj Σ∗jj

)
.

for any 0 < t < 2 maxj Σ∗jj.

Proof: Note that

Sij = n−1

n∑
k=1

XkiXkj − X̄iX̄j.

and

|Sij −Σ∗ij| ≤

∣∣∣∣∣n−1

n∑
k=1

XkiXkj −Σ∗ij

∣∣∣∣∣+
∣∣X̄iX̄j

∣∣ .
Hence

P
(

max
ij
|Sij −Σ∗ij| > t

)
≤P

(
max
ij

∣∣∣∣∣n−1

n∑
k=1

XkiXkj −Σ∗ij

∣∣∣∣∣ > t/2

)
+ P

(
max
ij

∣∣X̄iX̄j

∣∣ > t/2

)

≤p2 max
ij

P

(∣∣∣∣∣n−1

n∑
k=1

XkiXkj −Σ∗ij

∣∣∣∣∣ > t/2

)
+ 2pmax

j
P
(∣∣X̄j

∣∣ >√t/2
)
.

Let Iij = P (|n−1
∑n

k=1 XkiXkj −Σ∗ij| > t/2) and Ij = P
(∣∣X̄j

∣∣ >√t/2
)

. Then

P
(

max
ij
|Sij −Σ∗ij| > t

)
≤ p2 max

ij
Iij + 2pmax

j
Ij. (A.4.3)

We first consider Ij. X̄j is sub-Gaussian with variance Σ∗jj/n and

E exp

(
tX̄j/

√
Σ∗jj/n

)
=

n∏
k=1

E exp
(
tXkj/

√
nΣ∗jj

)
≤
{

exp(Ct2/n)
}n

= exp(Ct2).

By Lemma 5.5 in Vershynin (2011),

P
{
|X̄j|/

√
Σ∗jj/n > t

}
≤ exp(1− t2/K2

1)

4



for some constant K1 that does not depend on j. It follows that

Ij = P
(∣∣X̄j

∣∣ >√t/2
)

= P
{
|X̄j|/

√
Σ∗jj/n >

√
tn/(2Σ∗jj)

}
≤ exp

(
1− nt

2K2
1Σ∗jj

)
.

Therefore,

Ij ≤ 4 exp

(
− c1nt

maxj Σ∗jj

)
(A.4.4)

for some constant c1.
Now we consider Iij. We shall find νij and cij such that

n∑
k=1

E(X2
kiX

2
kj) ≤ νij (A.4.5)

and
n∑
k=1

E {(XkiXkj)
q
+} ≤

q!

2
· νij · cq−2

ij (A.4.6)

for all integers q ≥ 3. Then by Theorem 2.10 and Corollary 2.11 in Boucheron et al. (2013),
for any t > 0,

P

(∣∣∣∣∣
n∑
k=1

(XkiXkj −Σ∗ij)

∣∣∣∣∣ > t

)
≤ 2 exp

{
− t2

2(νij + cijt)

}
. (A.4.7)

To find νij and cij, note that by Lemma 5.5 in Vershynin (2011), E|Xij/
√
σjj|q ≤ Kq

2q
q/2

for all q ≥ 1 and some constant K2 that does not depend on j. Hence

n∑
k=1

E(X2
kiX

2
kj) ≤

n∑
k=1

√
EX4

ki · EX4
kj ≤ 16nΣ∗iiΣ

∗
jjK

4
2 .

Similarly,

n∑
k=1

E {(XkiXkj)
q
+} ≤

n∑
k=1

√
EX2q

ki · EX
2q
kj ≤ nΣ

∗q/2
ii Σ

∗q/2
jj K2q

2 (2q)q.

It is easy to show that (A.4.5) and (A.4.6) hold with νij = K3nΣ∗iiΣ
∗
jj and cij = K3

√
Σ∗iiΣ∗jj

for some constant K3 that is sufficiently large and does not depend on i or j.
By (A.4.7), it follows that

Iij ≤ 2 exp

{
− n2t2

4(2νij + cijnt)

}
= 2 exp

{
− n2t2

4(2K3nΣ∗iiΣ∗jj +K3

√
Σ∗iiΣ∗jjnt)

}

≤ 2 exp

{
− nt2

4(2K3Σ∗iiΣ∗jj +K3

√
Σ∗iiΣ∗jjt)

}
.
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If t < 2 maxj Σ∗jj, we have

Iij ≤ 2 exp

(
− c2nt

2

maxj Σ∗jj

)
, (A.4.8)

where c2 = (16K3)−1.

A.5 Proof of bandwidth recovery

Proof of Theorem 3. Referring to the proof of Theorem 2, we have R̂
(`+1)
g` = 0 if ν̂` ≤ 0 or

equivalently if h`(0) ≤ λ2, where h` is defined in (3.2). If L = 0, then K = p− 1 and K̂ ≤ K

holds automatically. Thus, assume that L > 0. We prove that R̂
(L+1)
gL = 0 by induction on

`. For ` = 1,
h`(0) = 2S2

1p/w
2
1 ≤ max

ij
|Sij −Σ∗ij|2 ≤ λ2

on the set Ax defined in (4.1). Assume R̂
(`+1)
g` = 0 for ` < L. Then, since R̂

(`+1)
s`+1 = Ss`+1

,

h`+1(0) = ‖Ss`+1
‖2/w2

`+1,`+1 ≤ λ2

on Ax. Therefore, R̂
(L+1)
gL = 0 and so Σ̂gL = 0, i.e., K̂ ≤ K.

Proof of Theorems 4 and 5. In both theorems, we wish to show that Σ̂sL+1
6= 0 or equiva-

lently that h`(0) > λ2 for each ` ≥ L+ 1, whence we get the condition

min
`≥L+1

h`(0) > λ2. (A.5.1)

Recalling that h`(0) =
∑`

m=1 ‖R̂
(`)
sm‖2/w2

`m, we have

h`(0) ≥ ‖R̂(`)
s`
‖2/w2

` = ‖Ss`‖2/w2
` .

Now, being on the set Ax implies that for any `,

‖Ss`‖2 ≥ ‖Σ∗s`‖2 − ‖Ss` −Σ∗s`‖2 ≥ ‖Σ∗s`‖2 −
√

2`λ = ‖Σ∗s`‖2 − λw`. (A.5.2)

We consider the two theorems separately:

1. (Theorem 4) By assumption, for ` ≥ L+ 1, (A.5.2) gives us h`(0) > λ2. Thus, (A.5.1)
is satisfied, proving the first theorem.

2. (Theorem 5) By the same argument as above, we have h`(0) > λ2 for ` = L + 1
and for ` ≥ L + 3. It remains to show that hL+2(0) > λ2. Since hL+1(0) > λ2,
we have that ν̂L+1 > 0 and since ν̂L ≤ 0 (see appendix on ellipsoidal projection),
ν̂L+1 = wL+1(‖SsL+1

‖/λ− wL+1) > 0. Thus,

R̂(L+2)
sL+1

=
ν̂L+1SsL+1

w2
L+1 + ν̂L+1

=

(
‖SsL+1

‖2 − λwL+1

‖SsL+1
‖2

)
SsL+1
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and

hL+2(0) = ‖R̂(L+2)
sL+2
‖2

2/w
2
L+2 + ‖R̂(L+2)

sL+1
‖2

2/w
2
L+2,L+1

= ‖SsL+2
‖2

2/w
2
L+2 + (‖SsL+1

‖2 − λwL+1)2/w2
L+2,L+1

≥ (‖Σ∗sL+2
‖2 − λwL+2)2

+/w
2
L+2 + (‖Σ∗sL+1

‖2 − 2λwL+1)2/w2
L+2,L+1

= (‖Σ∗sL+2
‖2 − λwL+2)2

+/w
2
L+2 + λ2γ2w2

L+1/w
2
L+2,L+1

≥ (‖Σ∗sL+2
‖2 − λwL+2)2

+/w
2
L+2 + λ2γ2

again applying (A.5.2), and using that wL+1 = wL+1,L+1 ≥ wL+2,L+1. Now, for this
to exceed λ we have the following: If γ ≥ 1, there is no requirement on Σ∗sL+2

; if
0 < γ < 1, then

‖Σ∗sL+2
‖2 > λwL+2

(
1 +

√
1− γ2

)
This establishes that h`(0) > λ2 for ` ≥ L + 1, completing the proof of the second
theorem.

A.6 Proof of convergence in Frobenius norm

Define

‖Σ‖2,1 =

p−1∑
`=1

w`‖Σs`‖2 and ‖Σ‖2,∞ = max
1≤`≤p−1

w−1
` ‖Σs`‖2. (A.6.1)

Recall that for any B ∈ Rp×p, we define L(B) to be such that BgL(B)
= 0 and BsL(B)+1

6= 0,
and S(B) = {L(B)+1, · · · , p−1} with K(B) = |S(B)|. Note then that K(B) = p−1−L(B).
We first establish the following theorem.

A.6.1 Theorem A.2

Theorem A.2. For any B ∈ Rp×p,

‖Σ̂−Σ∗‖2
F ≤‖Ssp −Σ∗sp‖2

2 + ‖Σ∗ −B‖2
F + 4λ2K(B)w0(L(B))

+ 2 (‖S−Σ∗‖2,∞ − λ) · 1{‖S−Σ∗‖2,∞≥λ} ·

√√√√p−1∑
`=1

w2
` · ‖Σ̂−B‖F ,

where w0(`) = max`+1≤m≤p−1

∑p−1
s=mw

2
sm.

Recalling that the subdiagonal sm is included in g` for m ≤ ` ≤ p−1, we see that
∑p−1

`=mw
2
`m

measures the amount of “net weight” applied to the subdiagonal sm and w0(L(B)) measures
the largest amount of “net weight” applied to any subdiagonal in m ∈ S(B).

To prove Theorem A.2, we will rely on the following proposition:
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Proposition A.1. For any B ∈ Rp×p,

‖Σ̂−Σ∗‖2
F ≤‖Σ∗ −B‖2

F − ‖Σ̂−B‖2
F + 2〈Ssp −Σ∗sp , Σ̂sp −Bsp〉

+ 2 (‖S−Σ∗‖2,∞ − λ) · ‖Σ̂−B‖2,1 + 4λ‖Σ̂S(B) −B‖∗2,1.

Proof. See Section A.13 of the supplementary materials.

We are now ready to prove Theorem A.2.

Proof of Theorem A.2. By Proposition A.1,

‖Σ̂−Σ∗‖2
F ≤ ‖Σ∗ −B‖2

F − ‖Σ̂−B‖2
F + 2〈Ssp −Σ∗sp , Σ̂sp −Bsp〉 (A.6.2)

+ 2 (‖S−Σ∗‖2,∞ − λ) · ‖Σ̂−B‖2,1 + 4λ‖Σ̂S(B) −B‖∗2,1.

First we have

2〈Ssp −Σ∗sp , Σ̂sp −Bsp〉 ≤ ‖Ssp −Σ∗sp‖2
2 + ‖Σ̂sp −Bsp‖2

2. (A.6.3)

Next,

‖Σ̂−B‖2,1 =

p−1∑
`=1

w`‖Σ̂s` −Bs`‖2 ≤

√√√√p−1∑
`=1

w2
` ·

√√√√p−1∑
`=1

‖Σ̂s` −Bs`‖2
2

≤

√√√√p−1∑
`=1

w2
` · ‖Σ̂−B‖F . (A.6.4)

Finally, since 2λb ≤ aλ2 + b2/a, for any a > 0, we obtain

2λ‖Σ̂S(B) −B‖∗2,1 = 2λ

p−1∑
`=L(B)+1

√√√√ ∑̀
m=L(B)+1

w2
`m‖Σ̂sm −Bsm‖2

2

≤ K(B)λ2a+

p−1∑
`=L(B)+1

∑̀
m=L(B)+1

w2
`m‖Σ̂sm −Bsm‖2

2/a

≤ K(B)λ2a+

p−1∑
m=L(B)+1

(
p−1∑
`=m

w2
`m

)
‖Σ̂sm −Bsm‖2

2/a.

Letting a = 2w0(L(B)) = 2 maxL(B)+1≤m≤p−1

∑p−1
`=mw

2
`m,

2λ‖Σ̂S(B) −B‖∗2,1 ≤ 2K(B)λ2w0(L(B)) +
1

2
‖Σ̂S(B) −B‖2

F −
1

2
‖Σ̂sp −Bsp‖2

2. (A.6.5)
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Then combining (A.6.2), (A.6.3), (A.6.4) and (A.6.5),

‖Σ̂−Σ∗‖2
F ≤‖Σ∗ −B‖2

F + ‖Ssp −Σ∗sp‖2
2 + 4K(B)λ2w0(L(B))

+ 2 (‖S−Σ∗‖2,∞ − λ) · 1{‖S−Σ∗‖2,∞≥λ} ·

√√√√p−1∑
`=1

w2
` · ‖Σ̂−B‖F ,

which concludes the proof.

A.6.2 Proof of Theorem 6

We will use the following lemma.

Lemma A.2. We have ‖S−Σ∗‖2,∞ ≤ maxi,j |Sij −Σ∗ij| ·max1≤`≤p−1

√
2`/w`.

The proof follows immediately from the definition of the ‖ ‖2,∞ norm given in (A.6.1).
Proof of Theorem 6

Proof. The first oracle inequality follows immediately from Theorem A.2, the choice of λ
and Ax, and the fact that w0(L(B)) ≤ w0(0) ≤ 4p for the given weights. We now focus on
the bound for E‖Σ̂−Σ∗‖2

F . By Theorem A.2,

‖Σ̂−Σ∗‖2
F ≤ R1 + 2R2(‖Σ̂−Σ∗‖F + ‖Σ∗ −B‖F ), (A.6.6)

where
R1 = ‖Σ∗ −B‖2

F + ‖Ssp −Σ∗sp‖2
2 + 4λ2K(B)w0(L(B))

and

R2 = (‖S−Σ∗‖2,∞ − λ) · 1{‖S−Σ∗‖2,∞≥λ} ·

√√√√p−1∑
`=1

w2
` .

Using that 2R2‖Σ̂−Σ∗‖F ≤ 2R2
2 + 1

2
‖Σ̂−Σ∗‖2

F and that 2R2‖Σ∗−B‖F ≤ R2
2 +‖Σ∗−B‖2

F ,
it follows from (A.6.6) that

‖Σ̂−Σ∗‖2
F ≤ 6R2

2 + 2‖Σ∗ −B‖2
F + 2R1. (A.6.7)

With the given weights,
√∑p−1

`=1 w
2
` . p, hence

R2 . p (‖S−Σ∗‖2,∞ − λ) · 1{‖S−Σ∗‖2,∞≥λ}.

By Lemma A.2 and with the given weights,‖S − Σ∗‖2,∞ ≤ maxi,j |Sij − Σ∗ij|. Let D =
maxi,j |Sij −Σ∗ij|. Then by Theorem A.1 in Section A.4 and the given λ,

ER2
2 . p2E

[
(D − λ)2 · 1{D>λ}

]
. p2E

[
T 2 · 1{D>λ}

]
. p/n.

9



Also it is easy to show that E‖Ssp − Σ∗sp‖2
2 =

∑p
j=1 E(Sij − Σ∗ij)

2 . p/n. It follows by
(A.6.7) that

E‖Σ̂−Σ∗‖2
F ≤ 6ER2

2 + 2‖Σ∗ −B‖2
F + 2ER1

. ‖Σ∗ −B‖2
F +

p

n
+ λ2K(B)w0(L(B)).

Recalling that w0(L(B)) . p for the given weights, the theorem now follows.

A.7 Proof of Frobenius norm lower bound

Proof of Theorem 7

Proof. Fix 0 < α < 1/2. Let Bk,` = eke
T
` + e`e

T
k where ek is the unit vector in Rp with

the kth entry being 1 and e` similarly defined. Let Ω be the subset of {0, 1}p(p−1)/2 such
that if ε = (ε12, ε13, . . . , ε1p, ε23, . . . , ε2p, . . . , εp−1,p) ∈ Ω, then εk,` = 0 whenever |k − `| > K.
Denote by N the number of entries in ε that are not fixed at 0, then N = 2pK + o(pK). By
Varshamov-Gilbert’s bound (see Lemma 2.9 in Tsybakov 2009), there exists a subset Ω0 of
Ω such that: (i) 0 ∈ Ω0; (ii) Card(Ω0) ≥ 2N/8 + 1; (iii) for any two distinct ε and ε′ in Ω0,
the Hamming distance

∑
k,` |εk,` − ε′k,`| ≥ N/8.

Now for ε ∈ Ω0, define Σε = Ip + α√
n

∑
k<` εk,`Bk,`. Note that Σε has bandwidth at most

K. For any two distinct ε and ε′ in Ω0,

‖Σε −Σε′‖2
F =

2α2

n

∑
k<`

|εk,` − ε′k,`| ≥ α2N/(4n). (A.7.1)

It’s easy to see that tr(Σε) = p. Note that ‖Σε − Ip‖op ≤ α√
n
2K < 1. Hence Σε is positive

definite.
With slight abuse of notation, let PΣ denote the joint probability distribution of X1, . . . ,Xn

and each Xi is from a multivariate normal distribution with mean zero and covariance Σ.

Let K(PΣε ,PIp) =
∫

log
(
dPΣε

dPIp

)
dPΣε be the Kullback-Leibler divergence. Then we can verify

that

K(PΣε ,PIp) = n

{
−p

2
+

1

2
tr(Σε)−

1

2
log det(Σε)

}
= −n

2
log det(Σε) = −n

2

p∑
k=1

log
{

1 + λk(Σ̃ε)
}
,

where Σ̃ε = Σε − Ip. By the fact that log(1 + x) ≥ x − x2/2 for any x ≥ 0 and that∑p
k=1 λk(Σ̃ε) = 0, we obtain that

K(PΣε ,PIp) ≤ n

4

p∑
k=1

λ2
k(Σ̃ε) =

n

4
‖Σ̃ε‖2

F ≤ α2pK.

10



Therefore,
∑

Σε∈Ω0
K(PΣε ,PIp)/Card(Ω0) ≤ α2pK. Since log(Card(Ω0)−1) ≥ log(2)N/8 and

N = 2pK + o(pK), for any 0 < a < 1/8, we can choose α small enough (depends only on a)
such that

1

Card(Ω0)

∑
Σε∈Ω0

K(PΣε ,PIp) ≤ a log(Card(Ω0)− 1). (A.7.2)

With (A.7.1) and (A.7.2), by Theorem 2.5 in Tsybakov (2009), the theorem holds.

A.8 Proof of convergence in operator norm

Proof of Theorem 9

Proof. The arguments given here hold on the set Ax defined in (4.1), with x as in Theorem
6. Since, under our assumptions, we have K̂ = K, with high probability, we further have:

‖Σ̂−Σ∗‖op ≤‖Σ̂S − SS‖op + ‖SS −Σ∗S‖op + ‖Σ̂Sc −Σ∗Sc‖op
=‖Σ̂S − SS‖op + ‖SS −Σ∗S‖op + ‖Σ∗Sc‖op
.‖Σ̂S − SS‖1,1 + ‖SS −Σ∗S‖1,1 +K

√
log p/n

.max
i

∑
|i−j|≤K

|Σ̂ij − Sij|+K
√

log p/n.

We claim: there exists a constant c > 0 such that

|Σ̂ij − Sij| ≤ cλ for all |i− j| ≤ K. (A.8.1)

Then we have ‖Σ̂−Σ∗‖op . K
√

log p/n and the proof is complete.
Next, we prove claim (A.8.1). By (A.3.1), we have for ` ≥ L and m ≤ `,

R̂(`+1)
sm =

ν̂`
w2
`,m + ν̂`

R̂(`)
sm = R̂(`)

sm −
w2
`,m

w2
`,m + ν̂`

R̂(`)
sm ,

where ν̂` satisfies ∑̀
m=1

w2
`,m

(w2
`,m + ν̂`)2

‖R̂(`)
sm‖

2
2 = λ2. (A.8.2)

Let h`,m =
w2

`,m

w2
`,m+ν̂`

, then we have R̂
(`+1)
sm = (1− h`,m)R̂

(`)
sm , and hence for m ≥ L+ 1,

Σ̂sm = Ssm

p−1∏
`=m

(1− h`,m).

Let hm =
∏p−1

`=m(1− h`,m), then hm < 1 and hm = 1−
∑p−1

`=m h`,m + o
{(∑p−1

`=m h`,m
)2
}
. Note

that if we establish that
p−1∑
`=m

h`,m ≤ Cλ, (A.8.3)
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for some constant C > 0, then, for each L + 1 ≤ m ≤ p and each (i, j) ∈ Sm, we have
|Σ̂ij −Σ∗ij| = |hmSij − hmΣ∗ij + hmΣ∗ij −Σ∗ij| ≤ cλ
for some sufficiently large c that does not depend on i or j. Therefore to prove (A.8.1), it
suffices to prove (A.8.3).

Now we focus on ν̂`. By (A.8.2), if ` ≥ L+ 1, then
∑`

m=L+1

w2
`,m

(w2
`,`+ν̂`)

2‖R̂
(`)
sm‖2

2 ≤ λ2, which

leads to

w2
`,` + ν̂` ≥

√∑`
m=L+1w

2
`,m‖R̂

(`)
sm‖2

2

λ
≥ w``‖R̂(`)

s` ‖2

λ
,

since maxmw`m = w`` =: w`. Note that, by (A.3.1), for every m ≥ L+ 1, we have ‖R̂(`)
sm‖2 =

‖Ssm‖2

∏`−1
`′=m(1−h`′,m) and ‖R̂(`)

s` ‖2 = ‖Ss`‖2. Then ν̂` ≥
w`‖Ss`

‖2
λ
−w2

` . Since h`,m =
w2

`,m

w2
`,m+ν̂`

,

we derive that

p−1∑
`=m

h`m ≤
p−1∑
`=m

w2
`m

ν̂`
≤
∑p−1

`=mw
2
`m/(2`)

minp−1
`=L+1 ν̂`/(2`)

.
1

minp−1
`=L+1 ν̂`/(2`)

,

where the last inequality follows with the two sets of given weights.
Therefore, to prove (A.8.3), we just need to show that minL+1≤`≤p−1 ν̂`/` & λ−1, which

follows immediately by the signal strength condition and by the fact that ‖Ss`‖2−‖Σ∗s`‖2 &
−λ
√

2` uniformly for all `.

A.9 Counterexample

The purpose of this section is to show that the signal strength condition of Theorem 9 of the
main paper is necessary. In particular, we show that if the signal strength condition fails and
p > n, then the estimator Σ̂ may not even be consistent in operator norm. The following
example illustrates this. Let Σ∗ be such that Σ∗ii = 1 for all i, Σ∗12 = Σ∗21 = 0.5, and
Σ∗ij = 0 otherwise. Then ‖Σ∗sp−1‖2/

√
2(p− 1) = o(1) and the signal strength condition

cannot hold when p grows. For the above Σ∗, S = {p− 1, p}. For the estimator in Theorem
9 with λ = 2x

√
log p/n, Ŝ ⊆ {p − 1, p} by Theorem 3. Then, by (A.3.1) and (A.3.2) of

Theorem 3 above, and recalling that wp−1 =
√

2(p− 1), we have Σ̂sp−1 = [ν̂p−1]+
[ν̂p−1]++2(p−1)

Ssp−1 ,

where ν̂p−1 satisfies

λ2 =
2(p− 1)

(2(p− 1) + ν̂p−1)2
‖Ssp−1‖2

2. (A.9.1)

Notice that we have

‖Ssp−1‖2 ≤ ‖Σ∗sp−1‖2 + ‖Ssp−1 −Σ∗sp−1‖2 ≤
√

2× 0.52 + ‖Ssp−1 −Σ∗sp−1‖2 < λ
√

2(p− 1)

with high probability, for large p. Then, (A.9.1) implies that ν̂p−1 ≤ 0, in which case

Σ̂sp−1 = 0, so ‖Σ̂−Σ∗‖op ≥ |Σ∗12| = 0.5, and the estimator cannot be consistent.
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A.10 Positive definiteness

A.10.1 Proof of Theorem 10

Proof. Let u be the eigenvector of Σ̂ such that uT Σ̂u = λmin(Σ̂). Then

λmin(Σ̂) = uTΣ∗u− uT (Σ∗ − Σ̂)u ≥ λmin(Σ∗)− ‖Σ̂−Σ∗‖op.

Now, by Theorem 9, ‖Σ̂−Σ∗‖op ≤ C ′K
√

log p
n

, so the assumption on λmin(Σ∗) ensures that,

whp, Σ̂ � δIp. Thus, the constraint in (2.1) may be dropped without changing the solution,

meaning Σ̂ = Σ̃.

A.10.2 Algorithm for Σ̃ and its derivation

Theorem A.3. A dual of (2.3) is given by

MinimizeA(`),C∈Rp×p

1

2

∥∥∥∥∥S− λ
p−1∑
`=1

W(`) ∗A(`) + λC

∥∥∥∥∥
2

F

− λδ · tr(C) (A.10.1)

s.t. C � 0, ‖A(`)
g`
‖2 ≤ 1, A

(`)
g`c

= 0 for 1 ≤ ` ≤ p− 1.

In particular, given a solution to the dual, (Â(1), . . . , Â(p−1), Ĉ), the solution to (2.3) is given
by

Σ̃ = S− λ
p−1∑
`=1

W(`) ∗ Â(`) + λĈ. (A.10.2)

Proof. Define

L(Σ,A(1), . . . ,A(p−1),C) =
1

2
‖S−Σ‖2

F + λ〈
p−1∑
`=1

W` ∗A(`),Σ〉 − λ〈C,Σ− δIp〉.

Observe that
1∞{Σ � δIp} = max

C�0
−〈Σ− δIp,C〉

and (as before) that

‖(W(`) ∗Σ)g`‖2 = max
A(`)

{
〈W(`) ∗A(`),Σ〉 s.t. ‖A(`)

g`
‖2 ≤ 1, A

(`)
gc`

= 0
}
.

It follows that (2.1) is equivalent to

min
Σ

{
max
A(`),C

[
L(Σ,A(1), . . . ,A(p−1),C) s.t. ‖A(`)

g`
‖2 ≤ 1,A

(`)
g`c

= 0,C � 0
]}

.
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Algorithm A.1 BCD on dual of Problem (2.3).

Inputs: S, δ, λ, and weights matrices, W(`). Initialize A(`),C.
Repeat until convergence:

• {Â(`)} ←threshold subdiagonals
(
S + λĈ, {Â(`)}, λ, {w`m}

)
• Let UDUT = λ

∑p−1
`=1 W(`) ∗ Â(`) − S be the eigenvalue decomposition. Then,

λĈ← U[D + δIp]+UT

where the positive part, [·]+, is applied to each diagonal element.

Subroutine threshold subdiagonals
(
R, {Â(`)}, λ, {w`m}

)
For ` = 1, . . . , p− 1:

• Compute R̂(`) ← R− λ
∑p−1

`=1 W(`) ∗ Â(`)

• For m ≤ `, set Â
(`)
sm ← w`m

λ(w2
`m+max{ν̂`,0})

R̂
(`)
sm where ν̂` satisfies λ2 = h`(ν̂`), as in (3.2).

Return {Â(`)}.

We get the dual problem by interchanging the min and max. The inner minimization gives
the primal-dual relation given in the theorem and the following dual function:

min
Σ

L(Σ,A(1), . . . ,A(p−1),C) = −1

2
‖S− λ

p−1∑
`=1

W(`) ∗A(`) + λC‖2
F +

1

2
‖S‖2

F + λδ · tr(C).

A BCD algorithm for solving (A.10.1) is given in Algorithm A.1. The update over C
involves projecting a matrix onto the positive semidefinite cone. The other details are similar
to those explained in Section 3.

A.11 Additional simulation results

In this section, we present additional simulation results. In Section 5.1.1, we showed that
the empirical convergence rates in Frobenius norm correspond well to those predicted by
theory. In Figure A.1 of this section we show (under identical simulation settings to those
of Section 5.1.1) that the same is true for the convergence in operator norm. We scale the
operator norm by

√
log(p) in accordance with the right-hand side of Theorem 9. In Figure

A.2, we observe that the operator norm decays like n−1/2 in agreement with Theorem 9.
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Figure A.1: Convergence in operator norm. Monte Carlo estimate of (Left) E‖Σ̂ − Σ∗‖op
and (Right) E‖Σ̂−Σ∗‖op/
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Figure A.2: (Left:) For large n, expected E‖Σ̂ − Σ∗‖op is seen to decay like n−1/2 as can
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quantity by
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log p aligns the curves for large n. Both of these phenomena are suggested by

Theorem 9.
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A.12 Phoneme data sample covariance matrices

In Section 5.2 of the main paper, we state that inspection of the sample covariance matrices
supports the notion that an approximate banded structure may be present in the phoneme
data. See Figure A.3.

Figure A.3: Within-class sample covariance matrices for phoneme data

A.13 Proof of Proposition A.1

In Section A.6.1 of the supplementary materials, a key result for proving Theorem A.2 came
from Proposition A.1, which (to remind the reader) states that, for any B ∈ Rp×p,

‖Σ̂−Σ∗‖2
F ≤‖Σ∗ −B‖2

F − ‖Σ̂−B‖2
F + 2〈Ssp −Σ∗sp , Σ̂sp −Bsp〉

+ 2 (‖S−Σ∗‖2,∞ − λ) · ‖Σ̂−B‖2,1 + 4λ‖Σ̂S(B) −B‖∗2,1.

We prove this result in this section. We begin by stating and proving two lemmas and
a proposition that will be instrumental in the proof of Proposition A.1. The first lemma
provides bounds on the inner product of two matrices in terms of the newly introduced
norms in (A.6.1). We directly bound the inner product 〈A,B〉− in which we leave out the
contribution of the diagonals,

〈A,B〉− = 〈A,B〉 − 〈Asp ,Bsp〉 =
∑
j 6=k

AjkBjk.

We treat the main diagonal differently from the rest because it does not appear in the penalty
term ‖Σ‖∗2,1 of (2.2).

Lemma A.3. Let A and B be two arbitrary p× p matrices, then
〈A,B〉− ≤ ‖A‖2,1 · ‖B‖2,∞ ≤ ‖A‖∗2,1 · ‖B‖2,∞.

Proof. 〈A,B〉− =
∑p−1

`=1〈As` ,Bs`〉 ≤
∑p−1

`=1 ‖As`‖2 · ‖Bs`‖2 ≤ ‖A‖2,1 · ‖B‖2,∞. The second
inequality follows from the fact that ‖A‖2,1 ≤ ‖A‖∗2,1.
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For any matrix Σ ∈ Rp×p and set S ⊆ {1, . . . , p − 1}, let ΣS denote the p × p matrix such
that [ΣS]ij = Σij1{p− |i− j| ∈ S} and let ΣSc = Σ−ΣS.

Lemma A.4. Let S = {L+ 1, . . . , p− 1} for some L. For any p× p matrix Σ,

(i) ‖Σ‖2,1 = ‖ΣS‖2,1 + ‖ΣSc‖2,1,

(ii) ‖Σ‖∗2,1 ≤ ‖ΣS‖∗2,1 + ‖ΣSc‖∗2,1,
(iii) ‖Σ‖∗2,1 ≥ ‖ΣS‖∗2,1 + ‖ΣSc‖2,1.

Proof. We have

‖Σ‖2,1 =

p−1∑
`=1

w`‖Σs`‖2 =

p−1∑
`=1

w`
(
‖1{`∈S}Σs`‖2 + ‖1{`/∈S}Σs`‖2

)
= ‖ΣS‖2,1 + ‖ΣSc‖2,1.

Similarly,

‖Σ‖∗2,1 =

p−1∑
`=1

√√√√∑̀
m=1

w2
`m‖Σsm‖2

2

≤
p−1∑
`=1


√√√√∑̀

m=1

w2
`m‖1{m∈S}Σsm‖2

2 +

√√√√∑̀
m=1

w2
`m‖1{m/∈S}Σsm‖2

2


= ‖ΣS‖∗2,1 + ‖ΣSc‖∗2,1.

Finally,

‖Σ‖∗2,1 =

p−1∑
`=1

√√√√∑̀
m=1

w2
`m‖Σsm‖2

2

≥
p−1∑
`=1


√√√√∑̀

m=1

w2
`m‖1{m∈S}Σsm‖2

2 + w``‖1{`/∈S}Σs`‖2


= ‖ΣS‖∗2,1 + ‖ΣSc‖2,1.

Let w`· ∈ R` denote the weights on the `th triangle and let the weight matrix W(`) ∈ Rp×p

be defined as: W
(`)
sm = w`m12m for 1 ≤ m ≤ ` and W

(`)
sm = 0 if m > `. Here 12m is a

length-2m vector of 1’s. Observe that the penalty term (2.2) can be equivalently written
as ‖Σ‖∗2,1 =

∑p−1
`=1 ‖(W(`) ∗ Σ)g`‖2, where ∗ denotes elementwise multiplication. Define

f`(B) := ‖(W(`) ∗B)g`‖2. Recall the definitions of the new norms in (A.6.1).
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Proposition A.2. For any B ∈ Rp×p and W(`) ∗A(`) ∈ ∂f`(B), 1 ≤ ` ≤ p− 1,

‖Σ̂−Σ∗‖2
F ≤‖Σ∗ −B‖2

F − ‖Σ̂−B‖2
F + 2〈Ssp −Σ∗sp , Σ̂sp −Bsp〉

+ 2‖S−Σ∗‖2,∞ · ‖Σ̂−B‖2,1 − 2λ

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
.

Proof. f`(B) is convex and its sub-differential is

∂f`(B) =
{

W(`) ∗A(`) ∈ Rp×p : ‖A(`)
g`
‖2 ≤ 1,A

(`)
gc`

= 0 and〈
(W(`) ∗B)g` ,A

(`)
g`

〉
= ‖(W(`) ∗B)g`‖2 · ‖A(`)

g`
‖2

}
.

(A.13.1)

Let W(`) ∗ Â(`) ∈ ∂f`(Σ̂). For an arbitrary B ∈ Rp×p, let W(`) ∗A(`) ∈ ∂f`(B). Since the
sub-gradient of a convex function is monotone, we have

〈W(`) ∗ Â(`), Σ̂−B〉 =
〈

(W(`) ∗ Â(`))g` , (Σ̂−B)g`

〉
≥
〈

(W(`) ∗A(`))g` , (Σ̂−B)g`

〉
= 〈W(`) ∗A(`), Σ̂−B〉.

It follows that 〈
p−1∑
`=1

W(`) ∗ Â(`), Σ̂−B

〉
≥

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
. (A.13.2)

Using the primal-dual relation given in Theorem 1 of the main paper and the fact that
Σ̂−Σ∗ = Σ̂− S + S−Σ∗, we have

〈Σ̂−Σ∗, Σ̂−B〉 = 〈S−Σ∗, Σ̂−B〉 − λ

〈
p−1∑
`=1

W(`) ∗ Â(`), Σ̂−B

〉
.

Combining this with (A.13.2), we derive that

〈Σ̂−Σ∗, Σ̂−B〉 ≤ 〈S−Σ∗, Σ̂−B〉 − λ

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
. (A.13.3)

By the cosine formula, 2〈Σ̂−Σ∗, Σ̂−B〉 = ‖Σ̂−Σ∗‖2
F +‖Σ̂−B‖2

F −‖Σ∗−B‖2
F . Therefore,

we can rewrite (A.13.3) as

‖Σ̂−Σ∗‖2
F + ‖Σ̂−B‖2

F ≤ ‖Σ∗ −B‖2
F + 2〈S−Σ∗, Σ̂−B〉 − 2λ

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
and the proposition follows since, by Lemma A.3,

〈S−Σ∗, Σ̂−B〉 ≤ 〈Ssp −Σ∗sp , Σ̂sp −Bsp〉+ ‖S−Σ∗‖2,∞ · ‖Σ̂−B‖2,1.
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We are now prepared to prove Proposition A.1. For simplicity, let S = S(B) and L =

L(B). The focus of this proof is on the term
〈∑p−1

`=1 W(`) ∗A(`), Σ̂−B
〉

in Proposition A.2.

For 1 ≤ ` ≤ L, the constraints on A(`) are ‖A(`)
gc`
‖2 = 0 and ‖A(`)

g` ‖2 ≤ 1 (the third constraint

holds automatically since Bg` = 0 for ` ≤ L). We let A
(`)
sm = w`mΣ̂sm/f`(Σ̂) if f`(Σ̂) 6= 0

and 0 otherwise, for 1 ≤ m ≤ `, 1 ≤ ` ≤ L. Then for ` ≤ L,〈
W(`) ∗A(`), Σ̂−B

〉
=
∑̀
m=1

〈w`mA(`)
sm , Σ̂sm −Bsm〉 =

∑̀
m=1

〈w2
`mΣ̂sm/f`(Σ̂), Σ̂sm〉

=
∑̀
m=1

w2
`m‖Σ̂sm‖2

2/f`(Σ̂) = f`(Σ̂).

It follows that
〈∑L

`=1 W(`) ∗A(`), Σ̂−B
〉

=
∑L

`=1 f`(Σ̂) ≥ ‖Σ̂Sc‖2,1, by Lemma A.4 (iii).

Next, fix ` ≥ L + 1. By the definition of subgradient in (A.13.1), A
(`)
gL can be chosen to

have arbitrary values (as long as ‖A(`)
g` ‖2 ≤ 1), and we take A

(`)
gL = 0 because of the equality〈

(W(`) ∗B)g` ,A
(`)
g`

〉
= ‖(W(`) ∗B)g`‖2 · ‖A(`)

g` ‖2. Then

−
〈
W(`) ∗A(`), Σ̂−B

〉
=−

∑̀
m=L+1

〈w`mA(`)
sm , Σ̂sm −Bsm〉

≤
∑̀

m=L+1

w`m‖A(`)
sm‖2 · ‖Σ̂sm −Bsm‖2

≤

√√√√ ∑̀
m=L+1

w2
`m‖Σ̂sm −Bsm‖2

2 ·

√√√√ ∑̀
m=L+1

‖A(`)
sm‖2

2

≤

√√√√ ∑̀
m=L+1

w2
`m‖Σ̂sm −Bsm‖2

2.

In the above we used the fact that A
(`)
gc`

= 0 and ‖A(`)
g` ‖2 ≤ 1. It follows that

−

〈
p−1∑

`=L+1

W(`) ∗A(`), Σ̂−B

〉
≤

p−1∑
`=L+1

√√√√ ∑̀
m=L+1

w2
`m‖Σ̂sm −Bsm‖2

2

=‖Σ̂S −BS‖∗2,1.

Therefore

−

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
≤ −‖Σ̂Sc‖2,1 + ‖Σ̂S −BS‖∗2,1,
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and, by Lemma A.4 (i),

‖Σ̂−B‖2,1 −

〈
p−1∑
`=1

W(`) ∗A(`), Σ̂−B

〉
≤‖Σ̂S −BS‖2,1 + ‖Σ̂Sc −BSc‖2,1 − ‖Σ̂Sc‖2,1 + ‖Σ̂S −BS‖∗2,1
≤2‖Σ̂S −BS‖∗2,1.

Here we have used that BSc = 0. The proposition follows by noting that B has all zero in
Sc.
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