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A.1 Dual problem

Define L
1 p—
LS, AD,. AP) = S = B[ + AY_ WO« A0, :),
(=1

Observe that

J4
(W 3, [l2 = %aegc{(W(’f) *AD 3) st AP <1, Al = ()} _

It follows that (2.1) is equivalent to
. 1 -1 ¢ 0 _
min {12%( [L(E,A( ) AP gt ||A(g£)||2 <LA,= O} } :

We get the dual problem by interchanging the min and max. The inner minimization gives
the primal-dual relation given in the theorem (by strong duality) and the following dual
function:

, ) 1 > 1
min (2, AV, AP) = || - A;W“) # AL+ S[ISIIE-

A.2 Ellipsoid projection

To update A® in Algorithm A.1, we must solve a problem of the form

Aéi) = argarer]}én ||R —ADWa|2 s.t. |lal? <1,

which (in a change of coordinates) is the projection of a point onto an ellipsoid. Clearly,
if ||D(£)_1R§?|| < A, then A} = D(f)_lf{gi)/)\. Otherwise, we use the method of Lagrange
multipliers (to solve the problem with an equality constraint):

L(a,v) = |R) — ADYall; +vA*([al; — 1)
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whence
0=2\DPY(ADYa - RY) + 2v)%a = a = (D? +v1),) ']A"'DORY).

That is,
A _ _ Wem B
e NMwg, + )

where 7, is such that Agi) has unit norm, i.e. such that hy(2y) = A where h; is defined in
(3.2). We compute this root numerically. We can get limits within which 2, must lie. For
example, replacing wy,, by w, = max,, wy,, makes the RHS smaller whereas replacing it by
0 makes the RHS larger:

S IR U >t Wha IR |2
=:h <h <h = ==
(wg‘f“V) Z(V)— f(”)— Z(V) ( )
Now, since hy(v) is a decreasing function, we know that 0} < 0, < 0f, where b} (0f) = \? =
RY (07). From this, it follows that

¢ ¢
Sowd RO 2 = | < avp < | Y w?, RO
m=1 n m=1

Noting that SX¢ w2 IR |12 = |IDORY|Z, this simplifies to
IDORD5 — Mwf < Ay < [DORD.

To summarize, we have for 1 <m </ <p—1,

Ao _ JRo/Quw) i [DOTRZ ], < A
m /\(wiiil' RY  otherwise
and Aé? = 0. This can be written more simply as #R if we note that ||D(£)_1 3 éi) |2 <

\ is equivalent to hy(0) < A? and that in this case 7, < 0, since hy is nonincreasing. It turns

out that often we will be able to get 7, in closed form. First, hy(v) = w?|RWY |2/ (w? + v)?,

SO I = w1(||Rg)H/)\ — wy). Furthermore, for ¢ > 1, if vy <0 then for all m < ¢, we have
REFY = 0. This means that hevi(v) = 2+U 5 ||Rsiﬂ |> whence

et = weer (IREDI/A = wers )

Thus, we only need to perform numerical root-finding when ¢ =p — 1 — K.



A.3 Proof of tapering theorem (Theorem 2)

Proof. By Proposition 5 in Jenatton et al. (2011), we can get 3 by a single pass as in
Algorithm 1. We begin with R(Y) = S and then for £ = 1,...,p — 1, (and for each m < /),
we have

R — RO — M\, AY = Lf{(@' (A.3.1)
o o T wg ]y

The optimality conditions give 3 = R®, 5o that we have

p—1 ~
S (D] +
Y, = —— - S;,, (A.3.2)
gl;[n wzm + [Vf]Jr
which establishes this as an adaptively tapered estimator. O

A.4 Bounds on max;; |S;; — %]

Theorem A.1. Assume logp < yn for some constant v > 0 and max; |3*;;| < M for some
constant M. Let D = max; ; |S;; — X*;;|. There exists some constant ¢ > 0 such that for

sufficiently large x > 0,
P (D > z+4/log(p V n)/n> <

“pVn

(Ad1)

and c

<
1{D>z\/log(p\/n)/n} - n<p \/ n)
Proof. By Lemma A.1 below, there exist constants ¢;,i = 1,2,3,4 such that, for any 0 <
t<2M,

ED?.

(A.4.2)

P (D > t) < p*c; exp{—cont®} + pcs exp{—cynt}.

Hence,

P (D > \/log(pVn)/n) < per exp{—ca®log(p V n)} + pes exp{—cyzlog(p v n)y/n/log(p V n)}
<ca(pV ”)2_62w2 +c3(p Vv n)l_c‘l“\/ n/log(pvn)

Next we derive that

o0

2 _ 2
ED™ 1 by frogtomin} = BD" 2 y)dy

z2 log(pVn)/n
= 2
< / (p ¢y exp{—cant} + pcs exp{—cwﬁ}) dt
z2log(pVn)/n

_ pPcrexp{—cona?log(p VvV n)/n} L Pes exp{—cqnz+/log(p VvV n)/n} <
Con

1
1 vV —
zy/log(pV n)/n+ cm)

L alpV | elpy ) /T (

1
x log(p\/n)/n+—).
can can can
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Hence if z is sufficiently large and by the assumption that logp < yn, the inequalities in the
lemma holds for some constant c. 0

Lemma A.1. There exist two constants ¢y and ¢y such that

t? ¢
P (m@X Sy — X%5] > lf) < 2p*exp (—L> + 8pexp (—L> .
ij

max; 3*; max; 3*;
for any 0 <t < 2max; X*;.
Proof. Note that .
Sy =n") XuXy — X, X;.

k=1
and
S;; — X% < |n! ZX’%’XIW‘ = 2| + | XX
k=1
Hence

P (max [Si; = 37%5[ > t)
ij

v 1 v
<p? max [P ( n! ZXMXM - X% > t/2> + 2pmax P (|Xj‘ > \/t/2) .
i J
k=1

Let ]ij = P(\n_l ZZ:I inij — E*z]| > t/2) and ]j =P (|X]’ > t/2) Then
P (max 1Si; — X% > t) < p? max I;; + 2pmax [;. (A.4.3)
1] 1) J
We first consider I;. X; is sub-Gaussian with variance X*;;/n and

E exp (th/ E*jj/n> :HEeXp (thj/\/nE*jj>
k=1

<{exp(Ct*/n)}"
= exp(Ct?).

By Lemma 5.5 in Vershynin (2011),
R
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for some constant K that does not depend on j. It follows that

I_IP(\X|> ) {|X|/ S /n > tn/22m}<exp< 2K2;*‘>.

Therefore,
t
I, < desp (_L) (Add)

man 2*]j
for some constant c;.
Now we consider [;;. We shall find v;; and ¢;; such that

ZE(X;ZX%) < v (A.4.5)
k=1
and .
q! _
ZE {( Xk X))} < o Vij * C?j 2 (A.4.6)

k=1
for all integers ¢ > 3. Then by Theorem 2.10 and Corollary 2.11 in Boucheron et al. (2013),

for any t > 0,
t2
P t] <2 —_ . A 4.
~h)= eXp{ 2(vij + Cz‘jt)} (A7)

To find v;; and ¢;;, note that by Lemma 5.5 in Vershynin (2011), E|X;;/,/5;;]? < Kiq¥/?
for all ¢ > 1 and some constant K5 that does not depend on j. Hence

n

Z (XiiXi; — X%35)

k=1

Y EXZXE) <)\ /EX)-EXE < 16nX;57 K.
k=1 k=1
Similarly,

ZE{ X Xi)4 ) < Z /Equ Equ < 2*(1/22*q/2K2q(2 ).

It is easy to show that (A.4.5) and (A.4.6) hold with v;; = K3n3*;3*;; and ¢;; = K3./2*;3%j;
for some constant K3 that is sufficiently large and does not depend on i or j.
By (A.4.7), it follows that

n2t?
I,; <2 -
)= eXP { 4(21/¢j + Cij’nt) }

2t2
=2exp{ — n
4(2K3n2*“2*” + KS \/ E*iiz*jjnt)

2

<9 nt
ex — .
=S UK s, 1 KD st




If ¢ < 2max; 3%;;, we have
L <2 _ont® (A.4.8)
’L" < eX —_— 5 . .
J P man 2*j]

where ¢y = (16K3)™*

A.5 Proof of bandwidth recovery

Proof of Theorem 3. Referring to the proof of Theorem 2, we have R (D) — 0 if vy <0 or
equivalently if hy(0) < A2, where hy is defined in (3.2). If L = 0, then K p—land K < K
holds automatically. Thus, assume that L > 0. We prove that R (L)

(. For { =1,

= 0 by induction on
he(0) = 287, /wi < max |Si; — T*5;7 < N2
on the set A, defined in (4.1). Assume Rng =0 for £ < L. Then, since R;;Ll =S

hey1(0) = HSSe+1 ||2/w3+1,e+1 <N

on A,. Therefore, Rgﬁﬂ) =0 and so ﬁ)gL =0,ie, K <K. ]

Se+1

Proof of Theorems 4 and 5. In both theorems, we wish to show that 3
lently that h,(0) > A\? for each ¢ > L + 1, whence we get the condition

s 7 0 or equiva-

: 2
L he(0) > A% (A5.1)

Recalling that h,(0) = Em ) HR |1?/w?, ., we have
he(0) > RS /wf = (IS, I /w7-
Now, being on the set A, implies that for any ¢,
10 ll2 = 150l — IS0, — Eolle = 5% s — V2A = [yl — Awe. (A5.2)

We consider the two theorems separately:

1. (Theorem 4) By assumption, for £ > L+ 1, (A.5.2) gives us he(0) > A% Thus, (A.5.1)
is satisfied, proving the first theorem.

2. (Theorem 5) By the same argument as above, we have hy(0) > A2 for £ = L + 1
and for ¢ > L + 3. It remains to show that hz.2(0) > A% Since hr,1(0) > A2
we have that p.; > 0 and since 7, < 0 (see appendix on ellipsoidal projection),
Upi1 = Wi (|Ssy 1 [[/A — wrs1) > 0. Thus,

R(L+2) _ ﬁLJrlSSL-H _ (HSSL+1 H2 - )\U}L+1> SSL+1

T wig +in 1Ssz.4: 112

(=}



and

hr2(0) = ||Rg€j:22)||g/w%+2 + ||Rgiif)||§/w%+2,L+1

= ”SSL+2 ||g/w%+2 + (||SSL+1 ||2 - AwL+1)2/w%+2,L+1
> (120 lle = Awpg2)d /wh o + (15,0 2 = 200041)? /0] 19 114
= (”2*5L+2||2 - )\wL+2)i/w%+2 + )\272w%+1/w%+2,L+1
> (12 pllz = Awry2)} /wi o + A%
again applying (A.5.2), and using that wri1 = w4141 > wWrier+1. Now, for this

to exceed A\ we have the following: If v > 1, there is no requirement on ¥* if
0 < v <1, then

SL+27

13575, Lll2 > Awrgo (1 +4/1— 72)

This establishes that hy(0) > A% for £ > L + 1, completing the proof of the second

theorem.
0
A.6 Proof of convergence in Frobenius norm
Define
p—1
1220 = ;wellﬁsf,lb and [ Blz00 = max w; 2|2 (A.6.1)

Recall that for any B € R”*?, we define L(B) to be such that By, , =0 and By, , . #0,
and S(B) = {L(B)+1,--- ,p—1} with K(B) = |S(B)|. Note then that K(B) = p—1—L(B).
We first establish the following theorem.

A.6.1 Theorem A.2
Theorem A.2. For any B € RP*P,

13 = 315 <IISs, = =76, 15 + 1= = Bl5 + 4A° K (B)uwo(L(B))

+2([[S = X200 = A) - 1{S=m+ oz} -

p—1
> w2 - Bl
(=1

where wo({) = Maxp1<m<p—1 278:71” w? .
Recalling that the subdiagonal s,, is included in g, for m < ¢ < p—1, we see that Z?;; wi
measures the amount of “net weight” applied to the subdiagonal s,, and wq(L(B)) measures
the largest amount of “net weight” applied to any subdiagonal in m € S(B).

To prove Theorem A.2, we will rely on the following proposition:
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Proposition A.1. For any B € RP*P,

+2([IS = X l2.00 = A) - |3 = Bllay + 4X[[Zsm) — Bllz,1-

Proof. See Section A.13 of the supplementary materials.
We are now ready to prove Theorem A.2.

Proof of Theorem A.2. By Proposition A.1,

IS -S| < [~ BIlh - [S - BJ2 + 28, - 5,5, - B,)
+2(IS = £ lace — A) - [ 8 — Bllaa + 4| Zs(s) — B .

Sp»

First we have

2<SSP - E*Sp’ ﬁ)sp B3p> S ||Ssp - E*SpHg + ||§/\]5p - BSpHg
Next,
p—1 p—1
12 = Bllog = > wel[ s, = By, ll2 < wi | D13 — By |3
/=1 /=1

3% =B

Finally, since 2\b < aA? + b?/a, for any a > 0, we obtain

¢

2M[Zsm) — B3, = 2A Z > w %, — B3
(=L(B)+1 m—L(B)+1

B+ z z EalZan ~ Bu /o

B)+1m=L(B

< K(B)\%a + Z <Z w§m> 13, — B, |3/a.
{=m

m=L(B)+

Letting a = 2wy(L(B)) = 2maxy@)+1<m<p-1 D e :nwm,
< " 1, - 1
2)[[3s8) — Bll3,; < 2K (B)A\wo(L(B)) + 51 Zsm) — B|% - Sl1%s, = B, [I5.

(A.6.2)

(A.6.3)

(A.6.4)

(A.6.5)



Then combining (A.6.2), (A.6.3), (A.6.4) and (A.6.5),

I3 = 2|I% <[5 = BI% + (1S5, — 7, 15 + 4K (B)Xwo(L(B))

p—1
+2(|IS = B*l20e = A) - L{is—srnzry - 4| O wE - 12— Bllr,
/=1

which concludes the proof. O]

A.6.2 Proof of Theorem 6
We will use the following lemma.
Lemma A.2. We have HS - E*HQ’OO S max; ; |SU - 2*2]’ + MaX)<y<p—1 \/ﬂ/ﬂ)g

The proof follows immediately from the definition of the || ||2,.0c norm given in (A.6.1).
Proof of Theorem 6

Proof. The first oracle inequality follows immediately from Theorem A.2, the choice of A
and A, and the fact that wy(L(B)) < wo(0) < 4p for the given weights. We now focus on
the bound for E||X — ¥*||%. By Theorem A.2,

15— S < By 4+ 2Rs(S = S + |15 — Bllp), (A.6.6)

where

Ry =||=" = B} + IS, — 2%, |l + 4\ K (B)uwo(L(B))

and

Ry = (IS = X200 = A) - 15— 5+ )n.00zA} -

p—1
St
=1
Using that 2Ro||X — X*||p < 2R3+ 1|2 — £*(|2 and that 2R, || 2 — B¢ < R} +||Z* —B| )%,
it follows from (A.6.6) that
I — =% < 6R2 +2||2* — B2 + 2R,. (A.6.7)

With the given weights, /30" w? < p, hence

Ry Sp (IS — X200 = A) - L{js— 5+ ln00 22}

By Lemma A.2 and with the given weights,||S — X*||20 < max;;[S;; — 3*%;|. Let D =
max; ; |S;; — £%;;|. Then by Theorem A.1 in Section A.4 and the given A,

ER% § sz [(D - )‘)2 ’ 1{D>>\}} 5 p2]E [TQ : 1{D>>\}] 5 P/n‘



Also it is easy to show that E[|S,, — 3%, [I5 = >>0_ E(S;; — X%;)* < p/n. It follows by
(A.6.7) that

E||S — =% < 6ER? + 2| 2" — B||% + 2ER,
SI= =Bl +  + NE(B)uo(L(B)).

Recalling that wy(L(B)) < p for the given weights, the theorem now follows. O

A.7 Proof of Frobenius norm lower bound

Proof of Theorem 7

Proof. Fix 0 < a < 1/2. Let By, = ekeZT + ege{ where e, is the unit vector in R? with
the kth entry being 1 and e, similarly defined. Let Q be the subset of {0,1}?"=1)/2 such
that if € = (€12, €13, ..., €1p, €23, ..., €9p, ..., €p_1,) € Q, then €, = 0 whenever |k — (| > K.
Denote by N the number of entries in € that are not fixed at 0, then N = 2pK + o(pK). By
Varshamov-Gilbert’s bound (see Lemma 2.9 in Tsybakov 2009), there exists a subset 2y of
Q such that: (i) 0 € Q; (ii) Card(€) > 2V/® 4 1; (iii) for any two distinct € and € in Q,
the Hamming distance ), , [ex¢ — €} | > N/8.

Now for € € )y, define X, =1, + \% de € (B ¢. Note that 3, has bandwidth at most
K. For any two distinct € and € in €,

202
IS = Sl = 255 Jene — el = 02N/ (4n). (A7.1)

n
k<t

It’s easy to see that tr(3e) = p. Note that [[Xe — I, < J=2K < 1. Hence X is positive
definite.

With slight abuse of notation, let Ps; denote the joint probability distribution of X, ..., X,
and each X, is from a multivariate normal distribution with mean zero and covariance .
Let K(Px,,Pr,) = [ log (dpz:) dPs_ be the Kullback-Leibler divergence. Then we can verify

dP;
that

1 1
K(Ps,,Py,) =n {—g + §tr(25) b log det(Ee)}

p
= logdet(S0) = —2 Y log {1+ M(S0)}

k=1

where ¥, = ¥, — I,. By the fact that log(1 + ) > 2 — 22/2 for any > 0 and that

P A\e(Xe) = 0, we obtain that

p
n ~ n -~
K(Ps, 1) <5 Y0 M(E) = JISclf < a’pk.
k=1

10



Therefore, ) 5 o, K(Px,,Pr,)/Card(Q) < o’pK. Since log(Card(Qy) —1) > log(2) N/8 and
N =2pK + o(pK), for any 0 < a < 1/8, we can choose « small enough (depends only on a)

such that .

Card () > K(Px..Pr,) < alog(Card(S) — 1), (A.7.2)
X€Qo
With (A.7.1) and (A.7.2), by Theorem 2.5 in Tsybakov (2009), the theorem holds. O

A.8 Proof of convergence in operator norm

Proof of Theorem 9

Proof. The arguments given here hold on the set A, defined in (4.1), with = as in Theorem
6. Since, under our assumptions, we have K = K, with high probability, we further have:

||Z - 2*Hoz) _HES - SS“Op + ||SS - Z*SHOP + ||ESC - E*SC op
:HES - SS“Op + ||SS - E*SHOP + ||E*SC op
Sl¥s = Ssllin + ISs — Xsl[11 + K+/logp/n

gm?x Z 13 — Si| + K+/logp/n.

li—j|<K

We claim: there exists a constant ¢ > 0 such that
135 — Syl < eX forall|i — j| < K. (A.8.1)

Then we have |3 — 2*||,, < K+/log p/n and the proof is complete.
Next, we prove claim (A.8.1). By (A.3.1), we have for £ > L and m < ¢,

N 2

RED — Y po_Rjo__Ytm pe
Sm wzm + l)g Sm Sm w%’m + ﬁ( S ?
where 7, satisfies
4 w2
3 G R = ¥ (A82)
-1 w@m
wy (+1) 5 (€)
Let hyy = ﬁ, then we have R = (1 — hym)Rs,,, and hence for m > L + 1,
p—1
2., =S, [J(1 = hem).
l=m

Let hy = [152) (1 — heym), then by, < 1and by, =130 by 40 { (>t hg,m)2} . Note
that if we establish that

.
> iy < O, (A.8.3)

11



for some constant C' > 0, then, for each L +1 < m < p and each (7,j) € S,,, we have
1325 — 25| = [hmSij — b E%j + h S5 — 27551 < e

for some sufficiently large ¢ that does not depend on i or j. Therefore to prove (A.8.1), it
suffices to prove (A.8.3).

w2
Now we focus on 7. By (A.8.2),if £ > L+1, then 3¢ _ L1 [ ‘:’[’;02 ||R(£) |2 < A2, which
0,0

leads to

¢ 2 IR |2 5
\/Zm=L+1 Wi Rl | R
) oA
since maxm wgm = wy =: wy. Note that, by (A.3.1), for every m > L+ 1, we have ||Rsm||2 =

A Ss m
1S5, Nl TT6 2, (1= arn) and [R5 = [|Sy,[|2. Then o, > 252z 2 Smcehm=“"—+w

2 ~
Wy + Ve 2

we derive that

Z%gz vh o Tiavka/C0 |

B mme L+1 W/(%) min]z:iﬂ ’96/(%)’

where the last inequality follows with the two sets of given weights.

Therefore, to prove (A.8.3), we just need to show that ming1<p<p—1 /¢ 2 A1, which
follows immediately by the signal strength condition and by the fact that ||S;,[|2 — || X*s,]l2 2
—\V/2¢ uniformly for all £. O

A.9 Counterexample

The purpose of this section is to show that the signal strength condition of Theorem 9 of the
main paper is necessary. In particular, we show that if the signal strength condition fails and
p > n, then the estimator 3 may not even be consistent in operator norm. The following
example illustrates this. Let X* be such that X*; = 1 for all i, 3%, = ¥*y; = 0.5, and
¥*;; = 0 otherwise. Then ||X*, _ |l2/1/2(p —1) = o(1) and the signal strength condition
cannot hold when p grows. For the above E* S = {p - 1 ,p}. For the estimator in Theorem
9 with A = 2z+/logp/n, S C {p — 1,p} by Theorem 3. Then, by (A.3.1) and (A.3.2) of

Theorem 3 above, and recalling that w,_; = 1/2(p — 1), we have ﬁ?sp_l = Wﬁj—%s%_l,

where 7, ; satisfies
S AR |
2(p = 1) + pr)?

M\ = (A.9.1)

Notice that we have
1Ss, 1 ll2 < 1%, i lla + 1S5, 1 = s, 4 ll2 V2 x 052 +[[Sy, , — X%, [l2 < AV/2(p—1)

with h1gh probabﬂlty, for large p. Then, (A.9.1) implies that #,_; < 0, in which case

Esp_l ;50 || — =*||,p > |Z*12] = 0.5, and the estimator cannot be consistent.

12



A.10 Positive definiteness

A.10.1 Proof of Theorem 10
Proof. Let u be the eigenvector of 3 such that u7Su = )\min(ﬁ)). Then

Amin(2) = 07T u — u” (T — B)u > Apin(TF) = |2 = Zlop-

Now, by Theorem 9, || — Z*|,, < C'K 12 56 the assumption on Ay, (X*) ensures that,

whp, 3 - 0L,. Thus, the constraint in (2.1) may be dropped without changing the solution,
meaning 3 = 3. O

A.10.2 Algorithm for ¥ and its derivation
Theorem A.3. A dual of (2.3) is given by

2

— A - t2(C) (A.10.1)
F
6. C =0, [AD, <1, Al =0for1<r<p—1.

p—1
S — )\ZW“) * AW +\C
/=1

L 1
Minimize () cerpxe 5

In particular, given a solution to the dual, (A(l), AP, C), the solution to (2.3) is given
by

p—1

T=8-2) WOxAU L AC (A.10.2)
(=1
Proof. Define
1 e
L2, AW APY C) = SIS - S(F+ A Wex AU X)) - \C, 2 - dT,).
/=1

Observe that
loo{X = 0L} = %1&%(—(2 —0I,,C)

and (as before) that

[(WO 5 2l = max { (WO« A0, %) st. [AD]2 < 1, AF =0}

It follows that (2.1) is equivalent to

: 1 -1 ‘ 0 _
min {ﬂ?}é [L(E,A( )., APTD C) st HAéZ)HQ <1,A,:=0,C=x= O] }

13



Algorithm A.1 BCD on dual of Problem (2.3).
Inputs: S, 6, X\, and weights matrices, W®. Initialize A©, C.
Repeat until convergence:

e {A®} «threshold_subdiagonals (S +AC, {AO} X, {ng}>
e Let UDU” = AYP2 ! WO « A — S be the eigenvalue decomposition. Then,
AC « UD + 6L, UT

where the positive part, ||, is applied to each diagonal element.

Subroutine threshold subdiagonals (R, {AOY X {wgm}> For{=1,...,p—1:

e Compute R® «+~ R - AY7 WO 4 AO

e For m </, set Agﬁ — Lo R

NwZ_Fmax(o,,0)) [esm where 7, satisfies \? = hy(i), as in (3.2).

Return {A®},

We get the dual problem by interchanging the min and max. The inner minimization gives
the primal-dual relation given in the theorem and the following dual function:

1 e 1
min L(S, A, ..., AP, C) = —5l8 - A WO AD L C|T + SISl + 20 - tr(C).
/=1

[]

A BCD algorithm for solving (A.10.1) is given in Algorithm A.1. The update over C
involves projecting a matrix onto the positive semidefinite cone. The other details are similar
to those explained in Section 3.

A.11 Additional simulation results

In this section, we present additional simulation results. In Section 5.1.1, we showed that
the empirical convergence rates in Frobenius norm correspond well to those predicted by
theory. In Figure A.1 of this section we show (under identical simulation settings to those
of Section 5.1.1) that the same is true for the convergence in operator norm. We scale the
operator norm by 4/log(p) in accordance with the right-hand side of Theorem 9. In Figure
A.2, we observe that the operator norm decays like n~/? in agreement with Theorem 9.
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Figure A.1: Convergence in operator norm. Monte Carlo estimate of (Left) E||3 — $*||op
and (Right) E||X — X% op/V10gp as a function of K, the bandwidth of ¥*.
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be seen from —1/2 slope of log-log plot (gray lines are of slope —1/2). (Right:) Scaling this
quantity by v/logp aligns the curves for large n. Both of these phenomena are suggested by

Theorem 9.
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A.12 Phoneme data sample covariance matrices

In Section 5.2 of the main paper, we state that inspection of the sample covariance matrices
supports the notion that an approximate banded structure may be present in the phoneme
data. See Figure A.3.

Figure A.3: Within-class sample covariance matrices for phoneme data

A.13 Proof of Proposition A.1

In Section A.6.1 of the supplementary materials, a key result for proving Theorem A.2 came
from Proposition A.1, which (to remind the reader) states that, for any B € RP*P,

IS - S <[5~ B}~ |18 - BJ[} +2(8,, — £, 8, ~ B,,)
£ 28 — £ la0 — A) - [ £~ Bllay + 4\ [Ssce) — Bl

We prove this result in this section. We begin by stating and proving two lemmas and
a proposition that will be instrumental in the proof of Proposition A.1. The first lemma
provides bounds on the inner product of two matrices in terms of the newly introduced
norms in (A.6.1). We directly bound the inner product (A,B)~ in which we leave out the
contribution of the diagonals,

(A.B)” = (A.B) — (A,,.B,,) = > AuBjs.
7k
We treat the main diagonal differently from the rest because it does not appear in the penalty
term ||3|3, of (2.2).

Lemma A.3. Let A and B be two arbitrary p X p matrices, then
(A,B)” <[[All21 - [Bll2,0c < [[A][31 - B2,

Proof. (A,B)™ = 3277 1(Ay,,By,) < 301 Ay llz - By, llz < [|A]l21 - [1Bll2.cc. The second

inequality follows from the fact that ||A|ls,; < [|A[]3;. O
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For any matrix X € RP*P and set S C {1,...,p — 1}, let X5 denote the p X p matrix such
that [Xgl;; = X;;1{p — |i — j| € S} and let Xge = X — Xg.

Lemma A.4. Let S={L+1,...,p— 1} for some L. For any p X p matriz X,

(@) [1Zl21 = [Zsll2a + [[Esell21,
(@) =[50 < [1Zsllzy + [1ZBsell2,1,
(@) X5, = [1Zsllz + [[Esell21-
Proof. We have
p—1 p—1
I1Zl20 =D well B ll2 =D we (11 geesyZall2 + [T egs) S, ll2)
/=1 =1
= [|Zsll21 + [Zsell21-
Similarly,
p—1 V4
1=, = 4| D wha s, 13
/=1 m=1
p—1 L I
< D> w? mesyZanlB+ 4| D wh L mgsy Ss,. 13
/=1 m=1 m=1
= [|Zsl51 + 1 Zsell3,1-
Finally,
p—1 l
1215, = > w1213
/=1 m=1
p—1 l
> > w1 imesyBs,. 13 + weel Lirgsy s, |12
/=1 m=1

Bsllon + 3 ll21-
[l

Let w,. € R’ denote the weights on the ¢th triangle and let the weight matrix W ¢ RP*P
be defined as: WgQ = Wynloy, for 1 < m < ¢ and ng,)l = 0 if m > ¢. Here 1y, is a
length-2m vector of 1’s. Observe that the penalty term (2.2) can be equivalently written
as ||X[5, = SEH(W® % 32, |2, where # denotes elementwise multiplication. Define
fe(B) == [[(W® xB),,||2. Recall the definitions of the new norms in (A.6.1).
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Proposition A.2. For any B € RP*? and W « A® € 9f,(B),1<{<p—1,

IS - S| <5~ B}~ 18 - BJ} +2(8,, ~ =°,,.5, - B,,)

Sp

=1

p—1
+2[IS = =200 - || — B2 — 2X <Zw<f> * A0 3 — B> .

Proof. f,(B) is convex and its sub-differential is

4
0fi(B) ={ W+ AO € R | AD||, < 1,Af) = 0 and (A.13.1)
(W 4 B), ALY = (W 5 B), 1 [AL]2 )

9e

Let WO s« A® € 9f,(3). For an arbitrary B € RP*?, let W® x A©® € 9f,(B). Since the
sub-gradient of a convex function is monotone, we have

~ A

(W« AO, S - B) = (W= AV, (S -B),)

It follows that

p—1 p—1
< w *A“),ﬁ]—B> > <ZW<4> *A“),ﬁ)—B>. (A.13.2)
=1 =1

Using the primal-dual relation given in Theorem 1 of the main paper and the fact that
¥ -3=3-S+4S—-3%X* we have

p—1
(2—2*,2—B>:(S—E*,S—B)—>\<ZW“)*A(@,$}—B>.
(=1

Combining this with (A.13.2), we derive that
p—1
(-2 S-B)<(S—-¥"S—-B)-\ <ZW“) « A0 3 — B> . (A.13.3)
=1
By the cosine formula, 2(3 — £* 3 —B) = |2 — X*||%2 + || — B||2 — ||=* — B||%. Therefore,
we can rewrite (A.13.3) as

p—1

12— 22+ |2 -B|2 < |=*—B|%2+2(S— %", ¥ - B) — 2)\< WO« AO 33 B>
=1

and the proposition follows since, by Lemma A.3,
(S =33 -B) <(S,, — ¥, 3, —By,) + [S = Z'l200 15 = B|21.

Spyr Hsp
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We are now prepared to prove Proposition A.1. For simplicity, let S = S(B) and L =
L(B). The focus of this proof is on the term <Z§;11 WO« A 33— B> in Proposition A.2.
For 1 < ¢ < L, the constraints on A®) are ||Aé? é?HQ < 1 (the third constraint

holds automatically since B,, = 0 for £ < L). We let AY = Wen B, [ fo(2) if fo() # 0
and 0 otherwise, for 1 <m < /¢,1 < ¢ < L. Then for ¢ < L,

¢ ¢
(WO s A0S -B) = 3w, AL S, S ().,
m=1

m=1

—Zwemllﬁsmn J1(S) = ().

It follows that <zj:1 WO« A0 33— B> =0 fl(E) > | Zsellaa, by Lemma A 4 (iii).

Next, fix £ > L + 1. By the definition of subgradient in (A.13.1), A(L) can be chosen to
have arbitrary values (as long as ||Ag/Z |2 < 1), and we take A(gL = (0 because of the equality

(WO «B),, AL)) = (WO «B), |2+ | A |lo. Then

¢

Sm

_ <W(e> «AO 3 B> -

m=L+1
¢
S Z wemHA ||2 ||ESm_BSm||2
m=L+1
4 l
- 4
<y D0 kI, = BolB- | Do AR
m=L+1 m=L+1
4
m=L+1

In the above we used the fact that Aé?

=0 and [|[AY |, < 1. Tt follows that

p—1 p—1 4
_< S WOLAO S _B> < > wd lIE.,. - Bl
(=L+1 {=L+1 m=L+1
:HES BSH2 1
Therefore
p—1
— <Z WO« AO 33— B> < —[[Bsell2q + 125 — Bsll5,
=1
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and, by Lemma A .4 (i),

p—1
IS Bl - <zw<ﬂ> (A0S —B>

=1
<[5 — Bgllz1 + || Zge — Bge
<2||%s — Bg|[3.

o1 — | Zsellon + |25 — Bslls,

Here we have used that Bge = 0. The proposition follows by noting that B has all zero in
Se.
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