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ABSTRACT: Three new phenolic derivatives, picraquanines A－C (1－3), along with 6 known ones 4－9 were obtained from the stems of Picrasma quassioides (D. Don) 

Benn. The new structures were determined by extensive spectroscopic data analysis, including IR, HRESIMS, 
1
H-NMR, 

13
C-NMR, HSQC, HMBC, 

1
H-

1
H COSY experiments. 



The absolute configuration of 1 was determined by comparison of its experimental and calculated ECD spectra. Furthermore, all the compounds were tested for their nitric 

oxide (NO) inhibitory effects against LPS-stimulated RAW 264.7 cells, however, none of them exhibited inhibitory effects (IC50 >100 μM). 
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Extraction and isolation 

The air-dried stems of Picrasma quassioides (D. Don) Benn. (9.3 Kg) were extracted with 80% EtOH under reflux two times. After removing the solvent under reduced 

pressure, the concentrated residue was dissolved with EtOH, and then adjust pH 9 with NaOH. After filtered and concentrated, the concentration was extract with 2% HCl for 

four times, and then adjusted pH 5.0 ~ 6.0 with NaOH, finally, the concentrated extract (200 g) was obtained. The extract (200 g) was subjected to column chromatography (CC, 

10*110 cm) on silica gel (2.0 Kg), eluting with a gradient solvent system (CH2Cl2-MeOH, 20:1 − 1:1) to give eleven fractions (F1 − F11); F1 (16 g) was subjected to CC (5*60 

cm) on RP-C18 (100 g) eluting with MeOH-H2O (5% − 60%) to give fourteen subfractions (F1-1 − F1-14). F1-3 (1.8 g) was purified by HPLC with MeCN-0.02%TFA/H2O 

(13:87) to afford 5 (9.5 mg, tR = 11.5 min), 2 (12 mg, tR = 20.5 min), 8 (12 mg, tR = 21.8 min) and 9 (10 mg, tR = 23.5 min). F1-5 (2.2 g) was purified by HPLC with 

MeCN-0.02%TFA/H2O (30:70) to afford 3 (2 mg, tR = 14.2 min). F2 (24 g) was subjected to CC (5*60 cm) on RP-C18 (100 g) eluting with MeOH-H2O (5% − 60%) to give eight 

subfractions (F2-1 − F2-8). F2-2 (2.0 g) was purified by HPLC with MeCN-0.02%TFA/H2O (8:92) to afford 4 (4.0 mg, tR = 15.6 min), 6 (1.7 mg, tR = 16.5 min), 1 (3.2 mg, tR 

= 21.8 min) and 7 (3.0 mg, tR = 36.1 min). 

Inhibitory assay of NO production 

Cytotoxicity was examined using the Cell Counting Kit-8 (CCK-8). The absorbance at 450 nm was measured using a microplate reader (Thermo Fisher Scientific). 



Viability was defined as the ratio (expressed as a percentage) of absorbance values of treated cells to untreated cells. Compounds 1–9 were dissolved in dimethyl 

sulfoxidediluted (DMSO) with complete medium to 6 degrees of concentration (0.1 µmol•L
-1

, 1 µmol•L
-1

, 10 µmol•L
-1

, 25 µmol•L
-1

, 50 µmol•L
-1

, 100 µmol•L
-1

) for 

inhibition rate determination. RAW 264.7 cells were maintained in Dulbecco’s modified Eagle’s medium (high-glucose condition) supplemented with 10% fetal calf serum, 100 

U/ml penicillin, and 100 lg/mL streptomycin at 37 °C in 5% CO2. RAW 264.7 cells were pre-treated with each tested compound for 30 min, and then stimulated with 

lipopolysaccharide (LPS) (100 ng/mL) for 24 h. Aminoguanidine hydrochloride (100 µM) was used as a positive control. The NO production was measured using the Griess 

reagent. Briefly, cell culture supernatant was reacted with equal volumes of Griess reagent in a 96-well plate for 10 min, and then the absorbance at 540nm was measured by a 

plate reader. All experiments were performed in triplicate. All of the tested compounds were prepared as stock solutions with a concentration of 100 mM in DMSO.  
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Figure S1. The IR spectrum of 1 (in KBr) 



 

Figure S2. The HRESIMS spectrum of 1 (in MeOH) 

 



 

Figure S3. The 
1
H NMR spectrum of 1 (in DMSO-d6) 



 

Figure S4. The 
13

C NMR spectrum of 1 (in DMSO-d6) 



 

Figure S5. The DEPT 135 spectrum of 1 (in DMSO-d6) 



 

Figure S6. The HSQC spectrum of 1 (in DMSO-d6) 



 

Figure S7. The HMBC spectrum of 1 (in DMSO-d6) 



 

Figure S8. The 
1
H-

1
H COSY spectrum of 1 (in DMSO-d6) 



 

Figure S9. The IR spectrum of 2 (in KBr) 

 



 

Figure S10. The HRESIMS spectrum of 2 (in MeOH) 

 

 



 

Figure S11. The 
1
H NMR spectrum of 2 (in DMSO-d6) 



 

Figure S12. The 
13

C NMR spectrum of 2 (in DMSO-d6) 



 

Figure S13. The DEPT 135 spectrum of 2 (in DMSO-d6) 



 

Figure S14. The HSQC spectrum of 2 (in DMSO-d6) 



 

Figure S15. The HMBC spectrum of 2 (in DMSO-d6) 



 

Figure S16. The 
1
H-

1
H COSY spectrum of 2 (in DMSO-d6) 

 



 

Figure S17. The IR spectrum of 3 (in KBr) 

 

 

 



 

 

Figure S18. The HRESIMS spectrum of 3 (in MeOH) 

 



 

Figure S19. The 
1
H NMR spectrum of 3 (in DMSO-d6) 



 

Figure S20. The 
13

C NMR spectrum of 3 (in DMSO-d6) 



 

Figure S21. The DEPT 135 spectrum of 3 (in DMSO-d6) 



 

Figure S22. The HSQC spectrum of 3 (in DMSO-d6) 



 

Figure S23. The HMBC spectrum of 3 (in DMSO-d6) 



 

Figure S24. The 
1
H-

1
H COSY spectrum of 3 (in DMSO-d6) 



 

Figure S25. The Key 
1
H-

1
H COSY and HMBC correlations of 1－3 



 

Figure S26. b3lyp/6-31g(d) optimized lowest energy conformers for (2S)-1 and their equilibrium populations 

 

 



The experimental ECD spectrum of 1 (red line) and the calculated ECD spectrum of (2S)-1 (red short dash) and (2R)-1 (blue short dash). The calculated 

ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.30 eV exponential half-width using the program Specdis 1.62, and the 

UV shifted was 17 nm. 

 

 

Figure S27. Experimental and calculated ECD spectra of 1



 

 

 

Table S1 1H and 13C NMR data of 1 (600 and 150 MHz in DMSO-d6). 

 

 

 

 

 

 

 

 

No. δH (J in Hz) δC 

1' 3.89 (1H, dd, J = 10.5, 8.6 Hz), 3.52 (1H, overlap) 63.7 

2' 3.50 (1H, overlap) 54.2 

1  126.9 

2, 6 6.52 (2H, s) 105.5 

3, 5  147.8 

4  134.8 

2'-COOH 12.23 (1H, brs) 174.0 

3, 5-OMe 3.72 (6H, s) 56.0 

4-OH 8.26 (1H, s)  



 

 

 

 

 

 

 

 

 

 

 

Table S2 1H and 13C NMR data of 2 (600 and 150 MHz in DMSO-d6). 

No. δH (J in Hz) δC 

1  125.7 

2, 6 7.23 (2H, s) 106.6 

3, 5  152.7 

4  139.8 

1', 3' 3.53~3.63 (4H, overlap) 60.1 

2' 4.01 (1H, m) 83.4 

3, 5-OMe 3.82 (6H, s) 56.1 

1-COOH 12.86 (1H, s) 167.0 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3 1H and 13C NMR data of 3 (600 and 150 MHz in DMSO-d6). 

1', 3'-OH 4.41 (2H, s)  



 

 

 

 

 

 

 

 

No. δH (J in Hz) δC 

1  124.2 

2, 6 7.17 (2H, s) 105.0 

3, 5  147.4 

4  138.4 

7  173.2 

1'  165.8 

2' 2.36 (2H, m) 30.8 

3' 1.78 (2H, m) 24.6 

4' 3.25 (2H, m) 38.5 

1'-OMe 3.59 (3H, s ) 51.2 

3, 5-OMe 3.80 (6H, s) 56.0 

4-OH 8.87 (1H, s)  

NH 8.32 (1H, t, J = 5.5 Hz)  



 

 

 

 


