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This online supplementary file includes four sections: Appendix A includes preliminary lemmas and

their proofs of the direct estimation method; Appendix B presents the PCA–based approach, and states

the correspondingly asymptotic properties with their proofs; Appendix C compares both methods, and

provides extensive numerical studies; Appendix D further discusses some extensions.

Before proceeding future, recall that Sβ, Sβ` and Sγ` are selection matrices, and have been defined in

the main text. We further define some variables which will be repeatedly used throughout this file. Let

Ψ̃NT = diag{ 1√
NT 2

Imdx ,
1√
NT

Indv}, ΨNT = diag
{

1√
NT

Imdx ,
1√
N
Indv

}
, and ΨT = diag{ 1√

T
Imdx , Indv}.

O(1) stands for a constant, and may be different at each appearance.

Appendix A

A.1 Preliminary Lemmas

Lemma A.1. Let Assumptions 1–4 hold. As (N,T )→ (∞,∞), the following results hold:

1.
∥∥ 1
NT

∑
i[Hm(rit)H

′
m(rit)]⊗ [xitx

′
it]− τtΣm

∥∥ = oP (1),

2.
∥∥ 1
N

∑
iHn(vi)H′n(vi)− Σn

∥∥ = oP (1),

3.
∥∥∥ 1
NT 1/2

∑
i[Hm(rit)⊗ xit]H′n(vi)

∥∥∥ = oP (1),

4.
∥∥∥(
∑

iQitQ
′
it)
−1∑

iQitf
′
0t∆γ0(vi)

∥∥∥ = OP (τ
− 1

2
t n−µ1),

5.
∥∥∥(
∑

iQitQ
′
it)
−1∑

iQitx
′
it∆β0(rit)

∥∥∥ = OP (
√
Tm−µ2),

where τt = t/T .

Lemma A.2. Let Assumptions 1–4 hold. As (N,T )→ (∞,∞), the following results hold:

1.
∥∥∥ 1
NT 2

∑
i,t[Hm(rit)H

′
m(rit)]⊗ [xitx

′
it]− 1

2Σm

∥∥∥ = oP (1),

2.
∥∥∥ 1
NT 3/2

∑
i,t[Hm(rit)⊗ xit]f ′0tH ′

n(vi)
∥∥∥ = oP (1),

3.
∥∥∥ 1
NT 3/2

∑
i,t[Hm(rit)⊗ xit]eit

∥∥∥ = OP
(√

m
NT

)
,

4.
∥∥∥ 1
NT

∑
i,t Hn(vi)f0teit

∥∥∥ = OP
(√

n
NT

)
,

5.

∥∥∥∥(∑i,tQitQ
′
it

)−1∑
i,tQitf

′
0t∆γ0(vi)

∥∥∥∥ = OP (n−µ1),

6.

∥∥∥∥(∑i,tQitQ
′
it

)−1∑
i,tQitx

′
it∆β0(rit)

∥∥∥∥ = OP (
√
Tm−µ2)
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A.2 Proofs of the Direct Estimation Method

Before we prove Lemmas A.1 and A.2, we would like to make some remarks about the approach used

in the derivations. In the proof of Lemma A.1, the mutual independence between xit and rit is fully

employed. In addition, the fact that the assumption on cross–sectional independence simplifies the

detailed derivations.

In the proof of Lemma A.2, we are able to fully explore the cross–sectional independence on xit to

be able to establish results for convergence in probability and convergence in moments. An intuitive

explanation is that we take the average over both i and t, so after some tedious algebra we can evaluate

the moments involved. Without the availability of the cross–sectional independence, as in the pure

integrated time series case, we would only be able to establish results for convergence in distribution.

Poof of Lemma A.1:

(1). Write

E

[
1

NT

∑
i

[Hm(rit)H
′
m(rit)]⊗ [xitx

′
it]

]
=

1

N

∑
i

E[Hm(rit)H
′
m(rit)]⊗

E [xitx
′
it]

T

= E[Hm(rit)H
′
m(rit)]⊗

[
DD′τt

]
· (1 + o(1)),

where the second equality follows from a straightforward calculation (e.g., Dong and Linton, 2018).

Below, we consider the second moment. Recall that we have denoted Hit = Hm(rit)H
′
m(rit) and

Xit = xitx
′
it, and let Hit,l1l2 and Xit,k1k2 stand for the (l1, l2)th and (k1, k2)th elements of Hit and

Xit, respectively. Then we are able to write

E

∥∥∥∥∥ 1

NT

∑
i

Hit ⊗Xit −
1

NT

∑
i

E [Hit ⊗Xit]

∥∥∥∥∥
2

=
1

N2T 2

∑
i

E ‖Hit ⊗Xit − E[Hit]⊗ E[Xit]‖2

+
1

N2T 2

∑
i 6=j

m∑
l1,l2=1

dx∑
k1,k2=1

E [(Hit,l1l2Xit,k1k2 − E[Hit,l1l2 ]E[Xit,k1k2 ]) (Hjt,l1l2Xjt,k1k2 − E[Hjt,l1l2 ]E[Xjt,k1k2 ])]

≤ O(1)
1

N2T 2

∑
i

E ‖Hit ⊗Xit‖2

+
1

N2T 2

∑
i 6=j

m∑
l1,l2=1

dx∑
k1,k2=1

E[Xit,k1k2 ]E[Xjt,k1k2 ]E [(Hit,l1l2 − E[Hit,l1l2 ]) (Hjt,l1l2 − E[Hjt,l1l2 ])]

= O(1)
m2

N
,

where the last equality follows from Assumption 2.2. Thus, the first result of this lemma follows.

(2). Similar to the proof of (1), the second result follows immediately.

(3). Write ∥∥∥∥∥ 1

NT 1/2

∑
i

[Hm(rit)⊗ xit]H′n(vi)

∥∥∥∥∥
2



=

∥∥∥∥∥ 1

N

∑
i

[
Hm(rit)⊗

∑t
s=1wis√
T

]
H′n(vi)

∥∥∥∥∥+ oP (1) = oP (1),

where the last equality follows from a procedure similar to (1) of this lemma using E[
∑t

s=1wis] = 0,

and wit being independent of rit and vi.

(4). Let Qt = (Q1t, . . . , QNt)
′ and ∆t = (f ′0t∆γ0(v1), . . . , f ′0t∆γ0(vN ))′ for notational simplicity. Note

that by Assumption 2.3, we have

1

N

N∑
i=1

E‖∆γ0(vi)‖2 =

dv∑
`=1

∫
∆2
γ0`

(w)fv`(w)dw =

dv∑
`=1

∫
∆2
γ0`

(w)π(w)
fv`(w)

π(w)
dw

≤ O(1)

dv∑
`=1

∫
∆2
γ0`

(w)π(w)dw = O(n−2µ1),

where ∆γ0`(w) stands for the `th element of ∆γ0(w), and the first inequality and the last equality follow

from Assumption 2.3.

Then write ∥∥∥(Q′tQt)−1
Q′t∆t

∥∥∥2
= ∆′tQtΨNT

(
ΨNTQ

′
tQtΨNT

)−1
ΨNT

(
Q′tQt

)−1
Q′t∆t

≤ λmax

{
ΨNT

(
ΨNTQ

′
tQtΨNT

)−1
ΨNT

}
·∆′tQt

(
Q′tQt

)−1
Q′t∆t

≤ λmax{ΨNT } · λ−1
min

{
ΨNTQ

′
tQtΨNT

}
· λmax{ΨNT } ·∆′tQt

(
Q′tQt

)−1
Q′t∆t

≤ λ−1
min

{
ΨNTQ

′
tQtΨNT

}
· λmax(Qt

(
Q′tQt

)−1
Q′t) · ‖∆t‖2 /N

≤ λ−1
min

{
ΨNTQ

′
tQtΨNT

}
·OP (n−2µ1) (A.1)

where the first inequality follows from the exercise 5 on page 267 of Magnus and Neudecker (2007), and

the last step follows from ‖∆t‖2 /N = OP (n−2µ1) by Assumption 2.3. Note that λ−1
min {ΨNTQ

′
tQtΨNT } =

OP (τ−1
t ) by the first two results of this lemma. Thus, the result follows immediately.

(5). By Assumptions 2.1 and 2.3, simple calculation gives 1
N

∑
i |x′it∆β0(rit)|2 = OP (t ·m−2µ2). Then

by the same procedure as in (A.1), the result follows. �

Proof of Lemma A.2:

(1)–(2). The first two results follow by procedures similar to (1) and (3) of Lemma A.1, but account-

ing for cross–sectional and time dimensions simultaneously. The number 1
2 of the first result comes from

1
T

∑T
t=1 τt →

∫ 1
0 w dw = 1

2 .

(3). Write

E

∥∥∥∥∥∥ 1

NT 3/2

∑
i,t

[Hm(rit)⊗ xit]eit

∥∥∥∥∥∥
2

=
1

N2T 3

N∑
i,j=1

T∑
t=1

E
[
eitejt[Hm(rit)⊗ xit]′[Hm(rjt)⊗ xjt]

]
= O(1)

m

N2T 3

N∑
i,j=1

T∑
t=1

σijE[‖xi1t‖ · ‖xi2t‖] = O(1)
m

NT
, (A.2)

3



where the second equality follows from Assumptions 2.3 and 3; the third equality follows from the fact

that E‖xit‖2/T = O(1), and Assumption 3. Thus, the result follows.

(4). Similar to (3), the result follows.

(5)–(6). These two results can be proved in exactly the same way as (A.1). Thus, the details are

omitted. �

Proof of Lemma 2.1:

By Lemma A.1 and Lemma A.2, we obtain that∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ΨTQitQitΨT −Q

∥∥∥∥∥ = oP (1)

where Q = diag
{

1
2Σm,Σn

}
. Then (1) and (3) of this lemma are obvious. In addition, we provide a

more generalized version of proof for (1) and (3) later when deriving Lemma 2.2, so we omit the details

here.

We now take a look at the result (2). Note that the next equation always holds.

‖C̃γ`,t‖
2 − f2

0t,` = ‖f0t,`Cγ0` + Sγ`UNt + Sγ`∆Nt‖2 − f2
0t,`

= f2
0t,`‖γ0`‖2L2 − f2

0t,` + residuals,

where

UNt =

(
N∑
i=1

QitQ
′
it

)−1 N∑
i=1

Qiteit,

∆Nt =

(
N∑
i=1

QitQ
′
it

)−1 N∑
i=1

Qit(x
′
it∆β0(rit) + f ′0t∆γ0(vi)).

The result follows from Lemma A.1. The proof is now complete. �

Proof of Theorem 2.1:

(1). Write

√
NT 2

‖Hm(r)‖
(β̃m(r)− β0(r))

=

√
NT 2

‖Hm(r)‖
[H ′m(r)⊗ Idx ](C̃β − Cβ0) +

√
NT 2

‖Hm(r)‖
∆β0(r)

=

√
NT 2

‖Hm(r)‖
[H ′m(r)⊗ Idx ]SβΨTQ−1 1

NT

N∑
i=1

T∑
t=1

ΨTQiteit + oP (1)

=
1√

NT‖Hm(r)‖2
[H ′m(r)⊗ Idx ]SβQ−1

N∑
i=1

T∑
t=1

ΨTQiteit + oP (1)

→D N(0, Σ̃β)

where the second equality follows from NT 3

m2µ2
→ 0, NT 2

n2µ1
→ 0, Lemma A.1 and Lemma A.2; and the last

step follows by verifying Lemma B.1 of Chen et al. (2012b), and the value of Σ̃β follows from
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Σ̃β = lim
N,T,m

1

NT‖Hm(r)‖2
T∑
t=1

N∑
i=1

[H ′m(r)⊗ Idx ]Sβσ
2
eQ−1E[ΨTQitQ

′
itΨT ]Q−1S′β[Hm(r)⊗ Idx ]

+ lim
N,T,m

1

NT‖Hm(r)‖2
T∑
t=1

∑
i 6=j

[H ′m(r)⊗ Idx ]SβσijQ−1E[ΨTQitQ
′
jtΨT ]Q−1S′β[Hm(r)⊗ Idx ]

= lim
m

σ2
e

‖Hm(r)‖2
[H ′m(r)⊗ Idx ]SβQ−1S′β[Hm(r)⊗ Idx ]

= lim
m

2σ2
e

‖Hm(r)‖2
[H ′m(r)⊗ Idx ]{E[Hm(rit)H

′
m(rit)]⊗ (DD′)}−1[Hm(r)⊗ Idx ]

using Lemma A.1 and Lemma A.2.

(2). Write

√
N(f̃t,` − f0t,`) =

√
N

f̃t,` + f0t,`

(‖C̃γ`,t‖
2 − f2

0t,`)

=

√
N

f̃t,` + f0t,`

(‖f0t,`Cγ0` + Sγ`UNt + Sγ`∆Nt‖2 − f2
0t,`)

=

√
N

f̃t,` + f0t,`

(‖f0t,`Cγ0`‖
2 + 2f0t,`C

′
γ0`
Sγ`UNt − f

2
0t,`) + oP (1)

=

√
N

f̃t,` + f0t,`

2f0t,`C
′
γ0`
Sγ`ΨTQ−1

t

1

N

N∑
i=1

ΨTQiteit + oP (1)

= C ′γ0`Sγ`Q
−1
t

1√
N

N∑
i=1

ΨTQiteit + oP (1)→D N(0, σ2
f`

),

where Qt = diag{τtΣm,Σn}; the third equality is due to the fact that all the other terms are negligible

by Lemma A.1; and the last step follows from the same procedure as Lemma A.1 of Chen et al. (2012a),

and the value σ2
f`

follows from

σ2
f`

= lim
N,n

1

N

N∑
i=1

C ′γ0`Sγ`σ
2
eQ−1

t E[ΨTQitQ
′
itΨT ]Q−1

t S′γ`Cγ0`

+ lim
N,n

1

N

∑
i 6=j

C ′γ0`Sγ`σijQ
−1
t E[ΨTQitQ

′
jtΨT ]Q−1

t S′γ`Cγ0`

= lim
n
σ2
eC
′
γ0`
Sγ`Q

−1
t S′γ`Cγ0` + lim

N,n

σij
N

∑
i 6=j

C ′γ0`Sγ`Q
−1
t E[ΨTQitQ

′
jtΨT ]Q−1

t S′γ`Cγ0`

= lim
n
σ2
eC
′
γ0`
S`Σ

−1
n S′`Cγ0` + lim

N,n

1

N

∑
i 6=j

σijC
′
γ0`
S`Σ

−1
n E[Hn(vi)H′n(vj)]Σ

−1
n S′`Cγ0` .

(3). We now turn to the asymptotic distribution associated with γ̃`(w).

√
NT

‖Hn(w)‖
(γ̃`(w)− γ0`(w)) =

√
NT

‖Hn(w)‖
H ′n(w)(C̃γ` − Cγ0`) + oP (1)

=

√
NT

‖Hn(w)‖
H ′n(w)

1

‖Sγ`C̃‖
(Sγ`C̃− f0,`Cγ0`) +

√
NT

‖Hn(w)‖
f0,` − ‖Sγ`C̃‖
‖Sγ`C̃‖

H ′n(w)Cγ0` + oP (1)

=
1

|f∗` | · ‖Hn(w)‖
√
NT

H ′n(w)Sγ`

N∑
i=1

T∑
t=1

Q−1ΨTQiteit + oP (1)→D N(0, σ̃2
γ`

),

where f0,` = 1
T

∑T
t=1 f0t,`; in the second equality we utilize the identification condition; the third equality

5



follows from f0,` − ‖Sγ`C̃‖ = OP (1/
√
NT ) that can be derived by a procedure similar to those for (2)

of this lemma; and the rest steps are similar to (1) of this theorem, and the value of σ̃2
γ`

follows from

σ̃2
γ`

= lim
N,T,n

1

NT‖Hn(w)‖2|f∗` |2
T∑
t=1

N∑
i=1

H ′n(w)Sγ`σ
2
eQ−1E[ΨTQitQ

′
itΨT ]Q−1S′γ`Hn(w)

+ lim
N,T,n

1

NT‖Hn(w)‖2|f∗` |2
T∑
t=1

∑
i 6=j

H ′n(w)Sγ`σijQ
−1E[ΨTQitQ

′
jtΨT ]Q−1S′γ`Hn(w)

= lim
n

σ2
e

‖Hn(w)‖2|f∗` |2
H ′n(w)S`Σ

−1
n S′`Hn(w)

+ lim
N,n

1

N‖Hn(w)‖2|f∗` |2
∑
i 6=j

σijH
′
n(w)S`Σ

−1
n E[Hn(vi)H′n(vj)]Σ

−1
n S′`Hn(w).

The proof is now complete. �

Proof of Lemma 2.2:

(1). Note that by condition 1 ≤ d∗x + d∗v < dx + dv, we allow for d∗x = 0 or d∗x = dx. Similarly, d∗v = 0

or d∗v = dv is allowed. Without loss of generality, we assume that 1 ≤ d∗x < dx and 1 ≤ d∗v < dv in the

following proof for notational simplicity.

We consider C = C0 + U , where C0 = (C ′β0 , f0,1C
′
γ01 , . . . , f0,dvC

′
γ0dv

)′, f0,` = 1
T

∑T
t=1 f0t,`, Sβ`C =

Sβ`C0 +Um
1√
NT 2

, Sγ`C = Sγ`C0 +Un
1√
NT

, and ‖Um‖ = b
√
m and ‖Un‖ = b

√
n, and b is a large positive

constant. Obviously, U is made of Um
1√
NT 2

and Un
1√
NT

. We show that for any given ε > 0, there exists

a large constant b such that

lim inf
N,T

Pr

{
inf

‖Um‖=b
√
m, ‖Un‖=b

√
n

ΥNT (C) > ΥNT (C0)

}
≥ 1− ε, (A.3)

which implies with a probability of at least 1 − ε that there exists a local minimum satisfying that

‖Sβ`(Ĉ− C0)‖ ≤ b
√

m
NT 2 and ‖Sγ`(Ĉ− C0)‖ = b

√
n
NT . The above argument is in the same spirit as in

the proof for Lemma A.1 of Wang and Xia (2009), wherein a kernel version is studied under the i.i.d.

assumption.

ΥNT (C)−ΥNT (C0)

=
N∑
i=1

T∑
t=1

(yit −Q′itC0 −Q′itU)2 +

d∗x∑
`=1

ρβ`

∥∥∥∥Sβ`C0 + Um
1√
NT 2

∥∥∥∥+

d∗v∑
`=1

ργ`

∥∥∥∥Sγ`C0 + Un
1√
NT

∥∥∥∥
+

dx∑
`=d∗x+1

ρβ`√
NT 2

‖Um‖+

dv∑
`=d∗v+1

ργ`√
NT
‖Un‖

−
N∑
i=1

T∑
t=1

(yit −Q′itC0)2 −
d∗x∑
`=1

ρβ`‖Sβ`C0‖ −
d∗v∑
`=1

ργ`‖Sγ`C0‖

=

N∑
i=1

T∑
t=1

(Q′itU)2 − 2
N∑
i=1

T∑
t=1

Q′itU(yit −Q′itC0) +

dx∑
`=d∗x+1

ρβ`√
NT 2

‖Um‖+

dv∑
`=d∗v+1

ργ`√
NT
‖Un‖

+

d∗x∑
`=1

ρβ`

(∥∥∥∥Sβ`C0 + Um
1√
NT 2

∥∥∥∥− ‖Sβ`C0‖
)

+

d∗v∑
`=1

ργ`

(∥∥∥∥Sγ`C0 + Un
1√
NT

∥∥∥∥− ‖Sγ`C0‖
)

≥
N∑
i=1

T∑
t=1

U ′Ψ̃−1
NT Ψ̃NTQitQ

′
itΨ̃NT Ψ̃−1

NTU − 2

N∑
i=1

T∑
t=1

Q′itΨ̃NT Ψ̃−1
NTU(∆it + eit)

6



+

d∗x∑
`=1

ρβ`

(∥∥∥∥Sβ`C0 + Um
1√
NT 2

∥∥∥∥− ‖Sβ`C0‖
)

+

d∗v∑
`=1

ργ`

(∥∥∥∥Sγ`C0 + Un
1√
NT

∥∥∥∥− ‖Sγ`C0‖
)

≥ O(1)‖U ′Ψ̃−1
NT ‖

2 −ANT Ψ̃−1
NTU −

d∗x∑
`=1

ρβ`

∥∥∥∥Um 1√
NT 2

∥∥∥∥ · ‖C∗β`‖ − d∗v∑
`=1

ργ`

∥∥∥∥Un 1√
NT

∥∥∥∥ · ‖C∗γ`‖, (A.4)

where ∆it = x′it∆β0(rit) + f ′0t∆γ0(vi), ANT = 2
∑N

i=1

∑T
t=1Q

′
itΨ̃NT (∆it + eit), C

∗
β`

lies between Sβ`C0

and Sβ`C0 + Um
1√
NT 2

, and C∗γ` lies between Sγ`C0 and Sγ`C0 + Un
1√
NT

.

Note ‖ANT ‖ = OP (
√
m+ n) by Lemma A.2, and by construction, ‖U ′Ψ̃−1

NT ‖ = O(
√
m+ n). In

connection with that Assumption 5.1 and the right hand side of (A.4) is in quadratic form of U , we

know that ΥNT (C) − ΥNT (C0) ≥ 0 with probability approaching one. Thus, (A.3) holds. The rest

proofs are straightforward, so omitted.

(2). For simplicity, we show that Pr(‖Sβ`C‖ = 0)→ 1 with ∀` ∈ A†β only. The proofs for Sγ`C with

∀` ∈ A†γ are the same. If ‖Sβ`C‖ 6= 0, C must satisfy the following equation

0 =
∂ΥNT (C)

∂Sβ`C
= −2A1 +A2, (A.5)

where A1 =
∑N

i=1

∑T
t=1Hm(rit)xit,`(yit −Q′itC) and A2 =

ρβ`
‖Sβ`C‖

Sβ`C.

For A1, we write

1

NT

N∑
i=1

T∑
t=1

Hm(rit)
xit,`√
T

(yit −Q′itC)

=
1

NT

N∑
i=1

T∑
t=1

Hm(rit)
xit,`√
T
eit +

1

NT

N∑
i=1

T∑
t=1

Hm(rit)
xit,`√
T
Q′it(C0 − C),

where it is easy to know that
∥∥∥ 1
NT

∑N
i=1

∑T
t=1Hm(rit)

xit,`√
T
eit

∥∥∥ = OP
(√

m
NT

)
by Lemma A.2. Thus, we

focus on the rest term and write∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Hm(rit)
xit,`√
T
Q′it(C0 − C)

∥∥∥∥∥
≤

{
1

NT

N∑
i=1

T∑
t=1

‖Hm(rit)‖2‖xit,`‖2

T

}1/2{
1

NT

N∑
i=1

T∑
t=1

(C0 − C)′Ψ−1
T ΨTQitQ

′
itΨTΨ−1

T (C0 − C)

}1/2

≤ OP (
√
m‖Ψ−1

T (C0 − C)‖) = OP

(√
m(m+ n)

NT

)
,

where the second inequality follows from Lemma A.2 and the first result of this lemma. Therefore, we

conclude that ‖A1‖ = OP

(√
m(m+n)
NT

)
.

On the other hand, ∥∥∥∥ 1

NT 3/2
A2

∥∥∥∥ ≥ 1

NT 3/2
ρ†β ≥ a0

√
m(m+ n)

NT

by Assumption 5. Therefore, Pr(‖A1‖ < ‖A2‖) → 1, which implies that, with a probability tending

to 1, (A.5) does not hold. The above analysis implies that Sβ`C must be located at a place where

the objective function is not differentiable with respect to Sβ`C. Since the objective function is not
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differentiable with respect to Sβ`C only at the origin, we immediately obtain that Pr(‖Sβ`C‖ = 0)→ 1

with ∀` ∈ A†β. The proof is then complete. �

Proof of Lemma 2.3:

Again, without loss of generality, we assume that 1 ≤ d∗x < dx and 1 ≤ d∗v < dv in the following

proof for notational simplicity. After some simple algebra, we can obtain the first derivative of ΥNT (C)

with respect to C. Then it is easy to know that C∗ must be the solution of the following equation:

2
N∑
i=1

T∑
t=1

Q∗it(yit −Q∗it
′C∗) + P ∗C∗ = 0,

where the definition of Q∗it should be obvious, P ∗ = diag{P ∗β , P ∗γ }, and

P ∗β = Im ⊗ diag{ρβ1‖Sβ1C
∗‖−1, . . . , ρβd∗x

‖Sβd∗xC
∗‖−1},

P ∗γ = diag{ργ1‖Sγ1C
∗‖−1In, . . . , ργd∗v ‖Sγd∗vC

∗‖−1In}.

It implies that C∗ must have the form

C∗ =

(
N∑
i=1

T∑
t=1

Q∗itQ
∗
it
′ +

P ∗

2

)−1 N∑
i=1

T∑
t=1

Q∗ityit.

Thus, consider

C∗ − Cora = Ψ̃∗NTΣNT Ψ̃∗NT

(
N∑
i=1

T∑
t=1

Q∗ityit

)
,

where Ψ̃∗NT = diag{ 1√
NT 2

Imd∗x ,
1√
NT

Ind∗v}, and

ΣNT =

(
Ψ̃∗NT

N∑
i=1

T∑
t=1

Q∗itQ
∗
it
′Ψ̃∗NT + Ψ̃∗NT

P ∗

2
Ψ̃∗NT

)−1

−

(
Ψ̃∗NT

N∑
i=1

T∑
t=1

Q∗itQ
∗
it
′Ψ̃∗NT

)−1

.

By Assumption 2.2 and Lemma A.3 of Dong et al. (2018), it is easy to know that the rate of ‖ΣNT ‖
converging to 0 is the same as∥∥∥∥∥Ψ̃∗NT

N∑
i=1

T∑
t=1

Q∗itQ
∗
it
′Ψ̃∗NT + Ψ̃∗NT

P ∗

2
Ψ̃∗NT − Ψ̃∗NT

N∑
i=1

T∑
t=1

Q∗itQ
∗
it
′Ψ̃∗NT

∥∥∥∥∥
=

∥∥∥∥Ψ̃∗NT
P ∗

2
Ψ̃∗NT

∥∥∥∥ = O

(
ρ∗β
√
m

NT 2
+
ρ∗γ
√
n

NT

)
.

Then we know that ‖C∗ − Cora‖ = OP

(
ρ∗β
√
m

NT 2 +
ρ∗γ
√
n

NT

)
. The proof is complete. �

Proof of Theorem 2.2:

1). Same as the proof of Lemma 2.2, by condition 1 ≤ d∗x + d∗v < dx + dv, we allow for d∗x = 0 or

d∗x = dx. Similarly, d∗v = 0 or d∗v = dv is allowed. Without loss of generality, we assume that 1 ≤ d∗x < dx

and 1 ≤ d∗v < dv in the following proof for notational simplicity.
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In what follows, we prove Pr(Sρ̂,β = A∗β) → 1, and Pr(Sρ̂,γ = A∗γ) → 1 can be proved similarly.

Before proceeding further, we introduce some notations to facilitate the development. For an arbitrary

model S, we say it is under–fitted if it misses at least one variable with a nonzero coefficient (under–

fitted case allows for including redundant regressors); it is over–fitted if S not only includes all relevant

variables but also includes at least one redundant regressor. Then, according to whether the model

Sρ is under fitted, correctly fitted, or over fitted, we create three mutually exclusive sets A−, A0 ={
ρ ∈ Rdx+dv : Sρ,β = A∗β

}
and A+ =

{
ρ ∈ Rdx+dv : Sρ,β ⊃ A∗β, Sρ,β 6= A∗β

}
. Let C̃ be the unregularized

estimator as in (2.4) of the main text, and there is a sequence {ρNT } that ensures the conditions required

by Lemma 2.2 hold. Let CρNT denote the estimator obtained by implementing (2.7) of the main text

using ρNT .

Case 1 — In this case, we consider under-fitted models. Without losing generality, we assume that

only one variable is missing, so we assume that ‖Sβ`Cρ̂‖ 6= 0 for ` = 1, . . . , d∗x− 1 are obtained from the

under–fitted model and ‖Sβ`Cρ̂‖ for ` ≥ d∗x are 0. It does not matter whether the sparsity of γ0(·) is

correctly identified or not.

We then write

SSRρ̂ =
1

NT

N∑
i=1

T∑
t=1

(yit −Q′itCρ̂)2.

=
1

NT

N∑
i=1

T∑
t=1

(yit −Q′itC̃ +Q′itC̃−Q′itCλ̂)2

=
1

NT

N∑
i=1

T∑
t=1

(yit −Q′itC̃)2 +
1

NT

N∑
i=1

T∑
t=1

(Q′itC̃−Q′itCρ̂)2

+
2

N

N∑
i=1

T∑
t=1

(C̃− Cρ̂)′Qit(yit −Q′itC̃)

=
1

NT

N∑
i=1

T∑
t=1

(yit −Q′itC̃)2 +
1

NT

N∑
i=1

T∑
t=1

(Q′itC̃−Q′itCρ̂)2

:= SSR1 + SSR2
ρ̂,

where the fourth equality is due to the construction of the unregularized estimator.

We now consider SSR2
ρ̂ and write

SSR2
ρ̂ =

1

NT

N∑
i=1

T∑
t=1

(C̃− Cρ̂)′Ψ−1
T ΨTQitQ

′
itΨTΨ−1

T (C̃− Cρ̂)

≥ O(1)‖Ψ−1
T (C̃− Cρ̂)‖2 + oP (1)

= O(1)
∥∥∥√TSβd∗x C̃∥∥∥2

+ oP (1)

where ΨT is defined in the beginning of this file.

Similarly, we can obtain that SSRρNT := SSR1 + SSR2
ρNT

, where

SSR2
ρNT

=
1

NT

N∑
i=1

T∑
t=1

(C̃− CρNT )′Ψ−1
T ΨTQitQ

′
itΨTΨ−1

T (C̃− CρNT )

≤ O(1)‖Ψ−1
T (C̃− CρNT )‖2 + oP (1)

≤ O(1)‖Ψ−1
T (C̃− C0)‖2 +O(1)‖Ψ−1

T (C0 − CρNT )‖2 = oP (1),
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where the last step follows from Lemma 2.1 and Lemma 2.2, and C0 is defined in the proof of Lemma

2.2.

Note that simple algebra shows that SSR1 →P σ
2
e . Based on the analysis on SSR2

ρ̂ and SSR2
ρNT

, we

then can conclude that

Pr

(
inf
ρ̂∈A−

BICρ̂ > BICρNT

)
→ 1.

Case 2 — In this case, we consider over–fitted models. Consider ∀ρ̂ ∈ A+ and recall that Cρ̂
determines Sρ̂,β. Having considered Case 1, we then assume the sparsity of γ0 is either correctly identified

or over identified here. Under such a model Sρ̂,β, we can define another unregularized estimator Čρ̂ as

Čρ̂ = argmin
C

1

NT

N∑
i=1

T∑
t=1

(yit −Q′itC)2,

where ‖Sβ`C‖ = 0 with ∀` /∈ Sρ̂,β. Since Čρ̂ is the unregularized estimator under the model determined

by Sρ̂,β, we obtain immediately that SSRρ̂ ≥ SSRSρ̂,β , where

SSRSρ̂,β =
1

NT

N∑
i=1

T∑
t=1

(yit −Q′itČρ̂)2.

It follows that

ln SSRρ̂ − ln SSR1 ≥ ln SSRSρ̂,β − ln SSR1

= ln

{
SSR1

SSR1
+

1

NT · SSR1

N∑
i=1

T∑
t=1

(C̃− Čρ̂)′Ψ−1
T ΨTQitQ

′
itΨTΨ−1

T (C̃− Čρ̂)

}

≥ − O(1)

NT · SSR1

N∑
i=1

T∑
t=1

(C̃− Čρ̂)′Ψ−1
T ΨTQitQ

′
itΨTΨ−1

T (C̃− Čρ̂) ≥ −
O(1)

SSR1
‖Ψ−1

T (C̃− Čρ̂)‖2

≥ −O(1)

SSR1
‖Ψ−1

T (C̃− C0)‖2 − O(1)

SSR1
‖Ψ−1

T (C0 − Čρ̂)‖2

≥ −
∣∣∣∣OP (m+ n

NT

)∣∣∣∣ ,
where the third inequality follows from Assumption 2.2, and the last step follows from Lemma 2.1 and

Lemma 2.2.

Similarly, we can obtain that ln SSRρNT − ln SSR1 = OP
(
m+n
NT

)
. Thus, we obtain

ln SSRρ̂ − ln SSRρNT ≥ −
∣∣∣∣OP (m+ n

NT

)∣∣∣∣ .
We then write

inf
ρ̂∈A+

BICρ̂ − BICρNT = ln SSRρ̂ − ln SSRρNT + (dfρ̂ − dfρNT )
(m+ n) ln(NT )

NT
.

By Lemma 2.2, we know that Pr(dfρNT → d∗x + d∗v) = 1. Since ρ̂ ∈ A+ and we assume that γ0 is

either correctly identified or over identified, we must have that Pr(dfρNT ≥ d∗x + d∗v + 1) → 1. Then it

is clear that

Pr

(
inf
ρ̂∈A+

BICρ̂ > BICρNT

)
→ 1.
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Combining Cases 1 and 2, we obtain that Pr
(
inf ρ̂∈A−∪A+ BICρ̂ > BICρNT

)
→ 1, which in turn

implies Pr(Sρ̂,β = A∗β)→ 1. Similarly, we can show that Pr(Sρ̂,γ = A∗γ)→ 1. The proof is complete. �

Proof of Corollary 2.2:

The proof of Corollary 2.2 is almost identical to those given for Theorem 2.1, but requires one to

account for the rate of divergence of f0t. �

Appendix B

In this appendix, we adopt the PCA approach initially proposed in Bai (2009) to estimate unobserved

factors. As explained in Sections 4.1 and 4.2 of Bai et al. (2009), if both xit and f0t require different

normalizers across the time dimension (e.g., xit ∼ I(1) and f0t ∼ I(0)), certain technical challenges

would occur when conducting the estimation. We aim to provide a simpler method to solve these issues,

so we focus on the case where f0t is stationary. Moreover, we further show some possible extensions

using the PCA–based approach in Appendix D of this supplementary file.

B.1 Estimation via PCA

We still focus on model (1.3) of the main text, and firstly state the necessary assumptions.

Assumption B.1.

1. (a) Let {εij | i ∈ Z+, j ∈ Z} be an array of dx–dimensional independent and identically distributed

(i.i.d.) random variables over i and j, and let {εij} be independent of {rit, vi, f0t}. Moreover,

E[ε11] = 0, E[ε11ε
′
11] = Idx, E‖ε11‖q <∞ for some q > 4, and the characteristic function of

ε11 is integrable.

(b) For each i ≥ 1, let xit = xi,t−1 + wit, where maxi≥1 ‖xi0‖ = OP (1), and wit is a linear

process given by wit =
∑∞

j=0Djεi,t−j. In addition, {Dj | j ∈ Z} is a sequence of deterministic

matrices such that (1) D0 = Idx, (2)
∑∞

j=0 j‖Dj‖ < ∞, and (3) D :=
∑∞

j=0Dj is of full

rank.

2. Let {ei1, . . . , eiT ; ri1, . . . , riT ; vi} be identically distributed across i, and let rt = (r1t, . . . , rNT )′

be strictly stationary across t. Let Hit = Hm(rit)H
′
m(rit) with Hit,l1l2 standing for the (l1, l2)th

element of Hit, where 1 ≤ l1, l2 ≤ m. Let Hi = Hn(vi)H′n(vi) with Hi,l1l2 standing for the (l1, l2)th

element of Hi, where 1 ≤ l1, l2 ≤ ndv.

(a) maxt≥1
∑

i 6=j E [(Hit,l1l2 − E[Hit,l1l2 ]) (Hjt,l1l2 − E[Hjt,l1l2 ])] = O(N) uniformly for l1, l2, and∑
i 6=j E [(Hi,l1l2 − E[Hi,l1l2 ]) (Hj,l1l2 − E[Hj,l1l2 ])] = O(N) uniformly for l1, l2;

(b)
∑

i 6=j
∑

t6=sE [(Hit,l1l2 − E[Hit,l1l2 ]) (Hjs,l1l2 − E[Hjs,l1l2 ])] = O(NT ) uniformly for l1, l2;

(c) 0 < λmin(E[Hm(r11)H ′m(r11)]) ≤ λmax(E[Hm(r11)H ′m(r11)]) <∞ uniformly in m;

(d) 0 < λmin(E[Hn(v1)H ′
n(v1)]) ≤ λmax(E[Hn(v1)H ′

n(v1)]) <∞ uniformly in n.

3. (a) max1≤`≤dx{
∑∞

j=m b
2
0`,j}1/2 = O(m−µ2) and max1≤`≤dv{

∑∞
j=n c

2
0`,j}1/2 = O(n−µ1), where

b0`,j =
∫
R β0`(w)hj(w)π(w)dw, c0`,j =

∫
R γ0`(w)hj(w)π(w)dw, and µ1 and µ2 are two posi-

tive constants;
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(b) Let fr(w) be the density function of rit, and fv`(w) be the density function of vi,`, where vi,`

stands for the `th element of vi for ` = 1, . . . , dv. Suppose that supw∈R fr(w)/π(w) <∞ and

supw∈R fv`(w)/π(w) <∞ for ` = 1, . . . , dv.

(c) m2

NT → 0 and Tm−2µ2 → 0.

4. Let 1
T

∑T
t=1 f0tf

′
0t →P ΣF > 0 and maxt≥1E‖f0t‖4 < ∞. Let 1

N

∑N
i=1 γ0(vi)γ

′
0(vi) →P ΣΓ and

E‖γ0(v1)‖4 <∞.

Assumption B.2. Suppose et and the filtration BNT,t = σ(xj , rj , ej−1; f01, . . . , f0T ; v1, . . . , vN | j ≤ t+1)

form a martingale difference sequence such that almost surely E[et | BNT,t−1] = 0 and E[ete
′
t | BNT,t−1] =

Σe = {σij}N×N , where et = (e1t, . . . , eNt)
′, and xt and rt are defined similarly. In addition, let σii = σ2

e

for i ≥ 1, and suppose that
∑

i 6=j |σij | = O(N) and maxi,tE[e4
it | BNT,t−1] <∞.

The Assumption B.1 is the combination of Assumption 2 and Assumption 4 of the main text with

minor modifications. The Assumption B.2 is more restrictive than Assumption 3, because the filtration

Ft includes more variables.

Note that under Assumptions B.1 and B.2 in hand, we can always recover β0(·) regardless of the

availability of f0t’s, which will help us tackle the aforementioned technical issue. By virtue of the series

expansion for β0(·), we have the OLS estimator of Cβ0 as follows:

C̈β =

(
N∑
i=1

Z ′iZi

)−1 N∑
i=1

Z ′iYi, (B.1)

where Zi = (Hm(ri1)⊗ xi1, . . . ,Hm(riT )⊗ xiT )′ and Yi = (yi1, . . . , yiT )′. The approximation rate of C̈β

to Cβ0 is summarized by the next lemma.

Lemma B.1. Let Assumptions B.1 and B.2 hold. As (N,T ) → (∞,∞), ‖C̈β − Cβ0‖ = OP

(
1√
T

)
+

OP (m−µ2).

Lemma B.1 allows us to narrow down the set that Cβ0 belongs to as follows.

BT :=
{
C | ‖C − C̈β‖ ≤ ω0T

− 1
2
}
,

where ω0 is a sufficiently large constant. The aim of defining BT is to eschew the annoyance that

{xi1, . . . , xiT } and {f01, . . . , f0T } require different normalizers when deriving asymptotic properties.

We now proceed to full estimation, and rewrite our model in matrix notation as

Yi = φi[β0] + F0γ0(vi) + ei, (B.2)

where φi[β] := (x′i1β(ri1), . . . , x′iTβ(riT ))′ for ∀β(·) = (β1(·), . . . , βdx(·))′, and F0 and ei are defined

accordingly. Moreover, let Γ0 = (γ0(v1), . . . , γ0(vN ))′ for later use. Left–multiplying MF0 on both sides

of (B.2) gives MF0(Yi−φi[β0]) = MF0ei. To estimate Cβ0 and F0, we thus define the objective function:

RNT (Cβ, F ) =
1

NT

N∑
i=1

(Yi − φi[βm])′MF (Yi − φi[βm]) ,

where βm(r) = [H ′m(r)⊗ Idx ]Cβ. The estimators of (Cβ0 , F0) are obtained by
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(Ĉβ, F̂ ) = argmin
(Cβ ,F )∈BT×DF

RNT (Cβ, F ), (B.3)

where DF :=
{
F | 1

T F
′F = Idv

}
. The restriction F̂ ∈ DF is for solving the identification issue of

the factor model (e.g., Bai, 2009). The estimator of β0(r) is correspondingly defined as β̂m(r) =

[H ′m(r)⊗ Idx ]Ĉβ.

Following the same arguments as in Bai (2009, p. 1236), (B.3) can be decomposed into the following

two expressions:

Ĉβ = argmin
Cβ∈BT

1

NT

N∑
i=1

(Yi − φi[βm])′M
F̂

(Yi − φi[βm]) ,

1

NT

N∑
i=1

(Yi − φi[β̂m])(Yi − φi[β̂m])′F̂ = F̂ VNT , (B.4)

where VNT is a diagonal matrix with the diagonal being the dv largest eigenvalues of

1

NT

N∑
i=1

(Yi − φi[β̂m])(Yi − φi[β̂m])′

arranged in descending order. Consequently, a routine estimator of Γ0 would be

1

T
(Y1 − φ1[β̂m]. . . . , YN − φN [β̂m]))′F̂ ,

which, however, does not reveal the information of the loading function. Thus, using (B.2), we establish

the estimator of γ0(·) as follows.

Ĉγ =

[
N∑
i=1

Hn(vi)Hn(vi)
′

]−1 N∑
i=1

Hn(vi)

{
1

T
F̂ ′(Yi − φi[β̂m])

}
, (B.5)

which gives the estimator of γ0(v) by γ̂n(v) = H ′
n(v)Ĉγ .

Numerically, we just need to implement an iterative procedure to obtain Ĉβ and F̂ by (B.4). After-

wards, we can implement (B.5). We refer interested readers to Jiang et al. (2017), where the algorithm

for the linear panel data setting with interactive fixed effects has been studied carefully. In order to

start the iteration, we can use (B.1) as an initial estimate in practice. “fmincon” function of MATLAB

provides an easy way to set up the restriction BT .

B.2 Asymptotic Properties

To derive the consistency, we impose the following assumption.

Assumption B.3. Let infF∈DF λmin(Ω†(F )) ≥ A1 > 0 uniformly, where

Ω†(F ) =
1

NT 2

{
Ω1(F )− Ω′2(F )

[
(Γ′0Γ0)⊗ IT

]−1
Ω2(F )

}
,

Ω1(F ) =

N∑
i=1

Z ′iMFZi, Ω2(F ) =

N∑
i=1

γ0(vi)⊗ (MFZi).
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Assumption B.3 ensures that the estimators given in (B.3) are well defined, and is equivalent to

Assumption A of Bai (2009). We are now ready to summarize the consistency and some useful rates in

the following lemma.

Lemma B.2. Let Assumptions B.1–B.3 hold. As (N,T )→ (∞,∞),

1. ‖β̂m − β0‖L2 = oP

(
1√
T

)
,

2. ‖P
F̂
− PF0‖ = oP (1),

3. VNT →P V ,

4. 1√
T
‖F̂Π−1

NT − F0‖ = OP (
√
T‖β̂m − β0‖L2) +OP

(
1√
N

)
+OP

(
1√
T

)
,

5.
∥∥∥ 1
T F̂
′(F̂ − F0ΠNT )

∥∥∥ = OP (
√
T‖β̂m − β0‖L2) +OP

(
1
N

)
+OP

(
1
T

)
,

6. ‖P
F̂
− PF0‖2 = OP (

√
T‖β̂m − β0‖L2) +OP

(
1
N

)
+OP

(
1
T

)
,

where Π−1
NT = VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1, and V is a dv × dv diagonal matrix consisting of the eigen-

values of ΣFΣΓ.

Having established Lemma B.2, we provide the rates of convergence associated to (B.3).

Lemma B.3. Let Assumptions B.1–B.3 hold. In addition, let N
T → ν with 0 ≤ ν < ∞. As (N,T ) →

(∞,∞),

1. ‖β̂m − β0‖L2 = OP
(√

m
NT 2

)
+OP (m−µ2),

2. ‖P
F̂
− PF0‖ = OP

(
4
√

m
NT

)
+OP

(
4
√
Tm−2µ2

)
+OP

(
1√
N

)
.

To establish the normality, we impose some extra assumptions.

Assumption B.4.

1. Let F†Nts = σ(r1t, . . . , rNt; r1s, . . . , rNs). Suppose that E[f ′0tf0s | F†Nts] = ats a.s. for t 6= s, and∑
t6=s |ats| = O(T ).

2. Let F∗ij,T = σ(xit, xjt, rit, rjt, f0t; v1, . . . , vN | t ≤ T ). Suppose that E[eitejt | F∗ij,T ] = σij a.s. for

i 6= j and
∑

i 6=j |σij | = O(N).

Assumption B.4 further imposes more restrictions on the unknown factors and error terms in order

to ensure that the estimator β̂m given by (B.3) is not asymptotically biased in the sense of Theorem 3 of

Bai (2009). The current requirements of Assumption B.4 are in the same spirit as Connor et al. (2012,

Eq. 3 and Eq. 20) and Jiang et al. (2017, pp. 21–22). Without this assumption, some other types of

conditions are needed to achieve asymptotic normality. For example, one can require N/T → κ with

0 < κ <∞ and establish the normality with a bias as in Theorem 3 of Bai (2009).

Theorem B.1. Let Assumptions B.1–B.4 hold. Additionally, let mN
T → 0, mT

N2 → 0, and NT 2

m2µ2
→ 0.

For ∀r ∈ R, as (N,T )→ (∞,∞),

√
NT 2

‖Hm(r)‖
(β̂m(r)− β0(r))→D N(0, Σ̃β),

where Σ̃β is the same as defined in Theorem 2.1 of the main text.
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Similar comments to those for Theorem 2.1.1 of the main text may be made here. The conditions on

T,N,m and µ2 are seemingly a bit complicated. Nevertheless, they are reasonable and easily satisfied.

Consider mN
T → 0, mT

N2 → 0, and NT 2

m2µ2
→ 0 in the body of Theorem B.1 as an example. Let N = bT b1c

and m = bT b2c with b1, b2 > 0. Then the conditions are fulfilled if b1 + b2 < 1, 1 + b2 < 2b1 and

2 + b1 < 2µ2b2. Thus, it renders that

0.5 < b1 < 1, (2 + b1)/(2µ2) < b2 < 0.5, and µ2 ≥ 3.

Note that many harsh conditions onm, n, µ1 and µ2 kick in only when deriving the asymptotic normality,

and they are unnecessary for asymptotic consistency.

In what follows, we consider the estimation on the factor structure.

Assumption B.5. Let F0 ∈ DF and let
Γ′0Γ0

N be a dv × dv diagonal matrix with distinct entries a.s.

Moreover, suppose that
√
N supi≥1 supF∈{F | 1√

T
‖F−F0‖≤ε}

∥∥ 1
T F
′ei
∥∥ = OP

(√
N lnN√
T

)
, where ε is a suffi-

ciently small positive number.

The first condition of this assumption serves the purpose of identifying both γ0(·) and F0, and is

similar to Assumptions 3.2 and 4.1 of Fan et al. (2016). The second condition of this Assumption can

be easily verified. We then present the rates of convergence associated with factors and the loading

functions in the next lemma.

Lemma B.4. Let Assumptions B.1–B.3 and B.5 hold. In addition, let N
T → ν with 0 ≤ ν < ∞. As

(N,T )→ (∞,∞),

1. 1√
T
‖F̂ − F0‖ = OP

(
1√
N

)
+OP

(√
Tm−µ2

)
,

2. ‖γ̂n − γ0‖L2 = OP
(√

m
NT

)
+OP

(√
n
N

)
+OP (max{

√
Tm−µ2 , n−µ1).

Lemma B.4 helps us further obtain the next theorem.

Theorem B.2. Let Assumptions B.1–B.3 and B.5 hold. Suppose that N(lnN)2

T → 0 and NT
m2µ2

→ 0. As

(N,T )→ (∞,∞),

1. For any given t,
√
N(f̂t − f0t) →D N(0,Σ−1

Γ Σ∗ΓΣ−1
Γ ), where f̂t denotes the tth column of F̂ ′, and

Σ∗Γ = limN
1
N

∑N
i,j=1 σijE[γ0(vi)γ

′
0(vj)].

2. ‖γ̂n − γ0‖L2 = OP
(√

m
NT

)
+OP

(√
n
N

)
+OP (max{

√
Tm−µ2 , n−µ1).

Relevant comments similar to those for Theorem 2.1.2 and discussion on σij ’s of Section 5 of the main

text may be made here for Theorem B.2.1. The asymptotic distribution in the first result of Theorem

B.2 is consistent with Theorem 1 of Bai and Ng (2013), wherein a factor model without regressors is

considered. Due to plugging β̂m(·) and F̂ in (B.5), unlike in Theorem 2.1.3, it seems impossible to

establish an asymptotic normality for γ̂n(v) for the PCA approach.
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B.3 Preliminary Lemmas of PCA Method

Lemma B.5. Let Assumptions B.1 and B.2 hold. As (N,T )→ (∞,∞),

1. ‖ 1
NT e

′e‖ = oP (1) and ‖ 1
NT ee

′‖ = oP (1), in which e = (e1, . . . , eN )′,

2. sup
F∈DF

1

NT

∑
i

e′iPF ei = oP (1),

3. sup
F∈DF

∣∣∣∣∣ 1

NT

∑
i

γ′0(vi)F
′
0MF ei

∣∣∣∣∣ = oP (1),

4. sup
(Cβ ,F )∈BT×DF

∣∣∣∣∣ 1

NT

∑
i

(φi[β0,m]− φi[βm])′MF ei

∣∣∣∣∣ = oP (1),

5. sup
F∈DF

∣∣∣∣∣ 1

NT

∑
i

φi[∆β0 ]′MF ei

∣∣∣∣∣ = oP (1),

6. sup
F∈DF

∣∣∣∣∣ 1

NT

∑
i

φi[∆β0 ]′MFφi[∆β0 ]

∣∣∣∣∣ = oP (1),

7. sup
F∈DF

∣∣∣∣∣ 1

NT

∑
i

φi[∆β0 ]′MFF0γ0(vi)

∣∣∣∣∣ = oP (1),

8. sup
(Cβ ,F )∈BT×DF

∣∣∣∣∣ 1

NT

∑
i

φi [∆β0 ]′MF (φi [βm]− φi [β0,m])

∣∣∣∣∣ = oP (1).

Lemma B.6. Let Assumptions B.1–B.3 and B.5 hold. In addition, let N
T → ν with 0 ≤ ν < ∞. As

(N,T )→ (∞,∞),

1. ‖ΠNT − Idv‖ = OP

(√
m/(NT ) +

√
T/m2µ2 + 1

N

)
,

2.
∥∥∥ 1
T F
′
0F̂ − Idv

∥∥∥ = OP

(√
m/(NT ) +

√
T/m2µ2 + 1

N

)
.

B.4 Proofs of PCA-based Method

Proof of Lemma B.1:

Simply algebra gives

C̈β − Cβ0 =

(
N∑
i=1

Z ′iZi

)−1 N∑
i=1

Z ′iei +

(
N∑
i=1

Z ′iZi

)−1 N∑
i=1

Z ′i∆i,

where ∆i is defined accordingly.

By Lemma A.2, ‖(
∑N

i=1 Z
′
iZi)

−1
∑N

i=1 Z
′
iei‖ = OP

(√
m
NT

)
, so consider (

∑N
i=1 Z

′
iZi)

−1
∑N

i=1 Z
′
i∆i

below. Note that it is easy to show

1

NT 2

N∑
i=1

‖∆i‖2 ≤
1

NT 2

N∑
i=1

T∑
t=1

(f ′0tγ0(vi))
2 +

1

NT 2

N∑
i=1

T∑
t=1

(x′it∆β0(rit))
2

= OP

(
1

T
+m−2µ2

)
.
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By a development similar to (A.1), we immediately obtain∥∥∥∥∥∥
(

N∑
i=1

Z ′iZi

)−1 N∑
i=1

Z ′i∆i

∥∥∥∥∥∥ = OP

(
1√
T

)

Then the result follows. �

Proof of Lemma B.5:

(1). Firstly, write

1

N2T 2
E‖e′e‖2 = E

∥∥∥∥∥ 1

NT

N∑
i=1

eie
′
i

∥∥∥∥∥
2

=
1

N2T 2

T∑
t,s=1

 N∑
i=1

E[e2
ite

2
is] +

∑
i 6=j

E[eiteisejtejs]


=

1

N2T 2

T∑
t=1

 N∑
i=1

E[e4
it] +

∑
i 6=j

E[(eitejt − σij)2]


+

1

N2T 2

∑
t6=s

 N∑
i=1

E[e2
ite

2
is] +

∑
i 6=j

E[(eitejt − σij)(eisejs − σij)]

+
1

N2

∑
i 6=j

σ2
ij

= O(1)
1

N
+O(1)

1

T
,

where the fifth equality follows from Assumption B.2. Thus, 1
NT ‖e

′e‖ = OP

(
1√
N

)
+OP

(
1√
T

)
.

Similarly, we can write

E

∥∥∥∥ 1

NT
ee′
∥∥∥∥2

=

{
E

[
1

NT
e′iej

]2
}
N×N

=
N∑

i,j=1

1

N2T 2

T∑
t,s=1

E [eitejteisejs]

=

T∑
t,s=1

1

N2T 2

N∑
i,j=1

E [eitejteisejs] = O

(
1

N

)
+O

(
1

T

)
.

(2). Write

sup
F∈DF

1

NT

N∑
i=1

e′iPF ei = sup
F∈DF

1

NT
tr
(
PF e

′e
)
≤ sup

F∈DF

dv
NT
‖PF ‖sp‖e′e‖sp

≤ sup
F∈DF

dv
NT
‖PF ‖sp‖e′e‖ = oP (1),

where the first inequality follows from the fact that |tr (A)| ≤ rank (A) ‖A‖sp; and the second equality

follows from (1) of this lemma.

(3). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

γ0(vi)
′F ′0MF ei

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣ 1

NT
tr
(
F ′0MF e

′Γ0

)∣∣∣∣ ≤ sup
F∈DF

dv
NT

∥∥F ′0MF e
′Γ0

∥∥
sp

≤ sup
F∈DF

dv
NT
‖F0‖sp ‖MF ‖sp ‖Γ0‖sp ‖e‖sp = sup

F∈DF

dv
NT
‖F0‖sp ‖MF ‖sp ‖Γ0‖sp

∥∥ee′∥∥1/2

sp

≤ sup
F∈DF

dv√
NT
‖F0‖sp ‖MF ‖sp ‖Γ0‖sp

(
1

NT

∥∥ee′∥∥)1/2

= oP (1) ,

where the first inequality follows from the fact that |tr (A)| ≤ rank (A) ‖A‖sp; the second equality follows

from Fact 5.10.18 of Bernstein (2005); and the last equality follows from (1) of this lemma.
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(4). Write

1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′MF ei

=
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ ei +
1

NT

N∑
i=1

(φi[β0,m]− φi[βm])′ PF ei

:= Λ1 + Λ2.

Note that Λ1 can be written as

Λ1 =
√
T (Cβ0 − Cβ)′

1

NT 3/2

N∑
i=1

Z ′iei.

It is easy to know that by Assumptions B.1 and B.2, E
∥∥∥ 1
NT 3/2

∑N
i=1 Z

′
iei

∥∥∥2
= O

(
m
NT

)
. In connection

with the construction of BT , we obtain that

sup
Cβ∈BT

‖Λ1‖ =
√
T‖Cβ0 − Cβ‖ ·

∥∥∥∥∥ 1

NT 3/2

N∑
i=1

Z ′iei

∥∥∥∥∥ = O

(√
m

NT

)
.

In order to consider Λ2, let ∆b = (φ1[β0,m]− φ1[βm], . . . , φN [β0,m]− φN [βm]). Note that

sup
Cβ∈BT

1

NT
‖∆b‖2 = sup

Cβ∈BT

1

NT

N∑
i=1

T∑
t=1

[
x′it{βm(rit)− β0,m(rit)}

]2
= OP (1) sup

Cβ∈BT
T‖βm − β0,m‖2L2 = OP (1),

where the second equality follows from (1) of Lemma A.2 and Assumption B.1.2, and the third equality

follows from the construction of BT . Then we are able to write

sup
(Cβ ,F )∈BT×DF

|Λ2| = sup
(Cβ ,F )∈BT×DF

∣∣∣∣ 1

NT
tr
(
PF e

′∆b
)∣∣∣∣

≤ dv
NT

sup
(Cβ ,F )∈BT×DF

‖PF e′∆b‖sp ≤ sup
(Cβ ,F )∈BT×DF

dv
NT
‖PF ‖sp‖e‖sp‖∆b‖sp

= sup
(Cβ ,F )∈BT×DF

dv‖PF ‖sp
(

1

NT
‖ee′‖

)1/2( 1√
NT
‖∆b‖

)
= oP (1) ,

where the second equality follows from Fact 5.10.18 of Bernstein (2005), and the last step follows from

(1) of this lemma and supCβ∈BT
1
NT ‖∆b‖

2 = OP (1) shown above.

We now can conclude that sup(Cβ ,F )∈BT×DF |Λ2| = oP (1). Then the result follows.

(5). Let ∆ = (φ1 [∆β0 ] , . . . , φN [∆β0 ])′. The proof is similar to that for (4) of this lemma except

that we need to use the fact that

1

NT
‖∆‖2 =

1

NT

N∑
i=1

‖φi [∆β0 ] ‖2 = OP
(
Tm−2µ2

)
= oP (1).

(6). Note that

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆β0 ]′MFφi [∆β0 ]

∣∣∣∣∣ ≤ 1

NT

N∑
i=1

‖φi [∆β0 ] ‖2 = oP (1) .
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(7). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆β0 ]′MFF0γ0(vi)

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣ 1

NT
tr
(
MFF0Γ′0∆

)∣∣∣∣
≤ dv
NT

sup
F∈DF

‖MF ‖sp ‖F0‖sp ‖Γ0‖sp ‖∆‖sp = oP (1) ,

where ∆ = (φ1 [∆β0 ] , . . . , φN [∆β0 ])′, and the second equality follows from that 1
NT ‖∆‖

2 = oP (1) as in

(5) of this lemma.

(8). Write

sup
(Cβ ,F )∈BT×DF

∣∣∣∣∣ 1

NT

N∑
i=1

φi [∆β0 ]′MF {φi [βm]− φi [β0,m]}

∣∣∣∣∣
≤ T ·

{
1

NT 2

N∑
i=1

‖φi [∆β0 ] ‖2
}1/2

· sup
Cβ∈BT

{
1

NT 2

N∑
i=1

‖φi [βm]− φi [β0,m] ‖2
}1/2

= T ·OP (m−µ2) ·OP (T−
1
2 ) = oP (1) ,

where the first inequality follows from Cauchy–Schwarz inequality; and the last equality follows from

Assumption B.1 and the construction of BT . �

Proof of Lemma B.2:

Firstly, we define some variables: ∆φi[βm] = φi[β0,m] − φi[βm] for i ≥ 1, and ξF = vec (MFF0) for

∀F ∈ DF . In addition, let A1 = 1
NT

∑N
i=1 Z

′
iMFZi, A2 = 1

NT (Γ′0Γ0)⊗ IT , and A3 = 1
NT

∑N
i=1 γ0(vi)⊗

(MFZi). We are now ready to start the proof.

(1). By Lemma B.5, it is straightforward to obtain that

RNT (Cβ, F )−RNT (Cβ0 , F0)

=
1

NT

N∑
i=1

(∆φi[βm] + F0γ(vi))
′MF (∆φi[βm] + F0γ(vi)) + oP (1)

= (Cβ0 − Cβ)′
1

NT

N∑
i=1

Z ′iMFZi(Cβ0 − Cβ) +
1

NT
tr
(
MFF0Γ′0Γ0F

′
0MF

)
+2(Cβ0 − Cβ)′

1

NT

N∑
i=1

Z ′iMFF0γ0(vi) + oP (1)

= (Cβ0 − Cβ)′A1(Cβ0 − Cβ) + ξ′FA2ξF + 2(Cβ0 − Cβ)′A′3ξF + oP (1)

=
√
T (Cβ0 − Cβ)′

(
A1 −A′3A

−1
2 A3

T

)√
T (Cβ0 − Cβ)

+[ξ′F + (Cβ0 − Cβ)′A′3A
−1
2 ]A2[ξF +A−1

2 A3(Cβ0 − Cβ)] + oP (1)

=
√
T (Cβ0 − Cβ)′Ω†(F )

√
T (Cβ0 − Cβ)

+[ξ′F + (Cβ0 − Cβ)′A′3A
−1
2 ]A2[ξF +A−1

2 A3(Cβ0 − Cβ)] + oP (1),

where Ω†(F ) has been defined in Assumption B.3. Then by the same arguments as in Bai (2009, p.

1265), we obtain that
√
T‖Cβ0 − Ĉβ‖ = oP (1). Therefore, further write

√
T‖β̂m − β0‖L2 =

√
T‖β̂m − β0,m‖L2 +

√
T‖∆β0‖L2
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=
√
T‖Ĉβ − Cβ0‖+

√
T‖∆β0‖L2 = oP (1),

where the last step follows from
√
T‖Cβ0 − Ĉβ‖ = oP (1) and Assumption B.1.3.

(2). By the first result of this lemma, we further obtain that

0 ≥ RNT (Ĉβ, F̂ )−RNT (Cβ0 , F0) =
1

NT
tr
[(
F ′0MF̂

F0

) (
Γ′0Γ0

)]
+ oP (1) ,

which indicates that 1
NT tr

[(
F ′0MF̂

F0

)
(Γ′0Γ0)

]
= oP (1) . As in Bai (2009, p. 1265), we can further

conclude that 1
T tr

(
F ′0MF̂

F0

)
= oP (1), 1

T F̂
′F0 is invertible with probability approaching one, and∥∥P

F̂
− PF0

∥∥ = oP (1). Then the second result follows.

(3). We now consider VNT and write

F̂ VNT =
1

NT

N∑
i=1

(Yi − φi[β̂m])(Yi − φi[β̂m])′F̂

=
1

NT

N∑
i=1

(φi[β0]− φi[β̂m])(φi[β0]− φi[β̂m])′F̂

+
1

NT

N∑
i=1

(φi[β0]− φi[β̂m]) (F0γ0(vi))
′ F̂ +

1

NT

N∑
i=1

(F0γ0(vi))(φi[β0]− φi[β̂m])′F̂

+
1

NT

N∑
i=1

(φi[β0]− φi[β̂m])e′iF̂ +
1

NT

N∑
i=1

ei(φi[β0]− φi[β̂m])′F̂

+
1

NT

N∑
i=1

eie
′
iF̂ +

1

NT

N∑
i=1

F0γ0(vi)e
′
iF̂ +

1

NT

N∑
i=1

eiγ0(vi)
′F ′0F̂

+
1

NT

N∑
i=1

F0γ0(vi)γ0(vi)
′F ′0F̂

:= I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ ) + I6NT (F̂ ) + · · ·+ I9NT (F̂ ),

where the definitions of I1NT (β, F ) to I5NT (β, F ) and I6NT (F ) to I9NT (F ) should be obvious.

Note that I9NT (F̂ ) = F0(Γ′0Γ0/N)(F ′0F̂ /T ). Thus, we can write

F̂ VNT − F0(Γ′0Γ0/N)(F ′0F̂ /T )

= I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ ) + I6NT (F̂ ) + · · ·+ I8NT (F̂ ). (B.6)

Right multiplying each side of (B.6) by (F ′0F̂ /T )−1(Γ′0Γ0/N)−1, we obtain

F̂ VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 − F0

=
[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
(F ′0F̂ /T )−1(Γ′0Γ0/N)−1. (B.7)

We examine each term on the right hand side of (B.7) and show that VNT is non–singular. Write

1√
T

∥∥∥F̂ VNT (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 − F0

∥∥∥
≤ 1√

T

[
‖I1NT (β̂m, F̂ )‖+ · · ·+ ‖I8NT (F̂ )‖

]
· ‖(F ′0F̂ /T )−1(Γ′0Γ0/N)−1‖

≤ OP (1)
1√
T

[
‖I1NT (β̂m, F̂ )‖+ · · ·+ ‖I8NT (F̂ )‖

]
. (B.8)
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Thus, we focus on each term on the right hand side of (B.8).

For I1NT (β̂m, F̂ ), we have

1√
T
‖I1NT (β̂m, F̂ )‖ ≤

√
dv

NT

N∑
i=1

‖φi[β0,m]− φi[β̂m]‖2 +

√
dv

NT

N∑
i=1

‖φi[∆β0 ]‖2

= OP (T‖Ĉβ − Cβ0‖2) +OP (Tm−2µ2) = oP (1),

where the first equality follows from the (1) of Lemma A.2 and the proof for (5) of Lemma B.5; and the

second equality follows from (1) of this lemma.

For I2NT (β̂m, F̂ ), write

1√
T
‖I2NT (β̂m, F̂ )‖ ≤

√
dv

{ 1

NT

N∑
i=1

‖φi[β0]− φi[β̂m]‖2
}1/2{ 1

NT

N∑
i=1

‖F0γ0(vi)‖2
}1/2

= OP (
√
T‖β̂m − β0‖L2) = oP (1),

where the first inequality follows from Cauchy–Schwarz inequality; and the last line follows from the

same arguments given for I1NT (β̂m, F̂ ) and the fact that 1
NT

∑N
i=1 ‖F0γ0(vi)‖2 = OP (1).

Similar to the development for 1√
T
‖I2NT (β̂m, F̂ )‖, we have for j = 3, 4, 5,

1√
T
‖IjNT (β̂m, F̂ )‖ = OP (

√
T‖β̂m − β0‖L2) = oP (1).

By (1) of Lemma B.5 and 1√
T
‖F̂‖ = O(1), we obtain

1√
T
‖I6NT (F̂ )‖ = OP

(
1√
N

)
+OP

(
1√
T

)
.

For I7NT (F̂ ) and I8NT (F̂ ), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

F0γ0(vi)e
′
i

∥∥∥∥∥
2

=

T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[f ′0tγ0(vi)eisf
′
0tγ0(vj)ejs]

≤ O(1)
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

|σij |

≤ O(1)
1

N2

N∑
i=1

N∑
j=1

|σij | = O

(
1

N

)
,

where the first inequality follows from Assumption B.2, and Assumption B.1.4. We then can conclude

that

1√
T
‖I7NT (F̂ )‖ =

1√
T
‖I8NT (F̂ )‖ = OP

(
1√
N

)
.

Based on the above analysis and by left multiplying (B.6) by F̂ ′/T , we obtain

VNT − (F̂ ′F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) =
1

T
F̂ ′
[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
= oP (1).

Thus, VNT = (F̂ ′F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) + oP (1). When proving the second result of this lemma, we

have shown that F ′0F̂ /T is non–singular with probability approaching one, which implies that VNT is

invertible with probability approaching one. We now left multiply (B.6) by F ′0/T to obtain
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(F ′0F̂ /T )VNT = (F ′0F0/T )(Γ′0Γ0/N)(F ′0F̂ /T ) + oP (1)

based on the above analysis. It shows that the columns of F ′0F̂ /T are the (non-normalized) eigenvectors

of the matrix (F ′0F0/T )(Γ′0Γ0/N), and VNT consists of the eigenvalues of the same matrix (in the limit).

Thus, the third result of this lemma follows.

(4). According to the above analysis, (B.8) can be summarized by

1√
T
‖F̂Π−1

NT − F0‖ = OP (
√
T‖β̂m − β0‖L2) +OP

(
1√
N

)
+OP

(
1√
T

)
.

(5). According to (B.7),

1

T
F ′0(F̂ − F0ΠNT ) =

1

T
F ′0[I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )]V −1

NT .

Note that V −1
NT = OP (1), so we focus on 1

T F
′
0[I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )] below.

By the proof given for the first result of this lemma, it is easy to show that

1

T
‖F ′0[I1NT (β̂m, F̂ ) + · · ·+ I5NT (β̂m, F̂ )]‖ = OP (

√
T‖β̂m − β0‖L2).

We now consider ‖ 1
T F
′
0I6NT (F̂ )‖. Write

1

T
‖F ′0I6NT (F̂ )‖ ≤ 1

T

(
1

NT

N∑
i=1

‖F ′0ei‖2
)1/2(

1

NT

N∑
i=1

‖e′iF̂‖2
)1/2

.

Note that 1
NT

∑N
i=1 ‖F ′0ei‖2 = OP (1). For 1

NT

∑N
i=1 ‖e′iF̂‖2, write

1

NT

N∑
i=1

‖e′iF̂‖2 ≤
2

NT

N∑
i=1

∥∥e′iF0ΠNT

∥∥2
+

2

NT

N∑
i=1

tr
{
e′i(F̂ − F0ΠNT )(F̂ − F0ΠNT )′ei

}
=

2

NT

N∑
i=1

∥∥e′iF0ΠNT

∥∥2
+

2

NT
tr
{

(F̂ − F0ΠNT )(F̂ − F0ΠNT )′e′e
}

≤ OP (1) +O(1)
1

N
‖e′e‖ 1

T
‖F̂ − F0ΠNT ‖2,

where e has been defined in (1) of Lemma B.5. In connection with (1) of Lemma B.5 and the result (4)

of this lemma, it then gives that

1

T
‖F ′0I6NT (F̂ )‖ = OP (1)

1

T
+OP

(
1√
T

){
1

NT
‖e′e‖ 1

T
‖F̂ − F0ΠNT ‖2

}1/2

= OP (1)
1

T
+OP

(
1√
T

)
OP

(
1

4
√
N

+
1

4
√
T

)
OP

(√
T‖β̂m − β0‖L2 +

1√
N

)
,

where the second equality follows from (1) of Lemma B.5 and the second result of this lemma.

For 1
T ‖F

′
0I7NT (F̂ )‖, we have

1

T
‖F ′0I7NT (F̂ )‖ ≤ 1

T
‖F ′0F0‖ ·

∥∥∥∥∥ 1

N
√
T

N∑
i=1

γ0(vi)e
′
i

∥∥∥∥∥ · 1√
T
‖F̂ − F0ΠNT ‖

+
1

T
‖F ′0F0‖ ·

∥∥∥∥∥ 1

NT

N∑
i=1

γ0(vi)e
′
iF0

∥∥∥∥∥ · ‖ΠNT ‖.
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By Assumption B.1.4,
∥∥ 1
T F
′
0F0

∥∥ = OP (1). Also, ‖ΠNT ‖ and 1√
T
‖F̂ − F0ΠNT ‖ have been stud-

ied in results (3) and (4) of this lemma respectively. Therefore, focus on
∥∥∥ 1
N
√
T

∑N
i=1 γ0(vi)e

′
i

∥∥∥ and∥∥∥ 1
NT

∑N
i=1 γ0(vi)e

′
iF0

∥∥∥ below. Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

γ0(vi)e
′
i

∥∥∥∥∥
2

=
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

E[γ′0(vi)γ0(vj)eitejt] ≤ O
(

1

N

)
(B.9)

and similar to (A.2)

E

∥∥∥∥∥ 1

NT

N∑
i=1

γ0(vi)e
′
iF0

∥∥∥∥∥
2

= O

(
1

NT

)
, (B.10)

which immediately yields

1

T
‖F ′0I7NT (F̂ )‖ = OP

(√
T‖β̂m − β0‖L2 ·

1√
N

)
+OP

(
1

N

)
+OP

(
1√
NT

)
≤ OP (T‖β̂m − β0‖2L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Similarly, 1
T ‖F

′
0I8NT (F̂ )‖ = OP (T‖β̂m − β0‖2L2) +OP

(
1
N

)
+OP

(
1
T

)
.

Based on the above analysis, we have

1

T
‖F ′0(F̂ − F0ΠNT )‖ = OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
, (B.11)

which further indicates

1

T
‖F̂ ′(F̂ − F0ΠNT )‖ ≤ 1

T
‖(F̂ − F0ΠNT )′(F̂ − F0ΠNT )‖+ ‖ΠNT ‖ ·

1

T
‖F ′0(F̂ − F0ΠNT )‖

= OP (
√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
. (B.12)

(6). Note that (B.11) and (B.12) indicate

1

T
Π′NTF

′
0F̂ −

1

T
Π′NTF

′
0F0ΠNT = OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
and

Idv −
1

T
Π′NTF

′
0F̂ = OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Summing up the above two equations yields

Idv −
1

T
Π′NTF

′
0F0ΠNT = OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
. (B.13)

Note that it is easy to show that∥∥P
F̂
− PF0

∥∥2
= tr

[
(P

F̂
− PF0)2

]
= tr

[
P
F̂
− P

F̂
PF0 − PF0PF̂ + PF0

]
= tr [Idv ]− 2 · tr

[
P
F̂
PF0

]
+ tr [Idv ] = 2 · tr[Idv − F̂ ′PF0F̂ /T ]

and, when proving this lemma, we have shown that
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F ′0F̂

T
=
F ′0F0

T
ΠNT +OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Therefore, we can write

F̂ ′PF0F̂ /T = Π′NT

(
F ′0F0

T

)
ΠNT +OP (

√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
,

which in connection with (B.13) gives

F̂ ′PF0F̂ /T = Idv +OP (
√
T‖β̂m − β0‖L2) +OP

(
1

N

)
+OP

(
1

T

)
.

Then the proof of the last result of this lemma is completed. �

Proof of Lemma B.3:

(1). By the first equation of (B.4), we write

Ĉβ − Cβ0 =

(
N∑
i=1

Z ′iMF̂
Zi

)−1 N∑
i=1

Z ′iMF̂
ei +

(
N∑
i=1

Z ′iMF̂
Zi

)−1 N∑
i=1

Z ′iMF̂
F0γ0(vi)

+

(
N∑
i=1

Z ′iMF̂
Zi

)−1 N∑
i=1

Z ′iMF̂
φi[∆β0 ]

:= Λ1 + Λ2 + Λ3,

where the definitions of Λ1, Λ2 and Λ3 should be obvious. By Lemma A.2 and Lemma B.2, it is easy to

know that

1

NT 2

N∑
i=1

Z ′iMF̂
Zi =

1

NT 2

N∑
i=1

Z ′iMF0Zi + oP (1) =
1

2
Σm + oP (1).

Similar to (A.1), we obtain ‖Λ3‖ = OP (m−µ2). In the following, we focus on studying Λ2 at first, and

then turn to Λ1.

In the following, let ΞNT = (F ′0F̂ /T )−1(Γ′0Γ0/N)−1 for simplicity, so Π−1
NT = VNTΞNT . We now

start our investigation on Λ2, and write

1

NT 2

N∑
i=1

Z ′iMF̂
F0γ0(vi) = − 1

NT 2

N∑
i=1

Z ′iMF̂
(F̂Π−1

NT − F0)γ0(vi)

= − 1

NT 2

N∑
i=1

Z ′iMF̂

[
I1NT (β̂m, F̂ ) + · · ·+ I8NT (F̂ )

]
ΞNTγ0(vi)

:= −(J1NT + · · ·+ J8NT ),

where the second equality follows from (B.7); and the definitions of J1NT to J8NT should be obvious.

In view of the decomposition of J2NT below, it is actually easy to show that ‖J1NT ‖ = oP (‖Ĉβ −Cβ0‖).
Thus, we start from J2NT and write

J2NT =
1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

(φj [β0,m]− φj [β̂m]) (F0γ0(vj))
′ F̂ΞNTγ0(vi)

+
1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

φj [∆β0 ] (F0γ0(vj))
′ F̂ΞNTγ0(vi)
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= − 1

N2T 2

N∑
i=1

N∑
j=1

Z ′iMF̂
Zjγ0(vj)

′
(F ′0F̂
T

)(F ′0F̂
T

)−1(Γ′0Γ0

N

)−1
γ0(vi)(Ĉβ − Cβ0)

+
1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

φj [∆β0 ] (F0γ0(vj))
′ F̂ΞNTγ0(vi)

= − 1

N2T 2

N∑
i=1

N∑
j=1

Z ′iMF̂
Zjγ0(vj)

′
(Γ′0Γ0

N

)−1
γ0(vi)(Ĉβ − Cβ0)

+
1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

φj [∆β0 ] (F0γ0(vj))
′ F̂ΞNTγ0(vi)

:= J2NT,1 + J2NT,2.

By a derivation similar to (A.1), ‖(
∑N

i=1 Z
′
iMF̂

Zi)
−1NT 2J2NT,2‖ = OP (m−µ2), so negligible. We will

further study J2NT,1 later.

For J3NT , write

J3NT =
1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

F0γ0(vj)(φj [β0]− φj [β̂m])′F̂ΞNTγ0(vi)

= − 1

NT 2

N∑
i=1

Z ′iMF̂
(F̂Π−1

NT − F0)
1

NT

N∑
j=1

γ0(vj)(φj [β0]− φj [β̂m])′F̂ΞNTγ0(vi)

:=
1

NT 2

N∑
i=1

Z ′iMF̂
J3NT,i,

where the definition of J3NT,i is obvious. By the analysis similar to (A.1), we just need to focus on

1
NT 2

∑N
i=1 ‖J3NT,i‖2 in order to show ‖(

∑N
i=1 Z

′
iMF̂

Zi)
−1NT 2J3NT ‖ = oP (‖Ĉβ − Cβ0‖). Thus, write

1

NT 2

N∑
i=1

‖J3NT,i‖2 ≤
‖F̂Π−1

NT − F0‖2

NT 2

N∑
i=1

∥∥∥ 1

NT

N∑
j=1

γ0(vj)(φj [β0]− φj [β̂m])′
∥∥∥2
‖F̂ΞNTγ0(vi)‖2

≤ OP (1)
1

T
‖F̂Π−1

NT − F0‖2
 1

N

N∑
j=1

{
1

T 2
‖φj [β0]− φj [β̂m]‖2

}1/2
2

= oP (‖Ĉβ − Cβ0‖2),

where the second inequality follows from Assumption B.1.4, ΞNT = OP (1) and 1√
T
‖F̂‖ = O(1); and the

equality follows from 1√
T
‖F̂Π−1

NT − F0‖ = oP (1). Thus,∥∥∥∥∥∥
(

N∑
i=1

Z ′iMF̂
Zi

)−1

NT 2J3NT

∥∥∥∥∥∥ = oP (‖Ĉβ − Cβ0‖).

For J4NT , write

J4NT =
1

N2T 3

N∑
i=1

N∑
j=1

Z ′iMF̂
(φj [β0,m]− φj [β̂m])e′jF0ΠNTΞNTγ0(vi)

+
1

N2T 3

N∑
i=1

N∑
j=1

Z ′iMF̂
φj [∆β0 ]e′jF0ΠNTΞNTγ0(vi)
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+
1

N2T 3

N∑
i=1

N∑
j=1

Z ′iMF̂
(φj [β0]− φj [β̂m])e′j(F̂ − F0ΠNT )ΞNTγ0(vi)

:= J4NT,1 + J4NT,2 + J4NT,3.

For J4NT,1, write

‖J4NT,1‖ =

∥∥∥∥∥∥ 1

N2T 3

N∑
i=1

N∑
j=1

Z ′iMF̂
Zj(Ĉβ − Cβ0)e′jF0ΠNTΞNTγ0(vi)

∥∥∥∥∥∥
≤ OP (1)

1

NT

N∑
i=1

∥∥∥∥ Z ′i√T MF̂

∥∥∥∥ · 1

N

N∑
j=1

∥∥∥∥ Zj√T
∥∥∥∥ 1

T
‖e′jF0‖ · ‖Ĉβ − Cβ0‖

≤ 1

T
OP (
√
mT ) ·OP (

√
mT ) ·OP (T−1/2) · ‖Ĉβ − Cβ0‖

= oP (‖Ĉβ − Cβ0‖).

Thus, ‖J4NT,1‖ is negligible. Similarly, we can show both ‖J4NT,2‖ and ‖J4NT,3‖ are negligible by

accounting for 1
T ‖φj [∆β0 ]‖2 = OP (Tm−2µ2) and 1√

T
‖F̂Π−1

NT − F0‖ = oP (1), respectively. Analogous to

the derivation of J3NT and J4NT , we can conclude that ‖J5NT ‖ is negligible.

Below, we take a careful look at J6NT . According to Assumption B.3, let Ωe = E[eie
′
i] = σ2

eIT for

notational simplicity. Thus, write

J6NT =
1

NT 3

N∑
i=1

Z ′iMF̂
ΩeF̂ΞNTγ0(vi) +

1

NT 2

N∑
i=1

Z ′iMF̂

1

NT

N∑
j=1

(
eje
′
j − Ωe

)
F̂ΞNTγ0(vi)

:= J6NT,1 + J6NT,2.

We focus on J6NT,2 at first.

J6NT,2 =
1

N2T 3

N∑
i=1

N∑
j=1

Z ′i
(
eje
′
j − Ωe

)
F̂ΞNTγ0(vi)

+
1

N2T 3

N∑
i=1

N∑
j=1

Z ′iPF̂
(
eje
′
j − Ωe

)
F̂ΞNTγ0(vi)

:= J6NT,21 + J6NT,22.

Further decompose J6NT,21 as

J6NT,21 =
1

N2T 3

N∑
i=1

N∑
j=1

Z ′i
(
eje
′
j − Ωe

)
F0ΠNTΞNTγ0(vi)

+
1

N2T 3

N∑
i=1

N∑
j=1

Z ′i
(
eje
′
j − Ωe

)
(F̂ − F0ΠNT )ΞNTγ0(vi)

:= J6NT,211 + J6NT,212.

Let Ωe,ts be the (t, s)th element of Ωe, and ais = 1√
NT

∑N
j=1

∑T
t=1

zit√
T

(ejtejs − Ωe,ts). Then by a

development similar to Jiang et al. (2017, pp. 30–31), we obtain that

‖J6NT,211‖ =

∥∥∥∥∥∥ 1

N2T 3

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

zit (ejtejs − Ωe,ts) f
′
0sΠNTΞNTγ0(vi)

∥∥∥∥∥∥
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=
1

N
1
2T
·

∥∥∥∥∥∥ 1

N

N∑
i=1

 1

N
1
2T 2

N∑
j=1

T∑
t=1

T∑
s=1

zit (ejtejs − Ωe,ts) f
′
0s

ΠNTΞNTγ0(vi)

∥∥∥∥∥∥
= oP

(
m

1
2

N
1
2T

)

and

‖J6NT,212‖ ≤
1

N
3
2T 2

N∑
i=1

T∑
s=1

∥∥∥ais(f̂ ′s − f ′0sΠNT )ΞNTγ0(vi)
∥∥∥

≤ 1

N
1
2T

1

N

N∑
i=1

{
1

T

T∑
s=1

‖ais‖2
}1/2{

1

T

T∑
s=1

∥∥∥f̂ ′s − f ′0sΠNT

∥∥∥2
}1/2

‖ΞNTγ0(vi)‖

≤ OP (1)

√
m

N
1
2T

(√
T‖β̂m − β0‖L2 +

1√
N

)
= OP (1)

√
m‖β̂m − β0‖L2√

NT
+OP

(√
m

NT

)
.

Thus, we can conclude that

‖J6NT,21‖ = oP

(
m

1
2

N
1
2T

)
+OP

(√
m‖β̂m − β0‖L2√

NT

)
+OP

(√
m

NT

)
.

Similarly, we can obtain

‖J6NT,22‖ ≤ O(1)
1

T
1
2

· 1

N

N∑
i=1

∥∥∥∥∥Z ′iF̂T 3
2

∥∥∥∥∥
∥∥∥∥∥∥ 1

NT 2

N∑
j=1

F̂ ′
(
eje
′
j − Ωe

)
F̂

∥∥∥∥∥∥
= oP (‖β̂m − β0‖L2) + oP

(
m

1
2

N
1
2T

)
.

Therefore, ‖J6NT,2‖ = oP (‖β̂m−β0‖L2)+oP

(
m

1
2

N
1
2 T

)
. We will consider J6NT,1 together with J2NT,1 and

J8NT later on.

We now have only one term J7NT left to consider.

J7NT =
1

NT 2

N∑
i=1

Z ′iMF̂
(F0 − F̂Π−1

NT )
1

NT

N∑
j=1

γ0(vj)e
′
jF̂ΞNTγ0(vi).

Notice that

1

NT

N∑
j=1

γ0(vj)e
′
jF̂ =

1

NT

N∑
j=1

γ0(vj)e
′
jF0 +

1

NT

N∑
j=1

γ0(vj)e
′
j(F0 − F̂Π−1

NT )

= OP

(
1√
NT

)
+

∥∥∥∥∥∥ 1

N
√
T

N∑
j=1

γ0(vj)e
′
j

∥∥∥∥∥∥ 1√
T
‖F0 − F̂Π−1

NT ‖

= OP

(
1√
NT

)
+OP

(
1√
N

)
1√
T
‖F0 − F̂Π−1

NT ‖,

where the second equality follows from (B.10), and the third equality follows from (B.9). Then, similar

to the arguments for J6 of Bai (2009, pp. 1271–1272), ‖J7NT ‖ = oP

(
m

1
2

N
1
2 T

)
+ oP (‖Ĉβ − Cβ0‖).

Based on the above analysis, we have

Ĉβ − Cβ0 + Σ−1
m J2NT,1
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= −Σ−1
m

{
1

NT 2

N∑
i=1

Z ′iMF̂
ei + J6NT,1 + J8NT

}
+ negligible terms

= −Σ−1
m ·

1

NT 2

N∑
i=1

Z ′iMF̂
+

1

N

N∑
j=1

Z ′jMF̂
γ0(vj)

′(Γ′0Γ0/N)−1γ0(vi)

 ei

−Σ−1
m · J6NT,1 + negligible terms.

Further organise the above equation, we have

Ĉβ − Cβ0 = −A−1
1NTΣ−1

m ·
1

NT
3
2

N∑
i=1

{
Z ′i√
T
M
F̂

+A3,i

}
ei

−A−1
1NTΣ−1

m · J6NT,1 + negligible terms,

where

A1NT = Imdx − Σ−1
m A2NT · (1 + oP (1)),

A2NT =
1

N2T

N∑
i=1

N∑
j=1

Z ′i√
T
M
F̂

Zj√
T
γ0(vj)

′
(Γ′0Γ0

N

)−1
γ0(vi),

A3,i =
1

N

N∑
j=1

Z ′j√
T
M
F̂
γ0(vj)

′(Γ′0Γ0/N)−1γ0(vi).

Note that

N
1
2T

m
1
2

J6NT,1 =

√
N√
mT
· 1

NT

N∑
i=1

Z ′i√
T
M
F̂

ΩeF̂ΞNTγ0(vi) = OP

(√
N

T

)
= OP (1),

where the last equality follows from the condition in the body of this lemma. Thus, we obtain that

‖J6NT,1‖ = OP (1) m
1
2

N
1
2 T

. Moreover, it is easy to show

1

NT 3/2

N∑
i=1

{
Z ′i√
T
M
F̂

+A3,i

}
ei = OP

(
m

1
2

N
1
2T

)

Thus, the first result of this lemma follows.

(2). In connection with (6) of Lemma B.2 and (1) of this lemma, we immediately obtain that

‖P
F̂
− PF0‖ = OP

(√√
T‖β̂m − β0‖L2

)
+OP

(
1√
N

)
+OP

(
1√
T

)
= OP

(
4
√
m/(NT )

)
+OP

(
4
√
T/m2µ2

)
+OP

(
1√
N

)
.

The proof is now complete. �

Proof of Theorem B.1:

Recall that we have denoted A1NT , A2NT and A3,i in the proof of Lemma B.3, and we will keep

using these notations in what follows. By the definition of β̂m, write

N
1
2T

m
1
2

(β̂m(r)− β0(r))
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=
N

1
2T

m
1
2

[
H ′m(r)⊗ Idx

]
(Ĉβ − Cβ0) + oP (1)

= −N
1
2T

m
1
2

[
H ′m(r)⊗ Idx

]
A−1

1NTΣ−1
m ·

1

NT
3
2

N∑
i=1

{
Z ′i√
T
M
F̂

+A3,i

}
ei + oP (1)

:= Λ + oP (1),

where the first equality follows from ‖∆β0(r)‖ = OP (
√
Tm−µ2) and the condition NT 2

m2µ2
→ 0; and the

second equality follows from the proof of Lemma B.3, and the conditions mN
T → 0 and NT 2

m2µ2
→ 0.

We then just need to consider Λ. Start from 1

NT
3
2

∑N
i=1

Z′i√
T
M
F̂
ei.

1

NT
3
2

N∑
i=1

Z ′i√
T
M
F̂
ei =

1

NT
3
2

N∑
i=1

Z ′i√
T
MF0ei +

1

NT
3
2

N∑
i=1

Z ′i√
T

(M
F̂
−MF0)ei

=
1

NT
3
2

N∑
i=1

Z ′i√
T
MF0ei −

1

NT
3
2

N∑
i=1

Z ′i√
T

(P
F̂
− PF0)ei

:= D1 −D2.

Firstly, we show

∥∥∥∥N 1
2 T

m
1
2

[H ′m(r)⊗ Idx ]A−1
1NTΣ−1

m D2

∥∥∥∥ = oP (1). Let UiT = Zi√
T

and let UiT,j be the jth

column of UiT . Write

D2 =
1

NT
3
2

N∑
i=1

U ′iT

(
F̂ F̂ ′

T
− PF0

)
ei

=
1

NT
3
2

N∑
i=1

U ′iT (F̂ − F0ΠNT )

T
Π′NTF

′
0ei +

1

NT
3
2

N∑
i=1

U ′iT (F̂ − F0ΠNT )

T
(F̂ − F0ΠNT )′ei

+
1

NT
3
2

N∑
i=1

U ′iTF0ΠNT

T
(F̂ − F0ΠNT )′ei +

1

NT
3
2

N∑
i=1

U ′iTF0

T
[ΠNTΠ′NT − (F ′0F0/T )−1]F ′0ei

:= D21 +D22 +D23 +D24,

where the definitions of D21 to D24 should be obvious.

In the following, we let D2`,j be the jth row of D2` for ` = 1, 2, 3, 4. Thus, for D21, consider

‖D21,j‖ ≤

∥∥∥∥∥ 1

NT
3
2

N∑
i=1

(e′iF0)⊗
U ′iT,j√
T

∥∥∥∥∥ ·
∥∥∥∥ 1√

T
vec
[
(F̂ − F0ΠNT )Π′NT

]∥∥∥∥
= OP

(
1

N
1
2T

)
1√
T
‖F̂ − F0ΠNT ‖,

where the equality follows from the development similar to (B.10). Summing up over j for D21,j , we

obtain that ‖D21‖ = OP

(
m

1
2

N
1
2 T

)
1√
T
‖F̂ − F0ΠNT ‖.

For D22, write

‖D22,j‖ ≤

∥∥∥∥∥ 1

NT

N∑
i=1

e′i ⊗
U ′iT,j√
T

∥∥∥∥∥ ·
∥∥∥∥ 1

T
vec
[
(F̂ − F0ΠNT )(F̂ − F0ΠNT )′

]∥∥∥∥
= OP

(
1√
NT

)
1

T
‖F̂ − F0ΠNT ‖2,

where the equality follows from the development similar to (B.9). Summing D22,j up over j, we obtain

that ‖D22‖ = OP
(√

m
NT

)
1
T ‖F̂ − F0ΠNT ‖2.
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For D23, write

‖D23,j‖ ≤

∥∥∥∥∥ 1

NT

N∑
i=1

e′i ⊗
U ′iT,jF0

T

∥∥∥∥∥ ·
∥∥∥∥ 1√

T
vec
[
ΠNT (F̂ − F0ΠNT )′

]∥∥∥∥ .
Note that

E

∥∥∥∥∥ 1

NT

N∑
i=1

e′i ⊗
U ′iT,jF0

T

∥∥∥∥∥
2

=
1

N2T 4

T∑
s=1

E

∥∥∥∥∥
N∑
i=1

eis

T∑
t=1

zit,j√
T
f ′0t

∥∥∥∥∥
2

=
1

N2T 3

N∑
i1=1

N∑
i2=1

E

[(
T∑
t=1

zi1t,j√
T
f ′0t

)(
T∑
t=1

zi2t,j√
T
f0t

)]
σi1i2

=
1

N2T 3

T∑
t=1

N∑
i1=1

N∑
i2=1

E

[
zi1t,j√
T

zi2t,j√
T
E
[
‖f0t‖2 |RN,tt

]]
σi1i2

+
2

N2T 3

∑
t1>t2

N∑
i1=1

N∑
i2=1

E

[
zi1t1,j√
T

zi2t2,j√
T
E
[
f ′0t1f0t2 |RN,t1t2

]]
σi1i2

≤ O(1)
2

N2T 3

∑
t1≥t2

N∑
i1=1

N∑
i2=1

|at1t2 | · |σi1i2 | = O(1)
1

NT 2
,

where zit,j stands for the jth element of zit, and the second and fourth equalities follow from Assumption

B.4.

For D24, write

‖D24,j‖ ≤

∥∥∥∥∥ 1

NT
3
2

N∑
i=1

(e′iF0)⊗
U ′iT,jF0

T

∥∥∥∥∥ · ∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥

= OP

(
1

N
1
2T

)∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥ ,

where the equality follows from the development similar to (B.10). Summing D24,j up over j, we obtain

that ‖D24‖ = OP

(
m

1
2

N
1
2 T

)∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥.

Based on the analyses of D21 to D24, we obtain

N
1
2T

m
1
2

‖D2‖ = OP (1)
1√
T
‖F̂ − F0ΠNT ‖+OP (1)

∥∥ΠNTΠ′NT − (F ′0F0/T )−1
∥∥

+OP (1)
√
T · 1

T
‖F̂ − F0ΠNT ‖2,

which further gives

∥∥∥∥N 1
2 T

m
1
2

[H ′m(r)⊗ Idx ]A−1
1NTΣ−1

m D2

∥∥∥∥ = oP (1) given the condition mT
N2 → 0.

Similarly, we obtain

∥∥∥N 1
2T

m
1
2

[
H ′m(r)⊗ Idx

]
A−1

1NTΣ−1
m

1

NT 3/2

N∑
i=1

A3,iei

−N
1
2T

m
1
2

[
H ′m(r)⊗ Idx

]
A−1

1NTΣ−1
m

1

NT 3/2

N∑
i=1

Ã3,iei

∥∥∥ = oP (1),

where Ã3,i = 1
N

∑N
j=1

Z′j√
T
MF0γ0(vj)

′(Γ′0Γ0/N)−1γ0(vi).

Finally, we just need to focus on
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Λ =
N

1
2T

m
1
2

[
H ′m(r)⊗ Idx

]
Ã−1

1NTΣ−1
m ·

1

NT 3/2

N∑
i=1

{
Z ′i√
T
MF0 + Ã3,i

}
ei + oP (1)

=
1√
NTm

[
H ′m(r)⊗ Idx

]
Ã−1

1NTΣ−1
m ·

N∑
i=1

{
Z ′i√
T
MF0 + Ã3,i

}
ei + oP (1)

where Ã1NT = Imdx − Σ−1
m Ã2NT and Ã2NT = 1

N2T

∑N
i=1

∑N
j=1

Z′i√
T
MF0

Zj√
T
γ0(vj)

′Σ−1
Γ γ0(vi). Then the

rest proof of the normality follows from Lemma A.2 and verifying Lemma B.1 of Chen et al. (2012b),

so omitted. �

Proof of Lemma B.6:

(1). Recall that ΠNT =
Γ′0Γ0

N · F
′
0F̂
T · V

−1
NT , where VNT is defined in Lemma B.2. Thus, by (B.11) and

Assumption B.5, we obtain that

1

T
F ′0F̂ = ΠNT +OP

(√
m/(NT ) +

√
T/m2µ2 +

1

N

)
. (B.14)

Bringing (B.14) in ΠNT =
Γ′0Γ0

N · F
′
0F̂
T · V

−1
NT , we obtain that

ΠNT =
Γ′0Γ0

N
·ΠNT · V −1

NT +OP

(√
m/(NT ) +

√
T/m2µ2 +

1

N

)
,

which gives

ΠNT · VNT =
Γ′0Γ0

N
·ΠNT +OP

(√
m/(NT ) +

√
T/m2µ2 +

1

N

)
.

Given the conditions in the body of this lemma, the rest proof is identical to that given for Proposition

C.3 of the supplementary file of Fan et al. (2016).

(2). Using (B.14) and the first result of this lemma, the second result follows immediately. �

Proof of Lemma B.4:

(1). By Lemma B.2 and Lemma B.6,

1√
T
‖F̂ − F0‖ ≤

1√
T
‖F̂ (Idv −Π−1

NT )‖+
1√
T
‖F̂Π−1

NT − F0‖

= OP

(√
T/m2µ2 +

1√
N

)
.

(2). Expand Ĉγ as follows.

Ĉγ − Cγ0 =

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1 N∑
i=1

Hn(vi)

{
1

T
F̂ ′F0 − Idv

}
H ′
n(vi)Cγ0

+

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1
1

T

N∑
i=1

Hn(vi)F̂
′F0∆γ0(vi)

+

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1
1

T

N∑
i=1

Hn(vi)F̂
′ei

+

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1
1

T

N∑
i=1

Hn(vi)F̂
′(φi[β0]− φi[β̂m])
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:= Λ1 + Λ2 + Λ3 + Λ4.

Start from Λ3 and write

Λ3 =

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1
1

T

N∑
i=1

Hn(vi)(F̂ − F0ΠNT )′ei

+

[
N∑
i=1

Hn(vi)H
′
n(vi)

]−1
1

T

N∑
i=1

Hn(vi)Π
′
NTF

′
0ei

:= Λ31 + Λ32.

For Λ31,∥∥∥∥∥ 1

NT

N∑
i=1

Hn(vi)(F̂ − F0ΠNT )′ei

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

N
√
T

N∑
i=1

e′i ⊗Hn(vi)

∥∥∥∥∥ · 1√
T
‖F̂ − F0ΠNT ‖

= OP

(√
n

N

)
· 1√

T

∥∥∥F̂ − F0ΠNT

∥∥∥
= OP

(√
nT

Nm2µ2
+

√
n

N

)
,

where the first equality follows from a development similar to (B.9) by accounting for the dimension

of Hn(·); and the second equality follows from Lemma B.2. In connection with (2) of Lemma A.2, we

obtain that ‖Λ31‖ = OP

(√
nT

Nm2µ2
+
√
n
N

)
.

For Λ32, by Lemma B.6, we have

1

NT

N∑
i=1

Hn(vi)Π
′
NTF

′
0ei =

1

NT

N∑
i=1

Hn(vi)F
′
0ei · (1 + oP (1)).

Thus, we just focus on 1
NT

∑N
i=1 Hn(vi)F

′
0ei below, and write

E

∥∥∥∥∥ 1

NT

N∑
i=1

Hn(vi)F
′
0ei

∥∥∥∥∥
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[f ′0tH
′
n(vi)Hn(vj)f0seitejs] = O(1)

n

NT
,

where the second equality follows from the development similar to (A.2). Thus, ‖Λ32‖ = OP
(√

n
NT

)
.

Therefore, we can conclude that ‖Λ3‖ = OP

(√
n
N

)
+OP

(√
nT

Nm2µ2

)
.

Similar to (A.1), we just need to consider the next term for Λ2.

1

N

N∑
i=1

∥∥∥∥ 1

T
F̂ ′F0∆γ0(vi)

∥∥∥∥2

≤ OP (1)
1

N

N∑
i=1

‖∆γ0(vi)‖2 = OP (n−2µ1).

Thus, ‖Λ2‖ = OP (n−µ1). Again, similar to (A.1), we just need to consider the next term for Λ4.

1

N

N∑
i=1

∥∥∥∥ 1

T
(φi[β0]− φi[β̂m])′F̂

∥∥∥∥2

≤ 2

NT 2

N∑
i=1

‖(φi[β0]− φi[β̂m])′(F̂ − F0ΠNT )‖2 +
2

NT 2

N∑
i=1

‖(φi[β0]− φi[β̂m])′F0‖2

≤ 2‖F̂ − F0ΠNT ‖2

NT 2

N∑
i=1

‖φi[β0]− φi[β̂m]‖2 +
2‖F0‖2

NT 2

N∑
i=1

‖φi[β0]− φi[β̂m]‖2
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:= 2Λ41 + 2Λ42.

It is easy to know Λ42 is the leading term, and Λ42 = OP (T‖β̂m − β0‖2L2) = OP
(
m
NT

)
+OP

(
Tm−2µ2

)
.

Therefore, ‖Λ4‖ = OP
(√

m
NT

)
+OP (

√
Tm−µ2).

Similarly, for Λ1, we just need to consider

1

N

N∑
i=1

∥∥∥∥{ 1

T
F̂ ′F0 − Idv

}
H ′
n(vi)Cγ0

∥∥∥∥2

≤
∥∥∥∥ 1

T
F̂ ′F0 − Idv

∥∥∥∥2

· 1

N

N∑
i=1

∥∥H ′
n(vi)Cγ0

∥∥2

= OP (1)

∥∥∥∥ 1

T
F̂ ′F0 − Idv

∥∥∥∥2

= OP

( m

NT

)
+OP

(
Tm−2µ2

)
+OP

(
1

N2

)
,

where the second equality follows from (2) of Lemma B.6. Thus,

‖Λ1‖ = OP

(√
m

NT

)
+OP (

√
Tm−µ2) +OP

(
1

N

)
.

Based on the above arguments, the second result follows. �

Proof of Theorem B.2:

(1). For each fixed t, we consider the asymptotic distribution of
√
N(f̂t − f0t). By (B.7), we write

√
N(f̂t − f0t) =

√
N(f̂t −Π−1

NT f̂t) +
√
N(Π−1

NT f̂t − f0t) =
√
N(Π−1

NT f̂t − f0t) + oP (1)

=
√
N(Γ′0Γ0/N)−1(F̂ ′F0/T )−1 1

NT

N∑
i=1

(
F̂ ′eieit + F̂ ′eiγ

′
0(vi)f0t + F̂ ′F0γ0(vi)eit

)
+ oP (1)

=
√
N(Γ′0Γ0/N)−1 1

N

N∑
i=1

γ0(vi)eit + oP (1)→D N(0,Σ−1
Γ Σ∗ΓΣ−1

Γ ),

where the second equality follows from Lemma B.6 and NT
m2µ2

→ 0; the third equality follows from the

proof of Lemma B.2; the fourth equality follows from Assumption B.5; and the last step follows from

procedures similar to those under (A.44) of Chen et al. (2012b). Thus, the result follows.

(2). By Lemma B.4, the second result follows. �

Appendix C

In this Appendix, we comment on both methods, and then provide some numerical simulations to further

compare the finite sample performance of both methods.

Having established Theorem 2.1 of the main text and Theorem B.1, it is easy to see that the direct

estimation method and the PCA method are asymptotically equivalent in terms of the estimation on

β0(·), as the asymptotic covariances associated with the estimators of β0(·) are identical. Moreover,

similar to Corollary 2.1 of the main text, we can obtain that√
NT 2

2σ̂2
e

̂̃
Σ
− 1

2

β (β̂m(r)− β0(r))→D N(0, Idx),

where σ̂2
e = 1

NT

∑N
i=1

∑T
t=1

(
yit− x′itβ̂m(rit)− f̂ ′t γ̂n(vi)

)2
, and

̂̃
Σβ is defined in Corollary 2.1 of the main

text.
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To compare both methods in general, firstly, we believe that in terms of the numerical implementa-

tion, the direct estimation method would be preferred, as the PCA–based approach always requires an

algorithm involving iterations, which may yield some inconsistent estimates under some circumstances

(cf., Jiang et al., 2017). Second, to identify both the factors and loading functions, the method of the

main text requires less restrictive conditions, which seems to be obvious in view of Assumption B.5.

As a consequence, the theoretical development of the direct estimation method is more straightforward.

Finally, we point out that as mentioned by Connor et al. (2012), it is of interest to allow the variables

of the loading functions to change over both i and t. The direct estimation method can obviously

be employed with minor modifications on the notations. However, our experience suggests that the

PCA–based approach may no longer be working, as we cannot project out the factor structure when v

is indexed by both i and t.

C.1 Numerical Simulations

Below, we implement simulation studies to compare the direct estimation method of the main text

(referred to as MDE hereafter) and the PCA–based approach of Appendix B (referred to as MPCA

hereafter). The data generating process is identical to Section 3 of the main text, and still consider

Case 1 to Case 3. We let d∗x = dx = 1 and d∗v = dv = 2, which is assumed to be known already.

Apart from reporting RMSE associated to β01, we also report the next measurement to compare the

estimate on the factor structure of each method. For each generated dataset, we calculate

seγ′f =
1

NT
‖Ŵ − F0Γ′0‖2,

where for MDE, Ŵ = C̃1:TH′1:N , C̃1:T = (C̃1, . . . , C̃T )′, C̃t is defined by (2.5) of the main text, and

H1:N = (Hn(v1), . . . ,Hn(vN ))′; for MPCA, Ŵ = F̂ Γ̂′, Γ̂ = 1
T (Y1 − φ1[β̂m], . . . , YN − φN [β̂m])′F̂ .

We summarize the results in Table C.1 below. Several facts are revealed. Both methods are almost

identical in terms of the estimation on β01 regardless whether there is a trending in f0t. The differences

are negligible, as it is down to the third decimal. For MDE, as T increases, the RMSEs associated to

the factor structure tends to remain at the same level, which matches the second result of Theorem 2.1

and Corollary 2.2. For MPCA, although 1
T F̂
′F̂ implies the estimates of f0t’s follow a stationary process

implicitly, it seems that the estimates on both β0 and the factor structure are not affected too much

even for Case 2 and Case 3. Theoretically supporting this point may lead to another research paper

which we wish to consider in the future study.
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Table C.1: Results of MDE and MPCA

β01 Factor Structure

N \ T 80 160 240 80 160 240

MDE Case 1 80 0.050 0.025 0.019 0.288 0.288 0.333

160 0.034 0.020 0.013 0.202 0.232 0.232

240 0.032 0.016 0.011 0.189 0.189 0.189

Case 2 80 0.070 0.042 0.034 0.289 0.289 0.332

160 0.047 0.031 0.024 0.202 0.233 0.232

240 0.043 0.025 0.019 0.189 0.189 0.189

Case 3 80 0.055 0.033 0.029 0.288 0.288 0.333

160 0.040 0.025 0.019 0.203 0.233 0.232

240 0.036 0.020 0.015 0.189 0.189 0.189

MPCA Case 1 80 0.058 0.028 0.020 0.289 0.248 0.228

160 0.039 0.022 0.014 0.242 0.191 0.169

240 0.036 0.018 0.012 0.218 0.167 0.147

Case 2 80 0.058 0.029 0.021 0.288 0.247 0.228

160 0.040 0.023 0.015 0.242 0.191 0.169

240 0.037 0.018 0.012 0.218 0.167 0.146

Case 3 80 0.057 0.028 0.021 0.288 0.248 0.227

160 0.040 0.023 0.015 0.242 0.191 0.169

240 0.036 0.018 0.012 0.217 0.167 0.146

To further compare both methods under different scenarios, we modify the above DGP slightly as

follows:

1. EC 1: The DGP of f0t’s is modified as f0t = ρff0,t−1 + U(1, 2), and let ρf = 0.2, 0.8.

2. EC 2: The DGP of eit’s is modified as eit = N(0, σ2
t ) where σ2

t = 1
N

∑N
i=1 ‖xit‖2/t.

3. EC 3: The DGP of vi’s is modified as vi = N(0, 4σ2
i ) where σ2

i = 1
T 2

∑T
t=1 ‖xit‖2.

The results are summarized in Table C.2. Again, the same pattern remains. Both methods are almost

identical in terms of the estimation on β01. For MDE, as T increases, the RMSEs associated to the

factor structure tends to remain at the same level. Given the number of factors is known, it is not very

clear to claim which method is obviously better than the other one numerically. However, when the

number of factors is unknown, MDE allows us to identify which unobservable factor(s) can be removed

from the system precisely as discussed in the main text.
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Table C.2: Results of Extra Cases

β01 Factor Structure

N\T 80 160 240 80 160 240

EC1 (ρf = 0.2) MDE 80 0.050 0.025 0.019 0.289 0.289 0.333

160 0.034 0.020 0.013 0.202 0.232 0.232

240 0.032 0.016 0.011 0.189 0.189 0.189

MPCA 80 0.056 0.028 0.021 0.294 0.250 0.229

160 0.038 0.022 0.015 0.244 0.192 0.170

240 0.035 0.018 0.012 0.219 0.167 0.147

EC1 (ρf = 0.8) MDE 80 0.052 0.026 0.020 0.289 0.289 0.333

160 0.036 0.021 0.014 0.202 0.232 0.232

240 0.033 0.017 0.011 0.189 0.189 0.189

MPCA 80 0.058 0.028 0.021 0.264 0.216 0.199

160 0.039 0.022 0.015 0.216 0.171 0.153

240 0.036 0.018 0.012 0.198 0.153 0.136

EC2 MDE 80 0.007 0.004 0.003 0.006 0.004 0.004

160 0.005 0.003 0.002 0.004 0.004 0.003

240 0.005 0.003 0.002 0.004 0.003 0.002

MPCA 80 0.014 0.010 0.008 0.169 0.172 0.173

160 0.008 0.006 0.004 0.167 0.169 0.170

240 0.007 0.004 0.003 0.166 0.168 0.168

EC3 MDE 80 0.050 0.025 0.019 0.295 0.296 0.344

160 0.035 0.020 0.013 0.205 0.237 0.237

240 0.032 0.017 0.011 0.191 0.192 0.191

MPCA 80 0.056 0.028 0.021 0.299 0.259 0.242

160 0.040 0.022 0.015 0.254 0.212 0.195

240 0.036 0.018 0.012 0.235 0.192 0.173

Appendix D

We further discuss some possible extensions in this section.

D.1 Estimation on Σe of Assumption 3

If we can provide a consistent estimator of Σe under some conditions using certain norm (e.g., spectral

norm, Frobenius norm, etc.), then we are able to make inferences based on results (2) and (3) of Theorem

2.1. The question then becomes how to estimate a high dimensional covariance matrix Σe (e.g., Fan

et al., 2013; Chen and Leng, 2016).

Suppose that we know et = (e1t, . . . , eNt)
′ for t ≥ 1. A naive estimator of Σe would be 1

T

∑T
t=1 ete

′
t

provided N2

T → 0. Since et’s are unobservable, we modify the naive estimator as

Σ̃e = {σ̃ij}N×N =
1

T

T∑
t=1

(Yt −Q′tC̃)(Yt −Q′tC̃)′,

where Yt = (y1t, . . . , yNt)
′ and Qt = (Q1t, . . . , QNt)

′. To relax the restriction N2

T → 0, we can apply

the generalised shrinkage technique to Σ̃e as in Fan et al. (2013), forcing very small off–diagonal entries
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σ̃ij to be zero. Let sϕ(·) be a shrinkage function satisfying the following restrictions: (i) |sϕ(w)| ≤ |w|
for w ∈ R; (ii) sϕ(w) = 0 if |w| ≤ ϕ; (iii) |sϕ(w) − w| ≤ ϕ, where ϕ is a tuning parameter. The

shrinkage function satisfying the above three restrictions covers some commonly used thresholdings in

the literature, e.g., the hard thresholding, the soft thresholding and the SCAD function. Thus, the final

form of the estimator of Σe is

Σ̂e = {σ̂ij}N×N , σ̂ij =

 σ̃ii, i = j,

sϕ(σ̃ij), i 6= j.
(D.1)

The investigation on (D.1) can be done by following Fan et al. (2013) and Chen and Leng (2016), and

it may lead to another research paper.

D.2 Alternative Methods for Factors Selection

We comment on some possible alternative methods for selecting the factors.

First, one may adopt a PCA–based approach as shown in the online supplementary file of this

paper, and consider the ratio criterion studied in Lam and Yao (2012) and Ahn and Horenstein (2013).

Specifically, we define λ̂j as the jth largest eigenvalue of the estimated sample covariance matrix

1

N

N∑
i=1

(Yi − φi[β̂Jm])(Yi − φi[β̂Jm])′, (D.2)

where Yi = (yi1, . . . , yiT )′, φi[β] := (x′i1β(ri1), . . . , x′iTβ(riT ))′, and β̂Jm is obtained from the PCA–based

approach assuming that the number of factors is a pre–specified fixed positive integer J . We then

estimate the number of factors by

r̂ = argmin
j∈{1,2,...,J−1}

λ̂j+1

λ̂j
.

Note that slightly over–identifying the number of factors usually does not have any serious impact on

consistency and rates of convergence of the subsequent estimation (Fan et al., 2013; Moon and Weidner,

2015). That is why β̂Jm is adopted in (D.2). After identifying the number of factors by r̂, we can

update our estimate on β0(·) again. Similarly, we may consider using the criterion provided in Bai and

Ng (2002). However, for the PAC–based approach, it seems that the information of partially observed

factor structure is not fully utilized, so we can only identify the number of relevant vi,`’s without knowing

which can be removed from the system.

Alternatively, one may follow Sun et al. (2016) to test

H0 : Pr{γ0`(w) = 0} = 1 v.s. H1 : Pr{γ0`(w) 6= 0} > 0 (D.3)

for ` = 1, . . . , dv. To achieve good finite sample performance, one may need to further consider a

residual–based bootstrap method as suggested in the conclusion of their paper. Such a methodology

has also been used in Su and Chen (2013) and Su et al. (2015) under stationary panel data settings.

Moreover, the approach of (D.3) further leads to the next discussion.
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D.3 Constancy Test

As pointed out by one referee, testing the constancy of the coefficient functions is of interest. Su et al.

(2015) adopt the residual based test to exam whether yit = m(xit) + γ′0if0t + eit posses a parametric

form. In another work, Sun et al. (2016) use the residual based test to construct a nonparametric test

on a varying coefficient model with integrated time series. Some relevant studies also include but not

limited to Fan and Li (1996), Dong and Gao (2018), etc.

Following the same spirit, we can test the constancy of the coefficients of model (1.3) in several

different ways. For example,

H0 : Pr{β0(·) ≡ b0} = 1 for some b0 ∈ Rdx ,

H1 : Pr{β0(·) ≡ b} < 1 for all b ∈ Rdx , (D.4)

or

H0 : Pr{γ0(·) ≡ r0} = 1 for some r0 ∈ Rdv ,

H1 : Pr{γ0(·) ≡ r} < 1 for all r ∈ Rdv , (D.5)

or

H0 : Pr{β0(·) ≡ b0 and γ0(·) ≡ r0} = 1 for some b0 ∈ Rdx and some r0 ∈ Rdv ,

H1 : Pr{β0(·) ≡ b or γ0(·) ≡ r} < 1 for all b ∈ Rdx or all r ∈ Rdv . (D.6)

Under the null of (D.4), the estimation and testing procedure will be very similar to Su et al. (2015),

but one needs to account for the nonstationarity of xit. On the other hand, the study of Sun et al.

(2016) sheds a light on how to incorporate the integrated regressors for the varying–coefficient models.

Under the null hypotheses (D.5) and (D.6), model (1.3) reduces to parametric/semiparametric panel

data models with time effects respectively. A test can still be established similarly.

Generally speaking, (D.4)–(D.6) are more challenging than they look like, as the theoretical de-

velopment involves unobservable factors and integrated time series, which essentially requires some

considerable new developments. Thus, it should be left for future research. We however will provide

some detailed development on the testing issues with the corresponding discussions and simulation

studies below.

For the time being, assume that {f0t} is observable and {eit} is independent of {xit, vi, f0t} for

simplicity. Consider (D.6) as an example. Under the null of (D.6), we can write model (1.3) of the main

text as

yit = x′itβ0 + f ′0tγ0 + eit := z′itθ0 + eit, (D.7)

where θ0 = (β′0, γ
′
0)′ and zit is defined accordingly. To facilitate development, we further introduce

some notations. Let DT = diag{ 1√
T
Idx , Idv}, and DNT = diag{ 1√

NT 2/2
Idx ,

1√
NT/2

Idv}. Suppose that

S1 = {j | j is odd and 1 ≤ j ≤ T} and S2 = {j | j is even and 2 ≤ j ≤ T}. Let t 6= s ∈ Sj read as

t ∈ Sj , s ∈ Sj and t 6= s, where j = 1, 2.

We construct our statistic as follows:
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LNT =
NT/2 · L1NT −BNT

σ̂2
e

√
L2NT

,

where

L1NT =
1

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

êitêjs(DT zit)
′(DT zjs),

L2NT =
2

N2(T/2)2

N∑
i,j=1

{ ∑
t6=s∈S2

+
∑
t∈S1

∑
s∈S2

+
∑

t6=s∈S1

} [
(DT zit)

′(DT zjs)
]2
,

BNT =
σ̂2
e

NT/2

N∑
i=1

∑
t∈S1

‖DT zit‖2, σ̂2
e =

1

NT

N∑
i=1

T∑
t=1

ẽ2
it, êit = yit − z′itθ̂S1 , ẽit = yit − z′itθ̃,

θ̂S1 =

 N∑
i=1

∑
t∈S1

zitz
′
it

−1
N∑
i=1

∑
t∈S1

zityit, θ̃ =

(
N∑
i=1

T∑
t=1

zitz
′
it

)−1 N∑
i=1

T∑
t=1

zityit.

Below, we shall show that as (N,T )→ (∞,∞),

LNT →D N(0, 1). (D.8)

Before proceeding further, we make a few comments. The construction of LNT does not involve a

nonparametric kernel as in Su et al. (2015) and Sun et al. (2016), so we can consider it as an improvement

and simplification. As a consequence, it allows us to avoid a sensitive question “bandwidth selection”

in practice. When establishing LNT , the sample split is due to a technical challenge raised in the

theoretical development, as using full sample will cause some crucial values cancelling with each other

asymptotically. Below, we start our development.

For L2NT , it is easy to know that

plim
N,T

L2NT = lim
N,T

2

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

E
[
(DT zit)

′(DT zjs)
]2

+ lim
N,T

2

N2(T/2)2

N∑
i,j=1

∑
t∈S1

∑
s∈S2

E
[
(DT zit)

′(DT zjs)
]2

+ lim
N,T

2

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S1

E
[
(DT zit)

′(DT zjs)
]2

:= z2
1 + z2

2 + z2
3,

where the definition of z2
j for j = 1, 2, 3 should be obvious.

For L1NT , write

L1NT =
1

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

[eit + z′it(θ0 − θ̂S1)][ejs + z′js(θ0 − θ̂S1)](DT zit)
′(DT zjs)

=
1

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

eitejs(DT zit)
′(DT zjs)

+
2

N2(T/2)2
(θ0 − θ̂S1)′

N∑
i,j=1

∑
t6=s∈S2

eitzjs(DT zit)
′(DT zjs)
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+
1

N2(T/2)2
(θ0 − θ̂S1)′

N∑
i,j=1

∑
t6=s∈S2

zitz
′
js(DT zit)

′(DT zjs)(θ0 − θ̂S1)

:= L1NT,1 + 2L1NT,2 + L1NT,3.

Note that by some routine practice, one can show that

NT/2 · L1NT,1 →D N(0, σ2
L1

),

where

σ2
L1

= lim
N,T

1

N2(T/2)2
E

 N∑
i,j=1

∑
t6=s∈S2

eitejs(DT zit)
′(DT zjs)

2

= lim
N,T

1

N2(T/2)2

N∑
i1,j1=1

∑
t1 6=s1∈S2

N∑
i2,j2=1

∑
t2 6=s2∈S2

E
[
ei1t1ej1s1ei2t2ej2s2

·(DT zi1t1)′(DT zj1s1)(DT zi2t2)′(DT zj2s2)
]

= lim
N,T

2

N2(T/2)2

N∑
i1,j1=1

N∑
i2,j2=1

∑
t1 6=s1∈S2

E
[
ei1t1ej1s1ei2t1ej2s1

·(DT zi1t1)′(DT zj1s1)(DT zi2t1)′(DT zj2s1)
]

= lim
N,T

2σ4
e

N2(T/2)2

N∑
i1,j1=1

∑
t1 6=s1∈S2

E
[
(DT zi1t1)′(DT zj1s1)

]2
= σ4

ez
2
1

in which the third equality follows from the martingale difference condition across t; and the fourth

equality requires eit being independent across i.

We now consider L1NT,2.

L1NT,2 = (θ0 − θ̂S1)′
1

N2T 2

N∑
i,j=1

∑
t6=s∈S2

eitzjs(DT zit)
′(DT zjs)

= −


 N∑
k=1

∑
`∈S1

zk`z
′
k`

−1
N∑
k=1

∑
`∈S1

zk`ek`


′

1

N2T 2

N∑
i,j=1

∑
t6=s∈S2

eitzjs(DT zit)
′(DT zjs)

= −

DNT

DNT

N∑
k=1

∑
`∈S1

zk`z
′
k`DNT

−1

DNT

N∑
k=1

∑
`∈S1

zk`ek`


′

· 1

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

eitzjs(DT zit)
′(DT zjs).

For simplicity, suppose that for j = 1, 2

DNT

N∑
k=1

∑
`∈Sj

zk`z
′
k`DNT →P Idx+dv .

Then we can further write that

L1NT,2 = − 1

NT/2

N∑
k=1

∑
`∈S1

(DT zk`)
′ek` ·

1

N2(T/2)2

N∑
i,j=1

∑
t6=s∈S2

eit(DT zjsz
′
jsDT )(DT zit) · (1 + oP (1))
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= − 1

NT/2

N∑
k=1

∑
`∈S1

(DT zk`)
′ek` ·

1

NT/2

N∑
i=1

∑
t∈S2

eit(DT zit) · (1 + oP (1))

= − 1

N2(T/2)2

N∑
k=1

∑
`∈S1

N∑
i=1

∑
t∈S2

ek`eit(DT zk`)
′(DT zit) · (1 + oP (1)).

Following the same procedure as L1NT,1, we know that

NT/2 · L1NT,2 →D N(0, σ2
L2

),

where

σ2
L2

= lim
N,T

1

N2(T/2)2

N∑
i,j=1

∑
t∈S1

∑
s∈S2

E
[
eitejs(DT zit)

′(DT zjs)
]2

= lim
N,T

σ4
e

N2(T/2)2

N∑
i,j=1

∑
t∈S1

∑
s∈S2

E
[
(DT zit)

′(DT zjs)
]2

= σ4
ez

2
2.

For L1NT,3, write

L1NT,3 =
1

N2(T/2)2
(θ0 − θ̂S1)′


N∑

i,j=1

∑
t6=s∈S2

zitz
′
js(DT zit)

′(DT zjs)

 (θ0 − θ̂S1)

=
1

N2(T/2)2

N∑
i,j=1

∑
t,s∈S1

eitejs(DT zit)
′(DT zjs) · (1 + oP (1))

:= L̃1NT,3 · (1 + oP (1)),

where the second equality follows from a development similar to L1NT,2 after replacing θ0− θ̂S1 with its

definition. Note that

E[NT/2 · L̃1NT,3] =
σ2
e

N(T/2)

N∑
i=1

∑
t∈S1

E‖DT zit‖2

and

E[NT/2 · L̃1NT,3]2 =
1

N2(T/2)2

N∑
i1,j1=1

∑
t1,s1∈S1

N∑
i2,j2=1

∑
t2,s2∈S1

E
[
ei1t1ej1s1ei2t2ej2s2

·(DT zi1t1)′(DT zj1s1)(DT zi2t2)′(DT zj2s2)
]

=
1

N2(T/2)2

N∑
i1,j1=1

∑
t1∈S1

N∑
i2,j2=1

∑
t2∈S1

E
[
ei1t1ej1t1ei2t2ej2t2

·(DT zi1t1)′(DT zj1t1)(DT zi2t2)′(DT zj2t2)
]

+
2

N2(T/2)2

N∑
i1,j1=1

N∑
i2,j2=1

∑
t1 6=s1∈S1

E
[
ei1t1ej1s1ei2t1ej2s1

·(DT zi1t1)′(DT zj1s1)(DT zi2t1)′(DT zj2s1)
]

=
σ4
e

N2(T/2)2

N∑
i1=1

N∑
i2=1

∑
t1 6=t2∈S1

E[‖DT zi1t1‖2‖DT zi2t2‖2]
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+
2σ4

e

N2(T/2)2

N∑
i1,j1=1

∑
t1 6=s1∈S1

E[(DT zi1t1)′(DT zj1s1)]2 + o(1).

Similar to the development of L1NT,1, we obtain that

NT/2 · L1NT,3 −BNT →D N(0, σ2
L3

),

where

σ2
L3

= lim
N,T

2σ4
e

N2(T/2)2

N∑
i1,j1=1

∑
t1 6=s1∈S1

E[(DT zi1t1)′(DT zj1s1)]2 = σ4
ez

2
3

in which we need to assume that zit is independence across i. Note that zit being independence across

i is not really important, and it can be relaxed by modifying the form of BNT .

Based on the above development, we conclude that (D.8) follows. Note that the development of (D.8)

requires the martingale difference condition and cross–sectional independence among error terms. To

relax the restrictions on error terms (say cross–sectional independence), we need to consistently estimate

σij in Assumption 3 of the main text. Then the discussions on “Estimation on Σe of Assumption 3”

apply. More importantly, the above procedure assuming that {f0t} is observable. For the cases with

unknown factors, these questions become more challenging than it looks like, so it deserves another

research paper in view of the technical challenges involving unobservable factors and integrated time

series, which essentially requires a combination of Su et al. (2015) and Sun et al. (2016).

For (D.4), model (1.3) of the main text reduces to

yit = x′itb0 + f ′0tγ0(vi) + eit

under the null. Then one can adopt the PCA–based approach of Su et al. (2015) to conduct the

hypothesis test. However, the nonstationarity of xit needs to be taken into account. Sun et al. (2016)

and Dong and Gao (2018) have clearly explained the difficulties of incorporating nonstationary variables

in constancy test, so we refer interested readers to their works and the references therein.

To demonstrate the feasibility of (D.8), we implement some simple simulation studies below. The

DGP is as follows. xit = xi,t−1 + i.i.d. N(0, 0.5Idx), f0t,` ∼ i.i.d. U(1, 2) for ` = 1, . . . , dv, vi ∼
i.i.d. N(0, 4Idv), rit ∼ i.i.d. U(−4, 4) + vi,`/4, and eit ∼ i.i.d. N(0, 1). We consider the following four

cases for the coefficients.

• Size: β0 = 1dx×1, and γ0 = 1dv×1;

• Power:

1. β0 = exp(−r2
it/2) · 1dx×1, and γ0 = 1dv×1;

2. β0 = 1dx×1, and γ0(vi) = (exp(−vi,1), . . . , exp(−vi,dv))′;

3. β0 = exp(−r2
it/2) · 1dx×1 and γ0(vi) = (exp(−vi,1), . . . , exp(−vi,dv))′;

After J replications, we report the following value for each case under different choices of N and T .
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L =
1

J

J∑
j=1

1(|LNT,j | > 1.96),

where LNT,j stands for the value of LNT at jth replication.

We let dx = 1, dv = 2 and J = 500, and summarize the results in Table D.3 below. Overall, the size

of Table D.3 converges to 5% as (N,T )→ (∞,∞), which verifies (D.8) numerically. Also, the power of

three cases converges to 1 sufficiently fast, which indicates good finite sample performance of our test.

Table D.3: Size and Power of (D.8)

N \ T 80 160 240

Size 80 0.090 0.090 0.082

160 0.070 0.058 0.054

240 0.068 0.052 0.048

Power (1) 80 0.968 0.974 0.992

160 0.984 0.992 0.99

240 0.988 0.990 0.990

Power (2) 80 0.902 0.952 0.982

160 0.946 0.976 0.984

240 0.968 0.976 0.990

Power (3) 80 0.792 0.918 0.968

160 0.872 0.958 0.958

240 0.886 0.964 0.990

D.4 Cases with Mixed I(1)/I(0) Regressors

Without too many difficulties, we can change the coefficient function of the main text from β0(rit) to

β0(rit, τt), where τt = t/T . We then consider a model with interactive fixed effects as follows.

yit = x′1itβ10(rit, τt) + x′2itβ20(rit, τt) + f ′0tγi + eit, (D.9)

where x1it and x2it are I(1) and I(0) across t, respectively. As explained in Section 4 of Bai et al.

(2009), the difficulty of considering such a model lies in the requirements of different normalizers, which

further gives rise to a challenge of the degeneration of asymptotics since the covariance matrix would be

singular. The detailed development of Appendix B of this study provides a clear solution to this type

of challenge.

We now briefly sketch how to estimate (D.9), and further implement a simple Monte Carlo to back

up our arguments. We still need to restrict the set that the coefficient function of I(1) regressors to a

set like BT of Appendix B. The objective function and the corresponding estimators are defined in the

same fashion as Appendix B. Then the asymptotic properties can be derived with minor modification

on the notations.

To support our arguments, we implement a simple Monte Carlo study here. Let x1it and x2it be

scalars, and further let

x1it = x1i,t−1 + i.i.d. N(0, 1) and x2it = 0.5x2i,t−1 + i.i.d. N(0, 1).

43



The factors are generated by f0t ∼ i.i.d. N(0, 1). For ` = 1, . . . , dv, γi,` ∼ i.i.d. exp
(
−(vi,` − `/4)2

)
with

vi,` ∼ i.i.d. U(0, 1). The error terms are generated by et = 0.4 et−1 +N(0,Σe) with Σe = {0.6|i−j|}N×N .
Similarly, generate r∗t = (r∗1t, . . . , r

∗
Nt)
′, where r∗t = 0.8 r∗t−1 + N(0,Σr∗) with Σr∗ = {0.4|i−j|}N×N . Let

rit = r∗it + ‖f0t‖2 +
∑dv

`=1 |vi,`|, so that {rit} is correlated with the factor structure. For the coefficient

functions, let β01(r) = exp(−r2/2) depend on r only, and let β02(τ) = τ2 depend on τ only. The

supposition of this form may facilitate to plot the estimates of β0 (see Figures D.1 and D.2 for details),

because a three dimensional picture is not easy to draw for the purpose of comparison. We adopt Hermite

functions to expand β01 with the truncation parameter m1 = bNT c
1
7 + 1 , while we use the Fourier

series (as used in Dong and Linton (2018)) to expand β02 with the truncation parameter m2 = bNT c
1
7 .

Throughout the simulation studies, we choose dv = 3.

In each replication, we estimate the coefficient functions using the PCA–based approach by assuming

F0 is known and unknown respectively, and record the estimated coefficient functions on some selected

points over certain intervals (referred to as “M1” and “M2”). When F0 is known, we just need to replace

MF with MF0 in the objective function. After 1000 replications, we plot the lower and upper bounds

of these values in Figures D.1–D.2 under a variety of choices of (N,T ) (the true curve is referred to as

“True”). For both figures, as the sample size goes up, the distance between lower and upper bounds

becomes smaller, and all bounds move towards the real function. Moreover, the lower and upper bounds

of M1 and M2 are almost identical, so it verifies the above arguments.
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Figure D.1: β01(w1) = exp(−w2
1/2) and its estimates
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Figure D.2: β02(w2) = w2
2 and its estimates

D.5 Assumption on rit

Recall that as mentioned in the main text, the independence assumption between xit and {rit, vi, f0t}
can be further relaxed by following Assumption B.1 of Dong and Linton (2018).

Moreover, the assumptions on rit in fact can be further relaxed to the locally stationary process by

following Vogt (2012) and Dong and Linton (2018) in order to account for more cases.

Definition D.1. The d × 1 dimensional process {rt | t = 1, . . . , T} is locally stationary if for each

rescaled time point u ∈ [0, 1] there exists an associated process {rt[u] | t = 1, . . . , T} with the following

two properties:

1. {rt[u] | t = 1, . . . , T} is strictly stationary with density fu(r);

2. It holds that ‖rt − rt[u]‖ν ≤
(
|τt − u|+ T−1

)
Rt(u) a.s., where τt = t/T , {Rt(u)} is a process of

positive variables satisfying E|Rt(u)|ρ < C for some ρ > 0 and C < ∞ independent of u, t, and

T . Moreover, ‖ · ‖ν denotes an arbitrary norm on Rd.

Some detailed development has been given in an earlier version of this paper. As it is not a main

concern for the partially observed factor structure, we remove this setting from the main text in the

revised version.
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