Online Supplementary Appendices to
“Varying—Coefficient Panel Data Models with

Nonstationarity and Partially Observed Factor Structure”
CHAOHUA DONG*, JiT1 GAO* AND BIN PENGT

*Zhongnan University of Economics and Law

*Monash University and TDeakin University

This online supplementary file includes four sections: Appendix A includes preliminary lemmas and
their proofs of the direct estimation method; Appendix B presents the PCA-based approach, and states
the correspondingly asymptotic properties with their proofs; Appendix C compares both methods, and
provides extensive numerical studies; Appendix D further discusses some extensions.

Before proceeding future, recall that Sg, Sg, and S, are selection matrices, and have been defined in

the main text. We further define some variables which will be repeatedly used throughout this file. Let

E/NT = dlag{ \/]\:;TQImdM VNT ndv} Uyt = dlag{\/fjmdzy YN ndv}; and Uy = diag{ﬁ[mdmjndu}-

O(1) stands for a constant, and may be different at each appearance.

Appendix A

A.1 Preliminary Lemmas

Lemma A.1. Let Assumptions 1-4 hold. As (N,T) — (o0, 00), the following results hold:

H NT > il Hm(rie) H, (Tit)] ® [zitay,] — thmH =op(1),
2. H% > Hn(va)Hi, (vs) — EnH =op(1),

3. NTl/2 Z [ (Tlt) ® xzt]H;l(Ui) = 0p(1)7

4- (ZiQitQ;trlZiQitf(l)tAvo(vi) OP( I,

5. (0 Qu@) ! i Quaty A ()| = Op(VTm™r=),

where T = t/T.

Lemma A.2. Let Assumptions 1-4 hold. As (N,T) — (00, 0), the following results hold:
1. || 5 Sl Hon i) Hi ()] © ] = 30| = 0p (1),

2. || e il Hm(rie) © wal f. 7 (vi) | = op(1),
~ 00 (V7).
= O0r (V77):
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5. (Zi,t taQ;t) Zi,t Qitf(/)tA’Yo (vl)

J. NT3/2 Zz t[ (TZt) b2y xzt]ezt

4o | wT s A (i) forein

= Op(nf‘ul),

6. (Zi,t Qitht) - Zi,t Qi Agy (rit) || = Op(VTm™H2)




A.2 Proofs of the Direct Estimation Method

Before we prove Lemmas A.1 and A.2, we would like to make some remarks about the approach used
in the derivations. In the proof of Lemma A.1l, the mutual independence between x;; and r; is fully
employed. In addition, the fact that the assumption on cross—sectional independence simplifies the
detailed derivations.

In the proof of Lemma A.2, we are able to fully explore the cross—sectional independence on x;; to
be able to establish results for convergence in probability and convergence in moments. An intuitive
explanation is that we take the average over both ¢ and ¢, so after some tedious algebra we can evaluate
the moments involved. Without the availability of the cross—sectional independence, as in the pure

integrated time series case, we would only be able to establish results for convergence in distribution.

Poof of Lemma A.1:
(1). Write
1 1 E [zyal,]
ElNT Z:[Hm(m)H,’n(m)] ® [zaryl | = N Z: E[Hp (rie) Hy, (rit)] © Tt

= E[Hpu(rit) Hy, (rie)) ® [DD'7y] - (14 0(1)),

where the second equality follows from a straightforward calculation (e.g., Dong and Linton, 2018).
Below, we consider the second moment. Recall that we have denoted Hy = Hy,(rit)H], (1) and
Xit = zpxy, and let Hy gy, and X gk, stand for the (I1,12)" and (k1, k2)" elements of Hj;; and
X, respectively. Then we are able to write
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1 1
E ﬁzHuééXit— WZE[H%@@XM
A KA

1
= No72 ZE |Hyt ® Xit — E[Hy) @ E[Xi]|?
p

1 m dy
+N2T2 Z Z Z
i#5 11,la=1 k1, ka=1
E [(Hit,l1l2Xit,k1k2 - E[Hitlllz]E[Xit,klkz]) (Hjt,thth,hkz - E[Hjt,lllz]E[th,k1k2])]
1 2
<0 72ps Z E|Hi @ Xl
(A

1 m dy
) S0 Y ElXikk) ElX ko B [(Hittst, — E[Hiiy1,)) (Hjrint, — E[Hjei,,))]
i#7 l1,l2=1k1 k=1

where the last equality follows from Assumption 2.2. Thus, the first result of this lemma follows.
(2). Similar to the proof of (1), the second result follows immediately.

(3). Write

H ﬁ Z[Hm(m) ® xt) Hy, (vi)



/H;L(UZ) + Op(l) = Op(l),

VT

1 3 [Hm(rit) ® Yoot Wis

i

where the last equality follows from a procedure similar to (1) of this lemma using E[> " aq Wis] =0,

and wy being independent of r;; and v;.

(4). Let Q¢ = (Qut, ..., Qne) and Ay = (f); A (v1), - -, [§: Ay, (v))’ for notational simplicity. Note
that by Assumption 2.3, we have

fv w
7ZEHA% ()2 = /Amz W) fu, (w dw_ /Am n )dw

du
-2
/AwZ w)dw = O(n~ 1),

where A, (w) stands for the ¢ element of A, (w), and the first inequality and the last equality follow
from Assumption 2.3.

Then write

[@@) ™ @i = Ml (Uxr @) ™ wvr (@400 T Qi
< Nmax { Onr (UnrQiQu¥NT) " Unr b AQ (1) T Q1A
< Amax{ N7} At {ONTQIQuYNT - Amax {UNT} - A1Q1 (Q1Q1) AN
M AU NTQL Qe NT - Amax(Qt (QtQt) Q1) - 1A? /N
M {UNTQIQuUNT} - Op(n™ ) (A1)

where the first inequality follows from the exercise 5 on page 267 of Magnus and Neudecker (2007), and
the last step follows from ||A¢||* /N = Op(n~2) by Assumption 2.3. Note that A_L {0 n7Q;Q: ¥ N7} =

Op(r;!) by the first two results of this lemma. Thus, the result follows immediately.

(5). By Assumptions 2.1 and 2.3, simple calculation gives % >, [#,Ag, (ri¢)[> = Op(t-m~2#2). Then
by the same procedure as in (A.1), the result follows. [

Proof of Lemma A.2:
(1)—(2). The first two results follow by procedures similar to (1) and (3) of Lemma A.1, but account-

ing for cross—sectional and time dimensions simultaneously. The number of the first result comes from

T fy wdw = 5.

(3). Write
2

NT3/2 Z th X xzt €it

s 32 S Bleullini) @l Un(rs) 0 1]
i,j=1t=1

N T
m m
Vs 2 2o ouBlland - Izl = 001, (A.2)

ij=1t=1



where the second equality follows from Assumptions 2.3 and 3; the third equality follows from the fact

that E||lzy|/?/T = O(1), and Assumption 3. Thus, the result follows.
(4). Similar to (3), the result follows.

(5)—(6). These two results can be proved in exactly the same way as (A.1). Thus, the details are
omitted. ]

Proof of Lemma 2.1:

By Lemma A.1 and Lemma A.2, we obtain that

where Q = diag{%Em, En}. Then (1) and (3) of this lemma are obvious. In addition, we provide a

L N7
NT D> UrQuQu¥r - QH =op(1)

i=1 t=1

more generalized version of proof for (1) and (3) later when deriving Lemma 2.2, so we omit the details
here.

We now take a look at the result (2). Note that the next equation always holds.

1Cyetll* = f5r.0 = 1 for,eCrop + Sy Unt + Sy Anill* = 10

= fOt,eH’YoeHLz - fgt,é + residuals,

where
N -I N
Unt = <Z QitQ;t) > Queir,
i=1 i=1
N LN
Ayt = <Z Qz’t%e) > Qurlay Ay (rit) + f5: 85 (03)).
i=1 i=1
The result follows from Lemma A.1. The proof is now complete. |

Proof of Theorem 2.1:
(1). Write

(Bin(r) = Bo(r))

[[Hom (r)|
_ _VNT? L YNT?
= HHm("")H[H ( )®Ida:](c C/BO) HHm(T)HABO( )
NT? N T
= TH () © 10,185 97Q ! ZZ VrQieir + op(1)

1 N T
NTHHm(r)HQ[Hm( )@Idx SBQ ZZ:\I/TQltelt+0P( )

—p N(0,35)

— 0, szzl — 0, Lemma A.1 and Lemma A.2; and the last

where the second equality follows from 2. 2%

step follows by verifying Lemma B.1 of Chen et al. (20125), and the value of 25 follows from



= i ST 20 S0 ® TS50t Pl QeI S5 ) T
t=1 i= 1
T
T NT||H NTTAL T 2 2o () © 10,1850 Q BV Q5 rlQ ™ S Hin(r) © 1.
t=1 i#j
. Ug / —1
_h%nm[ﬂ (1) ® 14,155Q 7 SG[Hom (r) @ I4,]
2072 ) / -
ZI%ﬁ[H (r) @ La, { E[Hm(rit) H}, (rit)] © (DD')} " [Hyp(r) © I, ]

using Lemma A.1 and Lemma A.2.

(2). Write
N
VN (fee — fore) = 7(”0%15 2 — fore)
fro+ fore
N
W(Hfow voe T SWUNt + S’YzANtH2 - fgm)
t.e 1 Jote
VN
= ﬁ(ﬂfm (Crooll” + 2fo.0CL, Sy Unt — for.0) + op(1)
t,0 T fote
VN 1Y
= meot N 'yogSW\IJTQt IN Z UrQiteir +op(1)

N
1 1
= 9% Qs lﬁ Z UrQieir + op(1) =p N(0,07,),

where Q¢ = diag{m2,,, X }; the third equality is due to the fact that all the other terms are negligible
by Lemma A.1; and the last step follows from the same procedure as Lemma A.1 of Chen et al. (2012a),

and the value a]%e follows from

7hm Z Yoe W e [\IITtaQZt\I/T]Qt 15/ 70/

+hm N Z C! S0 Q;  E[WrQu Q) ¥r]Q; S, Cyy,

17&3
= hma?C’;OZS ,Qp 15/ Croe +hm Z oz‘gw@;l [‘I’TtaQ]t‘I’T]@t 15/ Cor
Z#J
—hma‘ﬁ’c;wsgz;lsg W+hm Z% C.,SeSn B (0i) My, (v7)] 55,1 S4Chg, -
Z#J

(3). We now turn to the asymptotic distribution associated with 7, (w).

VNT __INT G )
T ) =08 = [ G )@ = O om0
_ VNT o 1 =~ 7 VNT  for—|IS,,C] ' o )
REETI )HSW@H(S”C f°’gc”“”uH Wil 5,8 CmetortD
1
- S”/l v it€it T O N 0,5%
T TV ;;@ rQuei + 0p(1) p N(0.32,).

where f07g = % Zthl fot,e; in the second equality we utilize the identification condition; the third equality
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follows from fo, — HSW((EH = Op(1/VNT) that can be derived by a procedure similar to those for (2)

of this lemma; and the rest steps are similar to (1) of this theorem, and the value of 5%2 follows from

= B N H\fﬂz§:§:ff )S1,02Q E[UrQuQly¥r]Q ), H(w)
t=1 i=1
= / —1¢/
TN, NT|| Hp(w)]2] ;]2 ;;H )S5,01;Q 7 E[¥rQu Q) ¥r]Q 1 S], Hy(w)
¥
2

1
= ) 2 [ Hy () 562" S Ha ()

+ lim o H! (w)SeX Y E[H,, (vi)H, (v)] 2L S) Hy (w).
NnNHH H f*|2§ ”LJ [ ) n\%J ] n ~2¢4H4n
The proof is now complete. u

Proof of Lemma 2.2:

(1). Note that by condition 1 < d¥ + d; < d, + d,,, we allow for d¥ = 0 or d} = d,. Similarly, d; =0
or dj = d, is allowed. Without loss of generality, we assume that 1 < d} < d, and 1 < d < d, in the
following proof for notational simplicity.

We consider C = Cy + U, where Cy = (0507]“0 105 - .,foydvcg% )y foe= %Zthl fote, S,C =
S Co—i—Um\/—z, S,,C= SWCO—I—Un\/—T, and Uy, || = by/m and ||U,|| = by/n, and b is a large positive
constant. Obviously, U is made of U, \/7 and U, \/7 We show that for any given € > 0, there exists
a large constant b such that

lim inf Pr{ inf Tnr(C) > TNT((CO)} >1—k¢, (A.3)
NT 1UmlI=bv/m, |Un[=by/n

which implies with a probability of at least 1 — € that there exists a local minimum satisfying that
1S5, (C = Co)|| < by / w7z and HSW(((A: —Co)|| = by/xp- The above argument is in the same spirit as in
the proof for Lemma A.1 of Wang and Xia (2009), wherein a kernel version is studied under the i.i.d.

assumption.

Tn7(C) — TN (Co)

N T d;
Z Z Yit — taco taU + Z PBe
i=1 t=1 (=1

d*
1
SBZ(Co—i-Umi pr

VNT? Subo+ On

il

dg
PBe P
—%Z\fﬁwu+§jﬂwww

{=d*+1 {=d}+1
dz dy
- ZZ (yit — Q}4Co)? mersagcou pruswcou
=1 t=1
N T p,B dy P
=> "> (@) JZZ%yn%% Z 44m+2 | Ul
i=1 t=1 i=1 t=1 t=d:+1 l=dx+1 NT
d: dy,
1
UJ%“%%+%WW2ﬂW%D+;MQ%&WUJHW%WQ
N T B _ _ _ N T B B
> Z Z UV U NTQit Qi N W U — 2 Z Z QuUNTY U (At + €it)
=1 t=1 =1 t=1
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d*
= 1
+ Zpﬁe (HS@JCO + Un
= \/]\fT2
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> OV Wl = Anr ¥yl = > ps,
=1

1
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(A4)

1
Up——=||"|IC
v M

where Ay = x5, Mg, (1it) + f: D, (vi), ANT = 22?11 ZtT_l Q;t\TINT(Ait + eit), O, lies between Sg,Co
and Sg,Co + Um\/i27 and C* lies between S,,Cq and S,,Co + U"F

Note ||An7|| = Op(v/m +n) by Lemma A.2, and by construction, ||U’\T/]_\,1TH = O(v/m+n). In
connection with that Assumption 5.1 and the right hand side of (A.4) is in quadratic form of U, we
know that YT n7(C) — Tnr(Cpy) > 0 with probability approaching one. Thus, (A.3) holds. The rest

proofs are straightforward, so omitted.

(2). For simplicity, we show that Pr(||S5,C|| = 0) — 1 with V¢ € .AL only. The proofs for S.,C with
Vil e AQ are the same. If ||S,C|| # 0, C must satisfy the following equation

oY n7(C
0= aSNZEC) = 24, + Ay, (A.5)
[4
where A; = ZZ 1 Zt L Hon(rit)zie o (yir — Q},C) and Ag = 155, C”S@_,(C
For A, we write
S S Har) 2~ Q4D
NT Ly m\"it \/T Yit — Wit
1 N T xlt g 1 ’Lt K —
= ﬁ Z Z Hm(rzt) NT Hm rzt 'Lt(c C)v
i=1 t=1 i=1 t=1

where it is easy to know that =0Op (, /%) by Lemma A.2. Thus, we

’NT Zz IZt 1 (th)gi%ezt

focus on the rest term and write

szzﬂnt“%< C)

=1 t=1
1/2
1 WmmHMMQ 1 o R S -
. {NTZZ NT 2o 2 (Co — O U UrQu Qo (€~ )

i=1 t=1 =

g0ﬂ¢mw#@m—©m—op<7“§;”),

where the second inequality follows from Lemma A.2 and the first result of this lemma. Therefore, we
conclude that ||A1]] = Op %
On the other hand,

1 m(m +n)
T
> >
NZ3/2pﬁ a0 NT

|7

by Assumption 5. Therefore, Pr(||41| < ||Az2]]) — 1, which implies that, with a probability tending
to 1, (A.5) does not hold. The above analysis implies that Sge(ﬁ must be located at a place where

the objective function is not differentiable with respect to Sg,C. Since the objective function is not



differentiable with respect to Sg,C only at the origin, we immediately obtain that Pr(||Ss,C|| = 0) — 1
with V¢ € A;g. The proof is then complete. |

Proof of Lemma 2.3:
Again, without loss of generality, we assume that 1 < d} < d; and 1 < d < d, in the following
proof for notational simplicity. After some simple algebra, we can obtain the first derivative of Y y7(C)

with respect to C. Then it is easy to know that C  must be the solution of the following equation:

N T
233" Qilyi — Q'T) + PT =0,
i=1 t=1
where the definition of @}, should be obvious, P* = diag { Pﬁ*v P;}, and
PE =In® diag{pﬁl HS/BI@*H_17 o PBax HS/Bd;; @*H_l}a

P = diag{p, |55 C |7 Ly -+, gy 197, C 17 1}

It implies that C" must have the form
N T p LN 7T
~* * )k *
1= = 1=

Thus, consider

N T
C* - Cora — \I’*NTENT\I/?VT (Z Z thyit) 5
=1t

=1

where \T/}‘VT = diag{ \/J\I,TQ I, \/]{TTInd;}a and

N T N _ pre -1
XNT = (‘II*NT Z Z Q5 Qi Wiy + ‘I’7VT7 }kVT)

i=1 t=1

_ N T N -1
—( MZZQZ}QEE"P}‘VT) :

i=1 t=1

By Assumption 2.2 and Lemma A.3 of Dong et al. (2018), it is easy to know that the rate of || X n||

converging to 0 is the same as

N T N T
Jr* * )k Ik Jr* P Jr* Jr* * )k gk
Wy Z Z Qn Q% Yy + \I’NT?\IJNT = VNt Z Z QnQ% Yy

i=1 t=1 i=1 t=1
* pev/m. - py/n
‘I’NT Uhrl=0 NT2 + NT |
Then we know that H@* — Comal = Op (p]f,ﬁ + p}@f). The proof is complete. [ |

Proof of Theorem 2.2:

1). Same as the proof of Lemma 2.2, by condition 1 < d% + d} < d, + d,, we allow for df = 0 or
dy, = d,. Similarly, dj, = 0 or d;; = d,, is allowed. Without loss of generality, we assume that 1 < d}, < d,
and 1 < dj < d, in the following proof for notational simplicity.



In what follows, we prove Pr(S;5 = Aj) — 1, and Pr(S;, = AJ) — 1 can be proved similarly.
Before proceeding further, we mtroduce some notations to fa(:lhtate the development. For an arbitrary
model S, we say it is under—fitted if it misses at least one variable with a nonzero coefficient (under—
fitted case allows for including redundant regressors); it is over—fitted if S not only includes all relevant
variables but also includes at least one redundant regressor. Then, according to whether the model
S, is under fitted, correctly fitted, or over fitted, we create three mutually exclusive sets A~, A0 =
{p € Rltdo 1 G 5= A};} and A* = {p € REFdv 1 G 5D A%, Spp # AE} Let C be the unregularized
estimator as in (2.4) of the main text, and there is a sequence {pn7} that ensures the conditions required
by Lemma 2.2 hold. Let CPNT denote the estimator obtained by implementing (2.7) of the main text
using pNT-

Case 1 — In this case, we consider under-fitted models. Without losing generality, we assume that
only one variable is missing, so we assume that [|Sg,C5|| # 0 for £ =1,...,d% — 1 are obtained from the
underfitted model and ||S3,C5]| for ¢ > d% are 0. It does not matter whether the sparsity of vo(-) is
correctly identified or not.

We then write

M) =
M=

SSRﬁ = (yit — Q;t@ﬁ)z

.
Il
—
~+
I
—

(it — Q4C + QT — Q44 T5)?

1
Z‘H Z‘H Z‘H
~ N~ ~
Mﬂ

i=1 t=1
N T _ 1 N T _ B

= 7 2 2 i = QuC? + 5 D> D (QiC — Qi Tp)?
i=1 t=1 i=1 t=1

(C — Cp)' Qi (yir — QC)

+
2|
M-

E

-
Il
—_
-
Il
—

N T

1 ~ _

(e = QuC)* + 577 D D (QuC - Qi Cp)?
i=1 t=1

I
3-
M’ﬂ

.
Il
—
~
I
—

= SSR; + SSRZ,

where the fourth equality is due to the construction of the unregularized estimator.

We now consider SSR% and write

N T
1 ~ I
SSR% - NT Z Z(C - Cﬁ)/\PTllIITQitQ;'t‘I]T\I/Tl(C - Clg)

i=1 t=1
OM)[[¥7!(C — Cp)|I* +op(1)

1) H\/fsﬁd;(é‘f +op(1)

where Ur is defined in the beginning of this file.
:= SSR; + SSR? where

PNT’

Similarly, we can obtain that SSR

PNT

SSR2 = NT ZZ (C = Cppp) V3 07Qu QL U U HC — Ty
i=1 t=1

O1)|| w7 (C = Cppyp)II? + 0p(1)
O(1)[|W7(C — Co)|I* + O(1) ¥ (Co — Ty |1* = 0p(1),



where the last step follows from Lemma 2.1 and Lemma 2.2, and Cy is defined in the proof of Lemma
2.2.

Note that simple algebra shows that SSR; —p o2. Based on the analysis on SSR2 and SSRpNT, we
then can conclude that

f BIC; > BIC — 1.
Pr <plel,14— PNT>

Case 2 — In this case, we consider over—fitted models. Consider Vp € AT and recall that @5
determines S5 3. Having considered Case 1, we then assume the sparsity of g is either correctly identified

or over identified here. Under such a model S5 g, we can define another unregularized estimator Cﬁ as

@5 = argmln — Z Z (yite — Qlt(c)

zltl

where [|S5,C|| = 0 with V¢ ¢ S5 5. Since C; is the unregularized estimator under the model determined
by S53, we obtain immediately that SSR; > SSRg; ,, where

SSRs; 5 = % Z Z (yit — QuCp)?

i=1 t=1
It follows that

InSSR; —InSSR; > InSSRg; , — InSSRy

. [ssRy T
_ln{SSRl NT - sstZ (C—Cp) 03" VrQuQiy UV, (C — Cp)

=1 t=1

- 15 0(1) =~
e ! QLU U (C —Cy) > — L _ G2
= NT SSR1 ;; (C — Cp)' 7' UrQu Q) U7 ¥ ! (C — Cp) > SR, 1T~ Cp)|l

o)

> _ 2\ \ijl ~ _ 2 _

1P7 HCo - Cp)l

AV
|
Q
S
R
3T
3
~

where the third inequality follows from Assumption 2.2, and the last step follows from Lemma 2.1 and
Lemma 2.2.

Similarly, we can obtain that InSSR,, ., — InSSR1 = Op (%

m—+n
o z-Jor (552

) Thus, we obtain

In SSR; — In SSR,

We then write

(m+n) ln(NT).

1nf BIC; — BIC dfpye) NT

peA

— InSSR; — InSSR,, + (df; —

PNT PNT 4

By Lemma 2.2, we know that Pr(df,

vy — di+di) = 1. Since p € AT and we assume that o is

either correctly identified or over identified, we must have that Pr(df,,, > d} + d} + 1) — 1. Then it

is clear that

< 1nf BIC; > BICPNT> — 1.
pEA
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Combining Cases 1 and 2, we obtain that Pr (infze4-a+ BIC; > BIC,,,) — 1, which in turn
implies Pr(S55 = Aj) — 1. Similarly, we can show that Pr(S5, = AJ) — 1. The proof is complete. B

Proof of Corollary 2.2:
The proof of Corollary 2.2 is almost identical to those given for Theorem 2.1, but requires one to

account for the rate of divergence of fy;. |

Appendix B

In this appendix, we adopt the PCA approach initially proposed in Bai (2009) to estimate unobserved
factors. As explained in Sections 4.1 and 4.2 of Bai et al. (2009), if both z;; and fo; require different
normalizers across the time dimension (e.g., iz ~ I(1) and for ~ I(0)), certain technical challenges
would occur when conducting the estimation. We aim to provide a simpler method to solve these issues,
so we focus on the case where fy; is stationary. Moreover, we further show some possible extensions

using the PCA-based approach in Appendix D of this supplementary file.

B.1 Estimation via PCA

We still focus on model (1.3) of the main text, and firstly state the necessary assumptions.

Assumption B.1.

1. (a) Let{e;;|i € ZT,j € Z} be an array of dy—dimensional independent and identically distributed
(i.1.d.) random variables over i and j, and let {€;;} be independent of {ri:, vi, for}. Moreover,
Ele11]) =0, Elenieyy] = 1a,, Ellen||? < oo for some q > 4, and the characteristic function of
€11 1S integrable.

(b) For each i > 1, let xiy = ®it—1 + wit, where max;>1 ||xio]] = Op(1), and wy is a linear
process given by wiy =322 Djgjr—j. In addition, {Dj|j € Z} is a sequence of deterministic
matrices such that (1) Do = la,, (2) 2272 jllDjll < oo, and (3) D = 3772 D; is of full
rank.

2. Let {ei1,...,e;Ti1,--. ;0 be identically distributed across i, and let ¢ = (rig,...,rnT)

be strictly stationary across t. Let Hy = Hypy(rit)H),(13¢) with Hiyp,, standing for the (I1, 1)t

element of Hy, where 1 <ly,lo < m. Let H; = Hp(vi)H),(v;i) with H; 1, standing for the (11, Io)th

element of H;, where 1 < lq,ly < nd,.

(0) maxis1 Yo B [(Hityty — ElHivnis)) (Hint, — E[Hjopi,))] = O(N) uniformiy for b, I, and
>izi El(Hiwts — E[Hini]) M, — E[Hjnn))] = ON) uniformly for Iy, lo;

() > izi dirs EN(Hitty — E[Hit 1)) (Hjsut, — E[Hjspu1,])] = O(NT) uniformly for Iy, l;

(¢) 0 < Amin(E[Hp(r11)H],(r11)]) < Amax(E[Hpm (r11)H],(r11)]) < 0o uniformly in m;

(d) 0 < Amin(E[7,(v1) 7, (v1)]) < Amax (B[ (v1) 77, (v1)]) < 00 uniformly in n.

3. (a) maxi<pca, {352,, 05,312 = O(m™#2) and maxi<p<a, {352, ¢, ;312 = O(n™1), where
boe; = fR Boe(w)hj(w)m(w)dw, corj = fR Yoe(w)hj(w)m(w)dw, and p1 and po are two posi-

tive constants;
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(b) Let f.(w) be the density function of ry, and f,,(w) be the density function of v; ¢, where v; g
stands for the £*" element of v; for £ =1,...,d,. Suppose that sup,cr fr(w)/m(w) < 0o and
SuPWER fvé(w)/ﬂ-(w) < o0 fOT’ f = 17 e ’dv'

(c) ]’z}—; — 0 and Tm=2#2 — 0.

4. Let %EtT:l forfoy —p Xp > 0 and maxy>; E| for]|* < oo. Let %25\41 Yo (i)Y (vi) —p Er and
El[yo(v1)[[* < oo.

Assumption B.2. Suppose e; and the filtration By7 = o(xj,75,€j-1; for, -, for;vi,...,on | J < t+1)
form a martingale difference sequence such that almost surely Ele; | BNT—1] = 0 and Elese} | BNri—1] =
Ye = {0ij}Nnxn, where e, = (e, ...,ent), and x¢ and 1y are defined similarly. In addition, let ;; = o?

fori > 1, and suppose that ;. |oi;| = O(N) and max; Elel, | BNri-1] < oc.

The Assumption B.1 is the combination of Assumption 2 and Assumption 4 of the main text with
minor modifications. The Assumption B.2 is more restrictive than Assumption 3, because the filtration

JF¢ includes more variables.

Note that under Assumptions B.1 and B.2 in hand, we can always recover [3y(-) regardless of the
availability of fo;’s, which will help us tackle the aforementioned technical issue. By virtue of the series

expansion for fJy(-), we have the OLS estimator of Cp, as follows:

N
Cp = (Z Z;Zz) >z}, (B.1)
=1 =1

where Z; = (Hp(ri1) @ i1, . . ., Hi(ri7) @ 247) and Y; = (yi1, ..., vir)’. The approximation rate of éﬁ

to Cp, is summarized by the next lemma.

Lemma B.1. Let Assumptions B.1 and B.2 hold. As (N,T) — (00,0), ||Cs — Cg,|| = Op (T)

Op (mfm).
Lemma B.1 allows us to narrow down the set that Cjg, belongs to as follows.

Br:={C | |C = Cpl| <woT 2},

where wg is a sufficiently large constant. The aim of defining B is to eschew the annoyance that
{zi1,...,zir} and {fo1, ..., for} require different normalizers when deriving asymptotic properties.

We now proceed to full estimation, and rewrite our model in matrix notation as

Y; = ¢i[Bo] + Fovo(vi) + e, (B.2)

where ¢;(8] = (1 8(ri1), ..., x,pB(riv)) for VB(-) = (Bi(:),...,Ba,(-))', and Fy and e; are defined
accordingly. Moreover, let I'g = (y0(v1),...,70(vn)) for later use. Left-multiplying Mg, on both sides
of (B.2) gives Mg, (Y; — ¢:[Bo]) = Mp,e;. To estimate C, and Fy, we thus define the objective function:

Z‘H

N
Rn7(Cs, F Z (Y; — ¢ilBm)) Mp (Y; — ¢i[Bml]) »

where f,,(r) = [H,,(r) ® 13,]Cg. The estimators of (Cg,, Fy) are obtained by

12



(Cs, F)= argmin  Ryp(Cs, F), (B.3)
(Cs,F)eBrxDp
where Dp := {F | £F'F =1,,}. The restriction F € Dp is for solving the identification issue of
the factor model (e.g., Bai, 2009). The estimator of [By(r) is correspondingly defined as Bm(r) =
[H}(r) © 14,1C5.
Following the same arguments as in Bai (2009, p. 1236), (B.3) can be decomposed into the following

two expressions:

N

—~ . 1 ’
1 - s R B
NT 2 (Vi = ¢i[Bm)) (Vi — ¢4[Bm])' F = FVinr, (B-4)

where V7 is a diagonal matrix with the diagonal being the d, largest eigenvalues of
1 N

w7 i =4 (B (Yi = il

arranged in descending order. Consequently, a routine estimator of I'y would be

1

(Y1 = d1[Bul.... Vi — ow[Bu]))'F.

which, however, does not reveal the information of the loading function. Thus, using (B.2), we establish
the estimator of yo(-) as follows.

N -1 N
&, - [g %@»%@»’] S o) | il | (B.5)
which gives the estimator of yo(v) by F,(v) = %ﬂn’(v)aAY

Numerically, we just need to implement an iterative procedure to obtain 65 and F by (B.4). After-
wards, we can implement (B.5). We refer interested readers to Jiang et al. (2017), where the algorithm
for the linear panel data setting with interactive fixed effects has been studied carefully. In order to
start the iteration, we can use (B.1) as an initial estimate in practice. “fmincon” function of MATLAB

provides an easy way to set up the restriction Byp.

B.2 Asymptotic Properties

To derive the consistency, we impose the following assumption.

Assumption B.3. Let infrep, Amin(Q4(F)) > A1 > 0 uniformly, where

04(F) = o {1(F) — 04(F) [(T4T0) © 1]~ a(F)
N N

O(F) =Y ZIMpZ;, Q(F) =Y ~(v:) ® (MpZ).
=1 =1
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Assumption B.3 ensures that the estimators given in (B.3) are well defined, and is equivalent to
Assumption A of Bai (2009). We are now ready to summarize the consistency and some useful rates in

the following lemma.

Lemma B.2. Let Assumptions B.1-B.3 hold. As (N,T) — (00, 00),

1. 1B = Bollsz = or (7)),

2. ||[Ps — Pryl| = op(1),

3.Vt —=pV,

b FIFI = Roll = Op (VT 1B = Bollz2) + O (F) +Or (F7)-

5. | $F(F — Foltwr) | = Op (VT — Bollz2) + Op (&) +Op (),

6. |Ps — Pry|* = Op(VT|Bm — Bollz2) + O (%) + Op (%),
where Mt = VNT(Féﬁ/T)_l(Ff)FO/N)_l, and V is a d, X dy, diagonal matriz consisting of the eigen-
values of Xpdir.

Having established Lemma B.2, we provide the rates of convergence associated to (B.3).
Lemma B.3. Let Assumptions B.1-B.3 hold. In addition, let % — v with) <v<oo. As (N,T)—
(00, 00),

L 1B = Bollz2 = Op (/§7z) + Op (m™"2),

2 ||Ps — Prll = Op (3/F) + Op (VTm=22) + 0p ().

To establish the normality, we impose some extra assumptions.
Assumption B.4.

1. Let .F]T\,ts = 0(T1ty -y TNt; T1ss - - -, *Ns)- Suppose that E[fl, fos |.7-"]T\,ts] = a5 a.s. fort # s, and
Zt;ﬁs |as| = O(T).

2. Let ]-'* T = = o(xit, Tjt, Tie, Tjt, for; v, .., on|t < T). Suppose that Elejej | F, JT] = 045 a.s. for
i #Jj and Zz‘;éj |oij| = O(N).

Assumption B.4 further imposes more restrictions on the unknown factors and error terms in order
to ensure that the estimator Bm given by (B.3) is not asymptotically biased in the sense of Theorem 3 of
Bai (2009). The current requirements of Assumption B.4 are in the same spirit as Connor et al. (2012,
Eq. 3 and Eq. 20) and Jiang et al. (2017, pp. 21-22). Without this assumption, some other types of

conditions are needed to achieve asymptotic normality. For example, one can require N/T — k with

0 < k < 0o and establish the normality with a bias as in Theorem 3 of Bai (2009).

Theorem B.1. Let Assumptions B.1-B.4 hold. Additionally, let % — 0, 2L — 0, and NT

y NT 3 — 0.
ForVr e R, as (N,T) — (00, 0),

NT?

T P () = Bo(r)) =0 N(0,E5),

where iﬁ is the same as defined in Theorem 2.1 of the main text.
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Similar comments to those for Theorem 2.1.1 of the main text may be made here. The conditions on
T, N,m and po are seemingly a bit complicated. Nevertheless, they are reasonable and easily satisfied.
Consider Z& — 0, "J\g — 0, and N — 0 in the body of Theorem B.1 as an example. Let N = [T |
and m = |T°2| with by,by > 0. Then the conditions are fulfilled if b1 + by < 1, 1 + by < 2b; and

2 4 b1 < 2ugbe. Thus, it renders that

0.5 <by <1, (2+0b1)/(2u2) <by<0.5, and pu2 > 3.

Note that many harsh conditions on m, n, u; and pg kick in only when deriving the asymptotic normality,

and they are unnecessary for asymptotic consistency.

In what follows, we consider the estimation on the factor structure.

Assumption B.5. Let Fy € Dp and let F‘])\I;O be a d, x d, diagonal matrixz with distinct entries a.s.
L, || vVNInN .
Moreover, suppose that v/ N sup;>q SUPFe{F|ﬁ||F—FO||§e} HTF ezH = 0Op (Tir“l)’ where € is a suffi-

ciently small positive number.

The first condition of this assumption serves the purpose of identifying both ~o(-) and Fp, and is
similar to Assumptions 3.2 and 4.1 of Fan et al. (2016). The second condition of this Assumption can
be easily verified. We then present the rates of convergence associated with factors and the loading

functions in the next lemma.

Lemma B.4. Let Assumptions B.1-B.3 and B.5 hold. In addition, let % = v with 0 < v < oo. As
(N, T) — (00,00),

1. L\F = Rl = Op (& ) +0p (VTm~#2),
2. [ —0llz2 = Op (\/ ) + Op (\f) + Op(max{fm M2 pH1y,

Lemma B.4 helps us further obtain the next theorem.

Theorem B.2. Let Assumptions B.1-B.3 and B.5 hold. Suppose that M — 0 and — 0. As

(N, T) = (00, 00),

2#2

1. For any given t, \/N(ﬁ — fot) = p N(O, 2512?21:1), where ft denotes the t'" column of F', and
* 3 N
EI‘ = limy % Zi,j:l O'@'jE['YO(’Ui)W(I)(Uj)]'

2. |An —llz2 = Op (\/3%) + Op (\F> + Op(max{yvTm™#H2, n=H).

Relevant comments similar to those for Theorem 2.1.2 and discussion on o;;’s of Section 5 of the main
text may be made here for Theorem B.2.1. The asymptotic distribution in the first result of Theorem
B.2 is consistent with Theorem 1 of Bai and Ng (2013), wherein a factor model without regressors is
considered. Due to plugging B, () and F in (B.5), unlike in Theorem 2.1.3, it scems impossible to
establish an asymptotic normality for 7, (v) for the PCA approach.
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B.3 Preliminary Lemmas of PCA Method
Lemma B.5. Let Assumptions B.1 and B.2 hold. As (N,T) — (00, 0),

1. | #zeell = op (1) and ||gpee’|| = op (1), in which e = (eq, ... en)’,

1
2, —E ' Pre; = op (1
e NT £ G0F€ or (1),

3. sup = op (1),

FeDp

1
NT > () FgMpe;
5

1

~T Z (6ilBom] — ¢ilBm]) Mre;

4 sup — op (1),

(C/B F)EBTXDF

=op (1),
FeDp

1
5. sup ﬁz(bi[AﬁO]/MFei

1

6. s m;%[Aﬁo]’Mm[Aﬁo} = op (1),
1 ’ _

7. FS;JI%)F sz:ﬁbz[Aﬁo] MFFO'YO(UZ) =op (1)’

8. sup Z¢z [Agy) Mg (¢ [Bm] — ¢i [Bom])| = op(1).

(C[—j F)EBTXDF

NT

Lemma B.6. Let Assumptions B.1-B.3 and B.5 hold. In addition, let % — v with 0 < v < oco. As
(N, T) — (00,00),

1. Wy = Ig,|| = Op (v/m/(NT) + /T/m?2 + ),

2. H%Féﬁ - Ide — Op (\/m/(NT) + /T/m2 + %).

B.4 Proofs of PCA-based Method

Proof of Lemma B.1:

Simply algebra gives

N -1 N N -1 N
Cs—Cpy = (Z Z;Zi> > Ziei+ (Z Z;Zi> > ZiA,,
=1 =1 =1 =1

where A; is defined accordingly.
By Lemma A.2, ||(ZZ 1\ ZIZ;)” ZZ L Zleill = Op (\/32%), so consider (Zz \ZlIZ) Zl V2N

below. Note that it is easy to show

N T N T
NT2 Z A" < NTQ Z Z(fOt’YO('UZ) NT2 Z Z xztABO rit))

i=1 t=1 i=1 t=1




By a development similar to (A.1), we immediately obtain

-1 5 .
S S| -on ()
Then the result follows.

Proof of Lemma B.5:
(1). Firstly, write

N
Bl = B N?Tzeie; S (S Ee Y e
i=1 tis=1 \ i=1 i#]
N
P91 PILEIED SRS
i#]
N 1
NZTQZ ZE e el ] —I—ZE (eitejr — 0ij)(€is€js — 0ij)] +WZ°’%
t#£s \i=1 i#£j i#£]
— 0(1)= +0(1)~
N T’

where the fifth equality follows from Assumption B.2. Thus, 1= ||’e| = Op (ﬁ) +Op (ﬁ)

Similarly, we can write

1 2
- {E [Weie]] } - Z N2T2 Z E elte]tezsejs]
NxN i,j=1 t,s=1
T N
1 1 1
B N272 Y Eleiejieisejs) = O (N> +0 <T> .
t,s=1 i,j=1

(2). Write

1 dy
sup eiPre; = sup ——tr (Pre’e) < sup — || Pr|lspll€’ell
FEDFNTZ " pepp NT ( ) Febp NT PR

< Sup

=op(1),

where the first inequality follows from the fact that |tr (A)| < rank (A) || A]]

follows from (1) of this lemma.

sp’ and the second equality

(3). Write
sup 1 me V; FOMFez = sup i (FOMFG Fo) < sup 7HFOMF€ FOH
FeDp FeDp NT' FeDp
< sup S 1 Fbl 1Ml [Tl el = sp 302 WFolly 1Ml [Tl e
S S NT Fllsp Tollsp lellsp = s oz 1Follsp 117l [Tolls,

1 1/2
< swp 2 Bl Vel Il (NTHee'H) o (1),

where the first inequality follows from the fact that [tr (4)| < rank (A) [[A[[y,; the second equality follows

from Fact 5.10.18 of Bernstein (2005); and the last equality follows from (1) of this lemma.
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(4). Write

(¢ilBo,m] — ¢ilBm]) Mre;

=1

N
NTZ(@[BM} 0ilBm)) e Z 6ilBom] = éilBm])’ Pre;

\H 3~
M=

= A1 + As.
Note that A1 can be written as

A = VT(Cgy — T3 T Z Zle;.

=0 (%) In connection

o)

In order to consider Ag, let Ab = (¢1[Bom| — @1[8m)s - - - ON[Bo.m] — ¢n[Bm]). Note that

2
It is easy to know that by Assumptions B.1 and B.2, E Hﬁ Zl]il Zle;

with the construction of By, we obtain that

N
1
sup |[A1]l = VT||Cgy — C]| - HNT;],/QZZ;%
=1

Cg€Br

p o |80 = sup. LSS [t — o}

Cp€Br i—1 t=1

=0p(1) sup T||Bm — Bomlli2 = Op(1),

CBG T

where the second equality follows from (1) of Lemma A.2 and Assumption B.1.2, and the third equality

follows from the construction of By. Then we are able to write

1
sup |As| = sup —tr (PFe'Ab)‘
(Cs,F)EBrxDp (Cp,F)eBrxDp | NT
dy ,
< sup || Pre’ Ab||sp < sup
NT (CB7F)€BT><DF Sp (Cﬁ F)EBTXDF NT

1 1/2
— sup dy|| Pr ( ce ) ( Ab ) —op (1),
(C3,F)EBrxDp 12 lsp NTH 'l \/WH | (1)

where the second equality follows from Fact 5.10.18 of Bernstein (2005), and the last step follows from
(1) of this lemma and supc, e, 7 |AB||?> = Op(1) shown above.

We now can conclude that sup(c, ryeg by |[A2] = 0p(1). Then the result follows.

(5). Let A = (¢1[Agy),...,én[Ag)). The proof is similar to that for (4) of this lemma except
that we need to use the fact that

N
1 1 .
S A2 = 2 101 [Aa] P = 0p (Tm2) = 0p(1)
i=1
(6). Note that
FeDp

N
1
sup Z@bz Aﬁo Mpoi [Ag] Niz [0 [Ag,] H2 op(1).
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(7). Write

= sup

sup Z(Zsz Aﬁo MFFO’VO(UZ) b
eDp

FeDp

(%

T o 1Ml [[Folls, [Tollgp 1Al = 0 (1),

<

where A = (¢1[Ag,], ..., ¢n [Ag]), and the second equality follows from that IA|* = 0p(1) as in

(5) of this lemma.

(8). Write

sup
(Cﬁ F)EBTXDF

1/2
1
<T-. {NT2 ; ||¢z [Aﬁo] HQ} ’ sup {NT2 Z Hd)l Bm ¢Z [50 m] || }

=T-Op(m™"2)-0p(T"2) = 0p (1),

o Z@ [Ag,)' Mp {1 [Bm] — i [Bom]}

1/2

where the first inequality follows from Cauchy—-Schwarz inequality; and the last equality follows from

Assumption B.1 and the construction of Bp. |

Proof of Lemma B.2:

Firstly, we define some variables: A¢; (8] = ¢i[Bom] — ¢ilBm] for i > 1, and &p = vec (MpFyp) for
VF € Dp. In addition, let Ay = 5 SN | ZIMpZ;, Ay = < (ThTo) @ I, and Az = 55 SN y0(v) @
(MpZ;). We are now ready to start the proof.

(1). By Lemma B.5, it is straightforward to obtain that

Rn1(Cs, F) — Ry7(Cpy, Fo)

1 N

= NT - (A¢i[Bm] + Fo’y(vi))/MF (AGi[Bm] + Fory(v;)) + op(1)

1
= (Ca — Co)' Z ZiMpZi(Cg, — Cg) + st (MpFoToLoFg Mr)

+2(Cs, — Cﬁ Z Z!Mp Foyo(vi) + op(1)

= (Cg, — Cp)' A1(C, — Cp) + EpAsbr + 2(Cp, — Cg)' A3ér + 0p(1)

= VT(Cg, — Cp) <A1 Asdy 1A3> VT(Cs, — Cp)

T
+[Er + (Cg, — Cp) A5 A Ag[€r + A5 A3(Cg, — Cp)] + op(1)
= VT(Cy, — Cp)'%(F)VT(Cg, — Cp)
+[Ep + (Cp, — Cp) A5 A ' As[€p + A7 T A3(Chy — Cg)] + 0p(1),

where Q4(F) has been defined in Assumption B.3. Then by the same arguments as in Bai (2009, p.
1265), we obtain that v/T||Cj, — égH = op(1). Therefore, further write

VT|Bm = Boll 2 = VT B = Bomll 22 + VTI| A, |12
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= VT|Cs — Cs, || + VT || A, |l 12 = 0p(1),

where the last step follows from v/7||C, — 6’5\] = op(1) and Assumption B.1.3.

(2). By the first result of this lemma, we further obtain that

0> Rn7(Cs, F) — Rn(Cay, Fo) = ~—str [(FYMpF) (TpLo)] +op (1),

NT
which indicates that wrtr [(FoMzFo) (T4T0)] = op(1). As in Bai (2009, p. 1265), we can further
conclude that %tr (FéM ﬁFO) = op (1), %ﬁ 'Fy is invertible with probability approaching one, and
| Pz = Pry|| = op (1). Then the second result follows.

(3). We now consider Vyp and write
~ 1 . SO
FVnr = — > (Yi = $ilBu)) (Y — ilBul)' F
VNT NT 121( 7 (bz[ﬁm])( 2 ¢l[/8m])

- %Z(@w SiB]) 61150 — 1(Bn]) B

=1
N N
1

+~7 Z(@ 0] = iBu) (Foro(0))' F+ o S~ (Foro(w1)) 1{8o] — 6ulFinl) F

=

N N

1 L~ 1 I
tNT ;(qﬁ’[ﬁ‘)] $ilBrm))eiF + NT ;ei(@[ﬂo] — ¢iBm])' F
1 N 1 N R
—i—NT;eze F+ — ZFo’yg V;)€; F—|— NT;%’YO(W)’F(’)F

1 ~
NT > Forolvihyo(vi) FoF
=1

= IlNT(Bma Fy4+--+ I5NT(Bma F) + Isgnr(F) + - - + Ionp(F),

where the definitions of I1y7 (8, F) to Isn7 (8, F) and Ign7(F) to Ign7(F) should be obvious.
Note that Toy7(F) = FO(F6F0/N)(F6ﬁ/T). Thus, we can write

FVyp — Fy(ThTo/N)(F4F/T)
= vt (B F) + -+ + Isnr (B, F) + Iont(F) + -+ + Isnr(F). (B.6)
Right multiplying each side of (B.6) by (FjF/T) " (I,T'o/N)~!, we obtain
FVnr(FJF/T) " (TyT¢/N)~" — F
= [Eive (B, B) + -+ + Isnr (F) | (FF/T) ™ (TgLo/N) ™", (B.7)
We examine each term on the right hand side of (B.7) and show that Vi is non-singular. Write
— HﬁVNT(Fgﬁ/T)*l(rgrO /N =R
= [t G P+ + sy ()] - I FSE/T) (X6 /N)

%17 (12137 B, )+ + s (B (B3)

S

<Op

—~
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Thus, we focus on each term on the right hand side of (B.8).

For IlNT(B\m, ﬁ), we have

BOm ¢z 5m H2

f"IINT Bma H = Aﬁo

= OP(THCB = Cgo|*) + Op(Tm™22) = 0p(1),

where the first equality follows from the (1) of Lemma A.2 and the proof for (5) of Lemma B.5; and the
second equality follows from (1) of this lemma.

For IQNT(B\m, ﬁ), write

1 ~ 1 X 1/2
=B D)l < V{557 Z Iodsel — oiBnll?} {57 > IR(w)}
= OP(\/THﬂm - /BOHLQ) = OP(1)7

where the first inequality follows from Cauchy—Schwarz inequality; and the last line follows from the
same arguments given for IlNT(Bm, ﬁ) and the fact that = Zf\il | Foyo(vi)||? = Op(1).
Similar to the development for %HIQNT(B\WL, ﬁ)H, we have for j = 3,4, 5,

1 PO .
ﬁHIjNT(Bma E)|| = Op(VT B — Boll2) = op(1).

By (1) of Lemma B.5 and ﬁHFH = O(1), we obtain

o0 () 0 )

For I?NT( ) and IgNT(F) write
2

T T
= Z Z N21T2 Z Z E| fOt’Yo Uz)ezsfoﬂO(UJ)ej«S]

t=1 s i=1 j=1

1 N
NT Z Foyo(vi)e;
i=1

where the first inequality follows from Assumption B.2, and Assumption B.1.4. We then can conclude
that
1 ~ 1

~ 1
e ()| = = lsr (P = O <m> |

Based on the above analysis and by left multiplying (B.6) by F /T, we obtain

Var — (B'FoT)(TyTo /N (FLE/T) = %ﬁ' (182 B, ) 4+ 4 Isnr(F)] = 0p(1).

Thus, Vyp = (F'Fy/T)(ChTo/N)(F}F/T) 4 op(1). When proving the second result of this lemma, we
have shown that F(’)ﬁ /T is non—singular with probability approaching one, which implies that Vi is
invertible with probability approaching one. We now left multiply (B.6) by F|/T to obtain
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(FyF/T)Vnr = (FyFo/T)(ToTo/N)(F4F/T) + op(1)

based on the above analysis. It shows that the columns of F(’)ﬁ /T are the (non-normalized) eigenvectors
of the matrix (FjFy/T)(I'\T'o/N), and V7 consists of the eigenvalues of the same matrix (in the limit).
Thus, the third result of this lemma follows.

(4). According to the above analysis, (B.8) can be summarized by

%Hﬁnrﬁ — Byl = Op(VT 1B — foll2) + Op (jﬁ) Loy (1) |

(5). According to (B.7),

T 1 S o
TFOI(F — Follyt) = T oINT By F) + -+ - + Isnt (F) |Vt

Note that VA}} = Op(1), so we focus on %FO’[IlNT(Bm, ﬁ) 4 ISNT(ﬁ)] below.

By the proof given for the first result of this lemma, it is easy to show that
1, P P ~
I NT By ) + -+ Isnt (B, )] = Op(VT || Bm — Boll2)-

We now consider ||%F6I6NT(ﬁ)||. Write

) ) LN 1/2 L 1/2
THF(;IGNT(F)” < T (NT Z ’FéeiH2> (NT Z ”6§F||2> .
i=1 i=1
Note that 5= SN [|[Ffei[|? = Op(1). For 1k SN | [|ehF||?, write
| XN 5 N 5 N
o~ 2 ~ o~
ﬁ Z H€;F||2 < W Z HegFOHNTH + ﬁ Ztr {e;(F — F()HNT)(F — F()HNT)/ei}
i=1 i=1 i=1
N
== > lefFoTtne || + 2 {(ﬁ — Fyllny)(F - FOHNT)/G/e}
NT =T NT
1, 1= )
< 0p(1) +0Q) 5 ll€ell Zl1F — Follnr|*,

where e has been defined in (1) of Lemma B.5. In connection with (1) of Lemma B.5 and the result (4)

of this lemma, it then gives that

L Bt (F)] = 002 + 0p (-2 ) {1 el 217 — Rortr 2}
T 016NT — P P NTeeT oLLINT

T VT
= op(l)% +Op (&) Op (\/1N + \/IT) Op (ﬁ\ﬁm = Bollz> + \/1N) ;

where the second equality follows from (1) of Lemma B.5 and the second result of this lemma.

For L[| Fy Iznr(F)||, we have

N
1 ~ 1 1 1 ~
THF(SI?NT(F)H < THF(SFOH : HN\/T ;_1 Yo(vi)eg || - TEHF — Follnt||
1 1
/ /
+T”FOFOH : ‘ NT ;1 Yo(vi)e; Fo| - [[Inr||-
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By Assumption B.1.4, ||[£FjFy|| = Op(1). Also, |IIyz| and %Hﬁ — Follyr| have been stud-

ied in results (3) and (4) of this lemma respectively. Therefore, focus on Hﬁ Zf\i 1Yo(vi)e}|| and
Hﬁ sz\i1 'yo(vi)e;FoH below. Write
1 & o XY 1
/ — / . . . . JE—
E HN\/T ;70(%)61' = NeT ;jl ;E[%(Uz)’m(%)@zt@gt] <0 <N> (B.9)
and similar to (A.2)
1 O i 1
B3 k| =0 (NT) (B.10)
i=1
which immediately yields
1 FEa(B) = Op (VT - sl <) +0r () + 00 (=)
il — - g el -
T ol P ol N P\ N P\ INT
~ 1 1
< 0n(T1B ~ ioli) +0r () +0r (7)-
Similarly, L[| FfIsnr(F)|| = Op(T||Bm — Boll22) + Op (&) + Op (L),
Based on the above analysis, we have
1 - VT3 1 1
THFO(F — Follny)|| = Op(VT||Bm — Bollr2) + Op N +Op 7 (B.11)
which further indicates
P 1~ s 1
7 (F = Follnr)l| < ZI(F = Fllnr) (F = Bllny)|| + [l - = Eo(F — Folln)|
~ 1 1
= 0n(VT A~ o)+ 0n () +0r (7): (B.12)
(6). Note that (B.11) and (B.12) indicate
1_, s 1, , JT ~ 1 1
TUNTFol — ZlypFoFollyy = Op(VT||Bm — Bollz2) + Op ~ ) TOr\ T
and
1, - JTIG 1 1
Summing up the above two equations yields
1., VT3 1 1

Note that it is easy to show that

Hpﬁ n PF0”2 =tr [(Pﬁ - PFo)Q} = tr [Pﬁ — PpPp, — PrPr + Pr,]
= tr[lg,] — 2+ tr [PaPr) + tr[Ig,] = 2 tr[lq, — F' Pr, B/ T

and, when proving this lemma, we have shown that
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F%F FOFOHNT+OP(\F||ﬁm Bollz2) + Op <1> +Op <1>

N T
Therefore, we can write

~ ~ FJF
F/PFOF/T:H/NT< e

T > Tnr + Op(VT||Bm — Boll12) + Op <i,) +Op (;) ;

which in connection with (B.13) gives

Ao B - 1 1
F'Pr, /T = Iy, + Op(VT||Bm — foll12) + Op <N> Op <T> |

Then the proof of the last result of this lemma is completed

Proof of Lemma B.3:

(1). By the first equation of (B.4), we write

N -1 N N -1 N
Cs — Cpy = (Z Zz{MﬁZZ) D ZiMgpe; + <Z ZéMj:‘Zi) > ZIMpFyyo(vs)
i=1 i=1 i=1 i=1
N -1 N
+ (Z Z{Mﬁzi> Zz =il Ag,]
i=1

= A1 + Ao+ As,

where the definitions of A1, Ay and Ag should be obvious. By Lemma A.2 and Lemma B.2, it is easy to
know that

N N

1 1
T > ZiMypZi = ~T? > ZiMp, Zi + op(1) = 5 5m +op(1).
=1 =1

Similar to (A.1), we obtain ||Az|| = Op (m™#2). In the following, we focus on studying As at first, and
then turn to A;j.

In the following, let Zyp = (Féﬁ/T)_1

(TyTo/N)~L for simplicity, so Hj\,lT = VnTENnT. We now
start our investigation on Ao, and write

1
NT2 Z ZZ(M}?FOWO(%) =
i=1

TNT2 Z ZIM5(FIIg — Fy)yo(vi)
B NT2 ZZ Mg [I“VT(@"? F) + -+ Isnr(F) | Enryo(vi)

= —(Jinr + -+ JsnT)S

where the second equality follows from (B.7); and the definitions of Jiny7 to Jsy7 should be obvious

In view of the decomposition of Jon7 below, it is actually easy to show that ||Jiny7| = 0p(||6’5 —Csll)-
Thus, we start from Jony7 and write

N
BNT = ZZ'MANL Z 6;1B0.m] — 6;1Bm)) (Foro(v)) FEnTY0(v)

NT2 ZZ FNT Z@ Apgo] (Foro(vs)) FENT0(v:)
j=1
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= ot 22 20 Zpnal (BB (B35 () @ - )

i=1 j=1
L X L

e — ! s )

TNT? ; ZiMp s J; $5[As] (Fovo(vs)) FENTY0(0i)

1 N N F/I“O —1 ~
= —WZZZZ{MﬁZj’m(Uj)/( ?\7 ) Y0(vi)(Cs — Cg,)

i=1 j=1
tom Z My Z 6518 ) (Foro(v;)) FEnT70(v:)
= JonT1 + JonT2-

By a derivation similar to (A.1), H(Zfil ZIM5Z;) ' NT? Jonr2|| = Op (m™#2), so negligible. We will
further study Jonr,1 later.
For Jsn7, write

JanT = T2 Z 'MﬁWZFo’Yo v;)(85180] = ¢;1Bm]) FENTY0(v5)

= TQZZ’ F(FIIy — Fo) NTZ% 0;) (@580 — 65Bn)) FENTY0(v3)
j=1

NT2 Z Zi Mz 3T,

where the definition of J3y7; is obvious. By the analysis similar to (A.1), we just need to focus on

i oy [ Janrl|? in order to show [|[(S, ZIMpZ;) 'NT? Jynr|| = op(||Cs — Cp,l). Thus, write

1
NT? 4
=1

2
< WZ HNT Z’Yo (v7)(5180] — ;Bm)) H IFEnTy0(vi))”

2

1 . 1 N R 1/2
gop(1)f||FH;V1T—Fo||2 NZ{TZH@% @[ﬁmw?}
= op(||Cs — C, 1),

where the second inequality follows from Assumption B.1.4, Ex7 = Op(1) and ﬁ |IF|| = O(1); and the
equality follows from %Hﬁﬂ;& — Fy|| = op(1). Thus,

-1

N
(Z Zz{MﬁZi> NT? Jsnr|| = op(||Cs — Cpyl)-
=1
For Jyn71, write

JanT = N2T3 Z Z ZiMz(dj[Bom] — ¢j[/§m])€9F0HNTENT70(Uz')
i=1 j=1

N2T3 Z Z ZiM 505 Mgl FollnTEnTY0(V7)
=1 j=1
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N N
+ﬁ Z Z Zz(Mﬁ(%‘ [BO] - ¢j [@n])e;(ﬁ - FOHNT)ENT'YO(%')

i=1 j=1

= Janty + Jant2 + JanT 3

For JynT,1, write

[Jant || = N2T3 ZZZ/M 72;(Cs — Cpy)e; FollNTENTY0 (Vi)
=1 j=1
1 A 1S 7 |1 A
<Op (1)NT +Mp 'Nz 7; THe_/jFOH.HCﬁ_CBOH

j=1

TOP(\/W) (Op(VmT) - Op(T /%) |Gy = |

A

= 0p(||Cs — Cs, ).

Thus, [[Jan71]|| is negligible. Similarly, we can show both | Jsn7 2| and ||JsnT 3] are negligible by
accounting for #/¢;[Ag ][> = Op(Tm=22) and f||FH — Fy|| = op(1), respectively. Analogous to
the derivation of Jsyp and Jyn7, we can conclude that || J5n7] is negligible.

Below, we take a careful look at Jsn7. According to Assumption B.3, let Q. = Ele;el] = oI for

notational simplicity. Thus, write

N
J6NT = NT3 ZZ M Q FHNT’)/O Uz T2 ZZ Mﬁﬁ Z eje — FHNT’}/o(Uz)
= JonT,1 + JoNT,2-
We focus on JnT,2 at first.
JonT2 = N2T3 ZZZ/ i€ — Qe) FEnTY0(v7)
=1 j=1
N2T3 Z Z Z/PA eje -0 ) F\ENT’)/()('Ui)
=1 j=1
= JonT,21 + J6NT 22-
Further decompose JsnT,21 as
1 —_
JoNT21 = S >N 7 (ejel — Q) FollnrEnt0(v:)
i=1 jfl
N2T3 ZZZ, 1€ — Q) (F = Follyr)Enry0(v:)
=1 j=1

= JenT,211 + JoNT 212-

Let Q¢s be the (t, 5)" element of Q., and a;s = ﬁzyzl Zthl %(ejtejs — Qets). Then by a
development similar to Jiang et al. (2017, pp. 30-31), we obtain that

N N T T

| JenT211] = N2T3 Z Z Z Z zit (ejtejs — Qets) fosINTENT Y0 (V7)

i=1 j=1 t=1 s=1
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and

N

N T
1
| JonT212]] < —5 § E ’
22 4

1 18 (1 Pz )V
2 £ / = .
< N;TN;{T;”%”} {T |72 = ot [ =
Vi LN oy VllB — follie Vi
< 0p() 7 (VTI = s + = ) = 0p( Y Poliz 4 o, (1),

Thus, we can conclude that

ol = o8 ( m3 ) o (mﬁm —ﬁoan) op <wﬁ>

N3T NT

3

Similarly, we can obtain

Z/

§
T2

M)

1
| JenT 22| < O(1)
T

t\J\»—A‘

1 N
vz

= 0p(||Bm — Bollz2) + op (;ﬁ;) :

2

1
(||Bm Bollr2) +op (N T) We will consider JenT,1 together with Jonr,1 and

JenT later on.

We now have only one term J;y7 left to consider.

N
1 S

Jint = T2 ZZ Mg( FHNT NT nyg(vj)e;F:NT'yo(vi).

j=1
Notice that
1 & PO
WZ’YO(UJ‘)@;'F:WZ’Y( eFO‘*‘iZ’YO vj)e FHNT)
j=1 j=1

J

(m) * N%Zjo@j)e; \}THFo—ﬁHNlTH
(7) +0r () g - Pzt

where the second equality follows from (B.10), and the third equality follows from (B.9). Then, similar
to the arguments for J6 of Bai (2009, pp. 1271-1272), ||JrnT|| = op (N ) + OP(HCB — Cs, D).

Based on the above analysis, we have
Cs — Cpo + Zy! Jant
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N
_ 1 .
= —Zml {W Z Z;Mﬁel + J6NT,1 + JgNT} + negligible terms
=1
1 N 1 N
:_Z;I'WZ ZZ/Mﬁ—i_NZ ’7() Uj Foro/N) ’70(111') €;
=1 j=1

—Z;Ll - JenT,1 + negligible terms.

Further organise the above equation, we have

~ 1 Z!
Cs — Cpy = —AprEn! - — { LMy + A -}e-
B Bo INT“m NT% ; \F F 3,1 )

— A np S0t JenT, + negligible terms,

where
AT = Ina, — ' Ao - (1 + 0p(1)),
; INAN
Aant = N2T;]21\f F\f”YO(Uﬂ (7> Yo(vi),
N Z/
Z\f 770(v) (ToLo/N)~ 0 (v7).
Note that
1
N=T VN 1 Z \/ﬁ
Jont1 = "m—p N L MpQ FE i) =0 = | =0p(1),
o = e NT;\/T NTY0(vi) = P( T) p(1)

where the last equality follows from the condition in the body of this lemma. Thus, we obtain that

1
I Jonrall = Op(1)-7
N2T

N

m
i MA—i-A ire; =0
T3/2 Z{ > } " (N%T>

Thus, the first result of this lemma follows.

(2). In connection with (6) of Lemma B.2 and (1) of this lemma, we immediately obtain that

I1P5 = Proll = Op (\/\/THEm - »BOHL?) +Op (\/%) + Op <\/1T>

— 0p ( ¢ m/(NT)) +O0p ((‘/:/W) +O0p (&) .

The proof is now complete. |

Proof of Theorem B.1:
Recall that we have denoted Ain7, Aoy and As; in the proof of Lemma B.3, and we will keep

using these notations in what follows. By the definition of B\m, write

NiT o ) Bolr)

m?2
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Z/
{ \/Z»Mﬁ + Agﬂ'} €; + Op(l)

where the first equality follows from ||Ag, (r)|| = Op(vTm™#2) and the condition 2, 2% — 0; and the
second equality follows from the proof of Lemma B.3, and the conditions 2 T — 0 and 2L

2""2 0-
We then just need to consider A. Start from —§ >N Zi M e

=1 f F
Zj
3;\/TM ' NT’Z\f Robi ¥ 32 Jei
T ONTS Z f Mroes = N;S Z ~ Pro)e

i=1
= D1 —DQ.

Firstly, we show

Nj%T [H},(r) ® Ia,] A{pp St D2
m

column of U;p. Write

N ~~
1 FF’
Dy = NT? Ui/T ( T PF0> €;

1 O U{T(ﬁ—FOHNT) P 1 LU (F - Follyy) , A
= Z gy

= Op(l). Let Uy =

% and let U;r; be the jth

(F Follyt) e

1 Ul Fy
+ (F — Follnr)'ei + T—=MnrTyy — (FgFo/T) ™ Fyes

:= Doy + D2 + Da3g + Doy,

where the definitions of Dy; to Da4 should be obvious.

In the following, we let Do ; be the Gt row of Dy, for £ =1,2,3,4. Thus, for Dy, consider

N

1 / Usz
— N (€R)® L
T3 2_ (ko) VT

=1

1
—0P< )\fHF Folln ||,

where the equality follows from the development similar to (B.10)

obtain that ||Da;|| = Op ( > HF — Follnr||.
For Do, write

[ Do, <

H vec [(ﬁ — FOHNT)H/NT]

. Summing up over j for Day ;, we

N !
1 Ui . 1 ~ ~
||D22,j||§H]VT§ el ® \/7% -HTvec [(F—FOHNT)(F—FOHNT)’}H
=1

1 1~

where the equality follows from the development similar to (B.9). Summing Dgs j up over j, we obtain
that || Dao|| = Op (\/22) L||F — Fyllyr|?.
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For Ds3, write

1 N Fo
T
[ Da2s ;| < HNTZ'?; : ]

i=1

H vec HNT(F Follyr) ] H .

Note that

1 X, v R

1 T N T
NTz;e;@) N2T4 ZE Zez‘s;i}tﬁfm
1
?WFEIZE

T
Ziit,j Zigt,j
( E fm) ( E fOt
i1=112=1 =1

T N N |:

Oiyig

“EEL XX E

t=11i1= 1Z2 1

N2T3 Z Z Z E |:Zil/t%] Z:Q/tijE [f0t1f0t2 ’RNtth]:| Oi1io

t1>t2i1=11i2=1

N2T3 Z Z Z ‘at1t2| ‘01112’ - )NT27

t12>t2 i1=1149=1

z z
zmszwmnmmﬂ%m

VT T

where z;; ; stands for the 4t element of z;, and the second and fourth equalities follow from Assumption
B.A4.

For Doy, write

1 Y / Ui/T,jFO / / -1
[ D2a ;]| < N3 Z(eiFO) © = TNy — (FoFo/T) ||
=1
1
=Op <N%T> | TNy — (B F/T) 7|,

where the equality follows from the development similar to (B.10). Summing D4 ; up over j, we obtain
that | D21l = 0p (25 ) [Ty, — (FyF/T) .

Based on the analyses of Doy to Dsyy, we obtain

N T 1 ~ _
—|| D2l = Op(1 )ﬁllF*FoHNTll +Op(1) |[Un7Ilyp — (FyFo/T) 7|
m?2

1 ~
+O0p(VT - THF — Follnr|1?,

1
NET (g1 (r) @ 1, ATt S D g

m?2
Similarly, we obtain

which further gives = op(1) given the condition — 0.

N

N2T 1 w1
H m2 [H’ ( )®Idx} AINTEm 7NT3/2 ZA3’i€i
=1
N2T

N
1 ~
[H),(r) ® 14, ] A;ﬁTE;}iN § Asieil| = op(1),
1

T3/2
1=

m2

~ z"
where Az; = & S Z=MEy0(v5) (TT0/N) " 0(v3)-

Finally, we just need to focus on
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1

2T

=

A=

1
m?2

N
NP Z! _
[H),(r) ®14,] Al]%TTEml " NT32 E {\/TMFO + A3,i} ei +op(1)
i—1

N

| o 7! -

= [Hy(r) © Lo, ] AinrSat - Y {\/TMFO + As,i} ei +op(1)
=1

%
N
3

where EINT = Imdz — Z;LlA/QNT and AVQNT = ﬁ sz\il Zjvzl %MFO %’yo(vj)’21:170<vi). Then the
rest proof of the normality follows from Lemma A.2 and verifying Lemma B.1 of Chen et al. (2012b),

so omitted. [ |

Proof of Lemma B.6:

(1). Recall that IIn7 = % . @ - V1, where Vyr is defined in Lemma B.2. Thus, by (B.11) and

Assumption B.5, we obtain that

%Féﬁ = TIyr + Op <\/m/(NT) + /T /m2= + ]IV) . (B.14)

Bringing (B.14) in Ty = 2900 . B85 .yl e obtain that

ryr 1
Unr = ?VO AN - V]\ﬁlﬂ + Op <\/m/(NT) + /T /m2H2 + N) ,
which gives
i 1
My - Vr = == - TIxr + Op Vm/(NT) + /T /m2z + <

Given the conditions in the body of this lemma, the rest proof is identical to that given for Proposition

C.3 of the supplementary file of Fan et al. (2016).

(2). Using (B.14) and the first result of this lemma, the second result follows immediately. [

Proof of Lemma B.4:
(1). By Lemma B.2 and Lemma B.6,

1
VT

-on (T )

IF = Foll < —=1F'(Is, — Typ)| + —= | Fllyr — Fol

(2). Expand 67 as follows.

N LN
&, -y, = Z%(vi)%{(w)l > (e { G By = L | A,
=1 =1
rN 71 | XN R
+ D () A () TZ%(W)F/FOA%(%)
Li=1 i =1
rN 71 XN R
l DIEACHEACH TZ%(W)F'%
Li=1 i =1
rN 71 | XN R R
+ D (o) ) (vi) T > A (vi)F' (il Bol — ¢i[Bim))
Li=1 i =1




= A1+ Ay + Ag + Ay

Start from Az and write

N -1 N
1 o~

As = ;%ﬂn(vi)%ﬂn’(w)l T;%(Ui)(F_FoﬂNT)IBZ

N -1 1 N

S DIEAACIE AT =D P ACH At
i—1 i=1
= Az + Ago.
For Az,
1 N 1~
‘NT;%( )(F Follyr)'e H Ze ® 6, (v;) ‘ﬁHF_FOHNTH

or ()l

:OP< nT +\/ﬁ>7

Nm?2#2 N

where the first equality follows from a development similar to (B.9) by accounting for the dimension
of 7¢,(-); and the second equality follows from Lemma B.2. In connection with (2) of Lemma A.2, we

obtain that ||As1]| = Op ( nl__ 4 %)

Nm?2H2

For A3s, by Lemma B.6, we have
1 & 1 &
M—‘Z]-%(Ul) NrFbei = WZ%(w)F{Sei (14 o0p(1)).
1= =

Thus, we just focus on = Zf\il F,(v;) Flei below, and write

N 2 N N T T
1 1 n
E| 57 Z K (vi)Foei| = S Z Z_j ; g Bl fou 60 (00) #a(07) foseinejs] = O(1) 7

where the second equality follows from the development similar to (A.2). Thus, ||Asz| = Op (\/75)-
Therefore, we can conclude that ||[As]| = Op (f) +Op ( N;gw )

Similar to (A.1), we just need to consider the next term for As.

F’FO o (02) < Op(1 Z 1A, (v)]|? = Op(n~2m).

Thus, [|[Az|| = Op(n™"). Again, similar to (A.1), we just need to consider the next term for A4.

2

@ [80] — 6i[Bm))'F

IN

N
— Z (60 = Pl (F = Folls) + 55 3 6ol = Bl ol

2||F Follyr|?

F 2
o Zuwo — gufBalI + 2000 Zuwo — 6Bl

NT?

IN
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= 2A41 + 2A40.

2‘3

It is easy to know Ay2 is the leading term, and Age = Op(THB\m — BollF2) = Op (
Therefore, || A4]| = Op (\/7%) + Op(VTm™+2).

Similarly, for A1, we just need to consider

T) + Op (Tme”Q) .

2 1~
<||=F'Fy—1
o

{ FFo—Idv}c%”( i)Chro

2 1 N )
A @I
=1

2
+ Op (Tm_Qm) + Op <1> ,

SF Ry -1 (m)
7L o~ 1a, =0Op NT

= Op(1) H N2

where the second equality follows from (2) of Lemma B.6. Thus,

Il = 0 (/3 ) + Op (T + 0 (1 ).

Based on the above arguments, the second result follows. |

Proof of Theorem B.2:
(1). For each fixed ¢, we consider the asymptotic distribution of v/ N (ﬁ — fot)- By (B.7), we write

VN(fi — for) = VN(fi — valTJ?t) + \/N(valet — for) = \/N(H;V}fﬁ — for) +op(1)

N
o 1 - - .
= VN(To/N) Y (F'Fy/T) 1ﬁ g (F'eie,-t + F'eivy(vs) for + F’Fofyo(vi)eit> +op(1)
i=1

N
1 IR
= VN(IpTo/N)~ N§ , o(vi)eir +op(1) —p N(0,Ep ' EpE0),

NT

where the second equality follows from Lemma B.6 and —5z

— 0; the third equality follows from the
proof of Lemma B.2; the fourth equality follows from Assumption B.5; and the last step follows from
procedures similar to those under (A.44) of Chen et al. (2012b). Thus, the result follows.

(2). By Lemma B.4, the second result follows. [

Appendix C

In this Appendix, we comment on both methods, and then provide some numerical simulations to further
compare the finite sample performance of both methods.

Having established Theorem 2.1 of the main text and Theorem B.1, it is easy to see that the direct
estimation method and the PCA method are asymptotically equivalent in terms of the estimation on
Bo(+), as the asymptotic covariances associated with the estimators of fy(-) are identical. Moreover,

similar to Corollary 2.1 of the main text, we can obtain that

{35z 55 Bult) = 60(r) >0 N(O. 1)

where 62 = <= ZZ 1 Zt L (v — z‘tgm(”t) — ﬁfy\n(vi))Q, and f]g is defined in Corollary 2.1 of the main
text.
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To compare both methods in general, firstly, we believe that in terms of the numerical implementa-
tion, the direct estimation method would be preferred, as the PCA-based approach always requires an
algorithm involving iterations, which may yield some inconsistent estimates under some circumstances
(cf., Jiang et al., 2017). Second, to identify both the factors and loading functions, the method of the
main text requires less restrictive conditions, which seems to be obvious in view of Assumption B.5.
As a consequence, the theoretical development of the direct estimation method is more straightforward.
Finally, we point out that as mentioned by Connor et al. (2012), it is of interest to allow the variables
of the loading functions to change over both ¢ and ¢t. The direct estimation method can obviously
be employed with minor modifications on the notations. However, our experience suggests that the
PCA-based approach may no longer be working, as we cannot project out the factor structure when v

is indexed by both 7 and t.

C.1 Numerical Simulations

Below, we implement simulation studies to compare the direct estimation method of the main text
(referred to as MDE hereafter) and the PCA—based approach of Appendix B (referred to as MPCA
hereafter). The data generating process is identical to Section 3 of the main text, and still consider
Case 1 to Case 3. We let d, = d, =1 and d}, = d,, = 2, which is assumed to be known already.

Apart from reporting RMSE associated to Bg1, we also report the next measurement to compare the

estimate on the factor structure of each method. For each generated dataset, we calculate
o 1 /W /12
Se')”f - NT H - FOFOH ’

where for MDE, W = C~’1:T”H’1:N, Crp = (61, ... ,6’T)’, C, is defined by (2.5) of the main text, and
Hin = (Hn(v1), .., Ho(on))s for MPCA, W = FI', T = L(Y1 — 61[Bm], - - ., Yiv — o [Bm])' F.

We summarize the results in Table C.1 below. Several facts are revealed. Both methods are almost
identical in terms of the estimation on Sy; regardless whether there is a trending in fy;. The differences
are negligible, as it is down to the third decimal. For MDE, as T" increases, the RMSEs associated to
the factor structure tends to remain at the same level, which matches the second result of Theorem 2.1
and Corollary 2.2. For MPCA, although %ﬁ 'F implies the estimates of fy;’s follow a stationary process
implicitly, it seems that the estimates on both By and the factor structure are not affected too much
even for Case 2 and Case 3. Theoretically supporting this point may lead to another research paper

which we wish to consider in the future study.
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Table C.1: Results of MDE and MPCA

Bo1 Factor Structure
N\T 80 160 240 80 160 240
MDE Case 1 80 0.050 0.025 0.019 0.288 0.288 0.333

160 0.034 0.020 0.013 0.202 0.232 0.232
240 0.032 0.016 0.011 0.189 0.189 0.189
Case 2 80 0.070 0.042 0.034 0.289 0.289 0.332
160 0.047 0.031 0.024 0.202 0.233 0.232
240 0.043 0.025 0.019 0.189 0.189 0.189
Case 3 80 0.055 0.033 0.029 0.288 0.288 0.333
160 0.040 0.025 0.019 0.203 0.233 0.232
240 0.036 0.020 0.015 0.189 0.189 0.189

MPCA Case 1 80 0.058 0.028 0.020 0.289 0.248 0.228
160 0.039 0.022 0.014 0.242 0.191 0.169

240 0.036 0.018 0.012 0.218 0.167 0.147

Case 2 80 0.058 0.029 0.021 0.288 0.247 0.228

160 0.040 0.023 0.015 0.242 0.191 0.169

240 0.037 0.018 0.012 0.218 0.167 0.146

Case 3 80 0.057 0.028 0.021 0.288 0.248 0.227

160 0.040 0.023 0.015 0.242 0.191 0.169

240 0.036 0.018 0.012 0.217 0.167 0.146

To further compare both methods under different scenarios, we modify the above DGP slightly as

follows:

1. EC 1: The DGP of fy,’s is modified as for = psfo—1 + U(1,2), and let p; = 0.2,0.8.
2. EC 2: The DGP of e;;’s is modified as e;; = N(0,07) where 07 = + Zf\; |zt ]|/t

3. EC 3: The DGP of v;’s is modified as v; = N(0,40?) where 07 = 75 ST a2

i

The results are summarized in Table C.2. Again, the same pattern remains. Both methods are almost
identical in terms of the estimation on Byp;. For MDE, as T increases, the RMSEs associated to the
factor structure tends to remain at the same level. Given the number of factors is known, it is not very
clear to claim which method is obviously better than the other one numerically. However, when the
number of factors is unknown, MDE allows us to identify which unobservable factor(s) can be removed

from the system precisely as discussed in the main text.
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Table C.2: Results of Extra Cases

Bo1 Factor Structure
N\T 80 160 240 80 160 240
EC1 (py =0.2) MDE 80 0.050 0.025 0.019 0.289 0.289 0.333

160 0.034 0.020 0.013 0.202 0.232 0.232
240 0.032 0.016 0.011 0.189 0.189 0.189
MPCA 80 0.056 0.028 0.021 0.294 0.250 0.229
160 0.038 0.022 0.015 0.244 0.192 0.170
240 0.035 0.018 0.012 0.219 0.167 0.147

EC1 (py =0.8) MDE 80 0.052 0.026 0.020 0.289 0.289 0.333
160 0.036 0.021 0.014 0.202 0.232 0.232

240 0.033 0.017 0.011 0.189 0.189 0.189

MPCA 80 0.058 0.028 0.021 0.264 0.216 0.199

160 0.039 0.022 0.015 0.216 0.171 0.153

240 0.036 0.018 0.012 0.198 0.153 0.136

EC2 MDE 80 0.007 0.004 0.003 0.006 0.004 0.004
160 0.005 0.003 0.002 0.004 0.004 0.003

240 0.005 0.003 0.002 0.004 0.003 0.002

MPCA 80 0.014 0.010 0.008 0.169 0.172 0.173

160 0.008 0.006 0.004 0.167 0.169 0.170

240  0.007 0.004 0.003 0.166 0.168 0.168

EC3 MDE 80 0.050 0.025 0.019 0.295 0.296 0.344
160 0.035 0.020 0.013 0.205 0.237 0.237

240 0.032 0.017 0.011 0.191 0.192 0.191

MPCA 80 0.056 0.028 0.021 0.299 0.259 0.242

160 0.040 0.022 0.015 0.254 0.212 0.195

240 0.036 0.018 0.012 0.235 0.192 0.173

Appendix D

We further discuss some possible extensions in this section.

D.1 Estimation on X, of Assumption 3

If we can provide a consistent estimator of ¥, under some conditions using certain norm (e.g., spectral
norm, Frobenius norm, etc.), then we are able to make inferences based on results (2) and (3) of Theorem
2.1. The question then becomes how to estimate a high dimensional covariance matrix Y. (e.g., Fan
et al., 2013; Chen and Leng, 2016).

Suppose that we know e; = (e1¢,...,ent) for ¢ > 1. A naive estimator of ¥, would be % Zthl eey

: 2 . . . .
provided NT — 0. Since e;’s are unobservable, we modify the naive estimator as
T

Se = Fubwan = 1 D% — QUE) (Y - QT
t=1

where Y; = (yit,...,ynt) and Q; = (Q14,...,Qnt)’. To relax the restriction N72 — 0, we can apply

the generalised shrinkage technique to Y. as in Fan et al. (2013), forcing very small off-diagonal entries

36



gij to be zero. Let s,(-) be a shrinkage function satisfying the following restrictions: (i) |s,(w)| < |w|
for w € R; (i) sp(w) = 0 if |w| < ¢; (iii) |sp(w) — w| < ¢, where ¢ is a tuning parameter. The
shrinkage function satisfying the above three restrictions covers some commonly used thresholdings in
the literature, e.g., the hard thresholding, the soft thresholding and the SCAD function. Thus, the final
form of the estimator of ¥, is
a A A 52’2’7 1= ja
Ye =A{0ij}nxn, Tij = N o (D.1)
sp(0ij), 1 #J.
The investigation on (D.1) can be done by following Fan et al. (2013) and Chen and Leng (2016), and

it may lead to another research paper.

D.2 Alternative Methods for Factors Selection

We comment on some possible alternative methods for selecting the factors.
First, one may adopt a PCA-based approach as shown in the online supplementary file of this
paper, and consider the ratio criterion studied in Lam and Yao (2012) and Ahn and Horenstein (2013).

Specifically, we define Xj as the j' largest eigenvalue of the estimated sample covariance matrix
1 & _
N > (Y= ailBD (Y — 6ilB))s (D.2)
i=1

where Y; = (i1, ..., yir)’s ¢ilB] = (21 8(rin), ..., x,pB(ri7))’, and B is obtained from the PCA-based
approach assuming that the number of factors is a pre-specified fixed positive integer J. We then
estimate the number of factors by

Aj+1

r= argmin ———.
je{1,2,,J-1} Aj

Note that slightly over—identifying the number of factors usually does not have any serious impact on
consistency and rates of convergence of the subsequent estimation (Fan et al., 2013; Moon and Weidner,
2015). That is why B;,{L is adopted in (D.2). After identifying the number of factors by 7, we can
update our estimate on (y(-) again. Similarly, we may consider using the criterion provided in Bai and
Ng (2002). However, for the PAC-based approach, it seems that the information of partially observed
factor structure is not fully utilized, so we can only identify the number of relevant v; ’s without knowing

which can be removed from the system.

Alternatively, one may follow Sun et al. (2016) to test

Ho : Pr{voe(w) =0} =1 wv.s. Hy:Pr{ypu(w)#0} >0 (D.3)

for £ = 1,...,d,. To achieve good finite sample performance, one may need to further consider a
residual-based bootstrap method as suggested in the conclusion of their paper. Such a methodology
has also been used in Su and Chen (2013) and Su et al. (2015) under stationary panel data settings.

Moreover, the approach of (D.3) further leads to the next discussion.
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D.3 Constancy Test

As pointed out by one referee, testing the constancy of the coefficient functions is of interest. Su et al.
(2015) adopt the residual based test to exam whether y; = m(x;) + '761- fot + e;+ posses a parametric
form. In another work, Sun et al. (2016) use the residual based test to construct a nonparametric test
on a varying coefficient model with integrated time series. Some relevant studies also include but not
limited to Fan and Li (1996), Dong and Gao (2018), etc.

Following the same spirit, we can test the constancy of the coefficients of model (1.3) in several

different ways. For example,

Ho: Pr{Bo(:)=bo} =1 for some by € R%,

Hi:  Pr{Bo(:)=b} <1 forallbec R, (D.4)
or

Ho: Pr{y()=r} =1 for some ry e R¥,

Hy:  Pr{yw()=r} <1 forallreR%, (D.5)
or

Ho: Pr{Bo(-) =bp and y(-) =rp} =1 for some by € R% and some ry € R%,
Hi:  Pr{fo(:)=bory(:)=r} <1 forallbecR% orall rc R%, (D.6)

Under the null of (D.4), the estimation and testing procedure will be very similar to Su et al. (2015),
but one needs to account for the nonstationarity of x;;. On the other hand, the study of Sun et al.
(2016) sheds a light on how to incorporate the integrated regressors for the varying—coefficient models.
Under the null hypotheses (D.5) and (D.6), model (1.3) reduces to parametric/semiparametric panel
data models with time effects respectively. A test can still be established similarly.

Generally speaking, (D.4)—(D.6) are more challenging than they look like, as the theoretical de-
velopment involves unobservable factors and integrated time series, which essentially requires some
considerable new developments. Thus, it should be left for future research. We however will provide
some detailed development on the testing issues with the corresponding discussions and simulation

studies below.

For the time being, assume that {fo;} is observable and {e;;} is independent of {z;,v;, for} for
simplicity. Consider (D.6) as an example. Under the null of (D.6), we can write model (1.3) of the main

text as
Yit = iPo + forvo + eir == 200 + €ir, (D.7)

where 0y = (5),7;) and z; is defined accordingly. To facilitate development, we further introduce

some notations. Let Dp = diag{ﬁ[dz,fdv}, and Dy = diag{mldz, \/A}T/Qldv}. Suppose that
St ={j|jisoddand1 < j <T} and Sy ={j | jisevenand 2 < j <T}. Let t # s € S; read as
t€Sj,s€S;jand t # s, where j =1,2.

We construct our statistic as follows:
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NT/2 . LlNT — BNT

LNT = PN ’
02/ LaonT
where
N
LinT = T/2 2 Z eztejs DTZzt) (DTZJS)
1,j=1t#5s€Sq

N
Loyt = T/2 N2 (T2 Z { + Z Z + Z } [(DTZit)’(DTZjS)]2’

1,j=1 t#s€Sqg  t€S; s€Sq  t#s€S;

5 N T
~ 1 5~ ~ ~ x
e S UIDrzall?, 72 = NT SN =i —2ibs,, G = yi — 2,0,
i=1 teS, i=1 t=1
_1 1
R N N N T N T
o P B ) S (z > ) S5 e
i=1teS, i=1teS; i=1 t=1 i=1 t=1
Below, we shall show that as (N, T) — (o0, 00),
LNT —D N(O, 1). (D.S)

Before proceeding further, we make a few comments. The construction of Ly7 does not involve a
nonparametric kernel as in Su et al. (2015) and Sun et al. (2016), so we can consider it as an improvement
and simplification. As a consequence, it allows us to avoid a sensitive question “bandwidth selection”
in practice. When establishing Ly7, the sample split is due to a technical challenge raised in the
theoretical development, as using full sample will cause some crucial values cancelling with each other

asymptotically. Below, we start our development.

For Loy, it is easy to know that

plim Loyt = hm

N.T T/22 Z Z [(Drzir)’ DTz]s)]Q

7.7 1 t;éSESZ

+}\1/H71“ N2 T/ 2 Z Z Z E DTZzt DTZJS)]

i,j=1t€Sy s€Sq

—l—hm T/2 2 Z Z DTZzt DTZ]S)]2

1,j=1t#s€S
= z% + z% + z%,
where the definition of zjz for 7 =1, 2,3 should be obvious.
For LinT, write

Liny = NZT ) Z > lew+ 24y (60 — Bs,)]less + 254(00 — B5,))(Drzie) (D)
1,j=1t#s€Sy

= T/2 2 Z Z €it€js DTZzt) (DTZ]S)

1,j=1t#s€Sq

+ (T/2 951 Z Z eitzjs(Drzit) (Drzjs)

1,j=1t#s€Sa
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+ Nz (T/Q —bs,)’ Z >zl (Drza) (Drzjs) (6o — 0s,)
7.7 1t7éS€SZ

= LinT1 +2LiNT2 + LinT 3.

Note that by some routine practice, one can show that

NT/2- Lint1 —p N(0,0%,),

where

2

2 : § E €itCs A TZ
0'[1 ]\l/{n N2 T/ 5o it ]S T zt) ( ]S)

=lim-———= E E E g [ete‘ CiotoCi
N,T N2 T/2 211171811212~ ])282
i1,J1=1 t1#51€Sg i2,j2=1 ta7#s2€S2

(Drziyt,) (Drzjs,) (D12igt,) (DTngsz)}

g 2 % X Eaneinecn

i1,j1=112,j2=1t1#s1 €S2

'(DTZiltl )/(DTZjlsl ) (DTZiQtl ) (DTZjQSl ):|
N

. 2
=gy L 2 Pl Orss)]’ = o
’ i1,j1=1t1#51€S2

in which the third equality follows from the martingale difference condition across t; and the fourth
equality requires e;; being independent across 1.

We now consider Lin7 2.

N
~ 1
Lint2 = (60 — 951)/W Z Z eitzjs(Drzit) (Drzjs)

i,j=1 t£5€S,
_1 /
N N o
! !
==3UDD mezhe | DD ween NoT2 > > eazis(Drzi) (Drzjs)
k=1/¢€S, k=1/¢€S1 1,j=1t#s€Sy
— !
N N
!
= —1< Dyt | DNt Z Z 2oz DNT Dy Z Z 2keChe
k=1/4€S1 k=1/¢€S;
2 Z Z €itZjs DTzzt) (DTZ]S)
».7 1t;és€SQ

For simplicity, suppose that for j = 1,2

N
/
Dyt Z Z 2z DNT — P 14,44, -
k=1 ZESj

Then we can further write that

Lint2 = NT/ Z > (Drzpe) e - T/2 N2 (T2)2 Z > ei(Drzjs2;,Dr)(Drzi) - (14 0p(1))
k=1(eS, i.j=1t#s€Ss
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Z Z DTZM ers - NT/2 Z Z eit( DTZzt 1 + OP(l))

k 16651 i=1 t€Sy

= T/ NET ) Z Z Z Z eweeit(Drzie) (Drzie) - (14 op(1)).

k=1/4€S1 i=1 teSo

Following the same procedure as LinT,1, we know that

NT/2- Linr2 —p N(0,0%,),

where

0%2 1 T/2 2 Z Z Z E e’LtejS DTzzt> (DTZ]S)]

i,j=1t€S1 s€Sq

%r% Rl T/2 2 Z Z Z E (Drzi)'( DTZJS)] =g’ 22.

1,j=1t€S] s€Sq

For LINT,Sa write

1 ~
Lint3 = W 951 Z Z Zzt s(Dr2zit) (Drzjs) ¢ (6o — bs,)
1,j=1t#s€Sz
1
= W Z Z €it€js .DTZ“) (-DTZ]s) (]_ +0P(]—))
1,j=11t,5€S1

= ZINT,E} -(1+o0p(1)),

where the second equality follows from a development similar to Lixy7 2 after replacing 0y — 551 with its

definition. Note that

E[NT/2- LinT3] =

and

E[NT/Q : LINT,?)]2 = T/2 Z Z Z Z [eiltl €j151Cint2Chaso

11,J1=1t1,51€S1 i2,j2=112,52€S5;

'(DTZiltl) (DTZJ151 ) (DTZi2t2) (DTZj282)]

N YDID DD DD DZ PRSI

11,J1=1t1€S1 i2,j2=1t2€S1

'(DTziltl) (DTZjltl ) (DTzi2t2) (DTijtz)]

T/2 Z Z Z |:ei1t1€j1516i2t1€j251

i1,J1=1142,j2=1 t1#51€51

'(DTZiltl )/(Dszlsl ) (DTZi2t1 ) (Dsz281 )]

T/QQZZ > EllDrzi P Drzi )

i1=114a=11t1#t2€S;
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N2 T/2 Z > El(Drzin) (Drzjys,))” + o(1).

i1,j1=1t1#s1€S1

Similar to the development of Liy7 1, we obtain that

NT/2- Lint3 — Bnr —p N(0,0%,),

where

0%3 111% N T/2 Z Z DTziltl)/(Dszlsl)]2 =olz2
i1,J1=1t1#s1€S1
in which we need to assume that z; is independence across i. Note that z; being independence across
1 is not really important, and it can be relaxed by modifying the form of Byr.

Based on the above development, we conclude that (D.8) follows. Note that the development of (D.8)
requires the martingale difference condition and cross—sectional independence among error terms. To
relax the restrictions on error terms (say cross—sectional independence), we need to consistently estimate
0;; in Assumption 3 of the main text. Then the discussions on “Estimation on ¥, of Assumption 3”
apply. More importantly, the above procedure assuming that {fo;} is observable. For the cases with
unknown factors, these questions become more challenging than it looks like, so it deserves another
research paper in view of the technical challenges involving unobservable factors and integrated time

series, which essentially requires a combination of Su et al. (2015) and Sun et al. (2016).

For (D.4), model (1.3) of the main text reduces to
Yir = Tybo + fovo(vi) + eir

under the null. Then one can adopt the PCA—based approach of Su et al. (2015) to conduct the
hypothesis test. However, the nonstationarity of x;; needs to be taken into account. Sun et al. (2016)
and Dong and Gao (2018) have clearly explained the difficulties of incorporating nonstationary variables

in constancy test, so we refer interested readers to their works and the references therein.

To demonstrate the feasibility of (D.8), we implement some simple simulation studies below. The
DGP is as follows. wzj = x;;—1 + iid. N(0,0.514,), fore ~ iid. U(1,2) for £ = 1,...,d,, v; ~
iid. N(0,414,), rig ~ iid. U(—4,4) 4+ v;¢/4, and e;; ~ iid. N(0,1). We consider the following four

cases for the coefficients.
e Size: By = 1g,x1, and 7o = 1g, x1;

e Power:

1. Bo= eXp(_r@?t/2) : 1dx><1; and v = 1d1,><1§
2. Bo = la,x1, and yo(v;) = (exp(—vi1),...,exp(—viq,))’;

3. fo= exp(—r?t/Q) 1g,x1 and vo(vi) = (exp(—vin1), ..., exp(—viq,))s

After J replications, we report the following value for each case under different choices of N and 7.
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J
-1
I = J;mLNT,j\ > 1.96),

where L7 ; stands for the value of Lyt at jth replication.
We let d, =1, d, = 2 and J = 500, and summarize the results in Table D.3 below. Overall, the size
of Table D.3 converges to 5% as (N, T') — (00, 00), which verifies (D.8) numerically. Also, the power of

three cases converges to 1 sufficiently fast, which indicates good finite sample performance of our test.

Table D.3: Size and Power of (D.8)

N\T 80 160 240
Size 80 0.090 0.090 0.082
160 0.070 0.058 0.054
240 0.068 0.052 0.048
Power (1) 80 0.968 0.974 0.992
160 0.984 0.992  0.99
240 0.988 0.990 0.990
Power (2) 80 0.902 0.952 0.982
160 0.946 0.976 0.984
240 0.968 0.976 0.990
Power (3) 80 0.792 0.918 0.968
160 0.872 0.958 0.958
240 0.886 0.964 0.990

D.4 Cases with Mixed 1(1)/1(0) Regressors

Without too many difficulties, we can change the coefficient function of the main text from Sy(r;) to

Bo(rit, 7¢), where 7, = t/T. We then consider a model with interactive fixed effects as follows.
Yit = x134610(Tit, Te) + 95020 (rie, 7e) + fopvi + et (D.9)

where x1;; and w95 are I(1) and I(0) across t, respectively. As explained in Section 4 of Bai et al.
(2009), the difficulty of considering such a model lies in the requirements of different normalizers, which
further gives rise to a challenge of the degeneration of asymptotics since the covariance matrix would be
singular. The detailed development of Appendix B of this study provides a clear solution to this type
of challenge.

We now briefly sketch how to estimate (D.9), and further implement a simple Monte Carlo to back
up our arguments. We still need to restrict the set that the coefficient function of I(1) regressors to a
set like By of Appendix B. The objective function and the corresponding estimators are defined in the
same fashion as Appendix B. Then the asymptotic properties can be derived with minor modification
on the notations.

To support our arguments, we implement a simple Monte Carlo study here. Let x1;; and xo; be

scalars, and further let

1t = T1i4—1 +11.d. N(0,1) and w9y = 0.5x9;,—1 +ii.d. N(0,1).
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The factors are generated by fo; ~iid. N(0,1). For{=1,...,d,, vie ~iid. exp (—(Uz‘vg — 5/4)2) with
v ¢ ~ii.d. U(0,1). The error terms are generated by e; = 0.4 e;—1 + N(0, X,) with 3, = {O.6‘i_j|}NxN.
Similarly, generate r} = (r;,...,7;)’s where 1} = 0.877_; + N(0,%,.) with ¥, = {04777} v . Let
rie = 15 4 | forll® + S50, Jvie], so that {r;} is correlated with the factor structure. For the coefficient
functions, let Bo1(r) = exp(—72/2) depend on 7 only, and let Bo2(7) = 72 depend on 7 only. The
supposition of this form may facilitate to plot the estimates of 5y (see Figures D.1 and D.2 for details),
because a three dimensional picture is not easy to draw for the purpose of comparison. We adopt Hermite
functions to expand [p; with the truncation parameter m; = [N Tﬁ 4+ 1 , while we use the Fourier
series (as used in Dong and Linton (2018)) to expand fp2 with the truncation parameter mg = | NT'| 7.
Throughout the simulation studies, we choose d,, = 3.

In each replication, we estimate the coefficient functions using the PCA—based approach by assuming
Fp is known and unknown respectively, and record the estimated coefficient functions on some selected
points over certain intervals (referred to as “M1” and “M2”). When Fj is known, we just need to replace
Mp with Mg, in the objective function. After 1000 replications, we plot the lower and upper bounds
of these values in Figures D.1-D.2 under a variety of choices of (IN,T') (the true curve is referred to as
“True”). For both figures, as the sample size goes up, the distance between lower and upper bounds
becomes smaller, and all bounds move towards the real function. Moreover, the lower and upper bounds

of M1 and M2 are almost identical, so it verifies the above arguments.

N =50, T =100 N =50, T =150

Bor(wr) = exp(—w?/2)

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

True ML —— M2 |

Figure D.1: Bo1(w1) = exp(—w?/2) and its estimates
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N =50, T = 50 N =50, T =100 N =50, T =150

True ML —— M2 |

Figure D.2: Bo2(w2) = w? and its estimates

D.5 Assumption on r;

Recall that as mentioned in the main text, the independence assumption between x;; and {ri, v, for}
can be further relaxed by following Assumption B.1 of Dong and Linton (2018).
Moreover, the assumptions on 7 in fact can be further relaxed to the locally stationary process by

following Vogt (2012) and Dong and Linton (2018) in order to account for more cases.

Definition D.1. The d x 1 dimensional process {ry | t = 1,...,T} is locally stationary if for each
rescaled time point u € [0,1] there exists an associated process {riu] | t =1,...,T} with the following

two properties:
1. {rfu] | t=1,...,T} is strictly stationary with density f,(r);

2. It holds that ||re — re[u]lly < (J7% — ul +T7') Re(u) a.s., where 7z = t/T, {Ry(u)} is a process of
positive variables satisfying E|Ri(u)|? < C for some p > 0 and C < oo independent of u, t, and

T. Moreover, | - ||, denotes an arbitrary norm on RY,

Some detailed development has been given in an earlier version of this paper. As it is not a main
concern for the partially observed factor structure, we remove this setting from the main text in the

revised version.

References
Ahn, S. C. and Horenstein, A. R. (2013), ‘Eigenvalue ratio test for the number of factors’, Econometrica 81(3), 1203-1227.
Bai, J. (2009), ‘Panel data models with interactive fixed effects’, Econometrica 77(4), 1229-1279.

Bai, J., Kao, C. and Ng, S. (2009), ‘Panel cointegration with global stochastic trends’, Journal of Econometrics 149(1), 82—
99.

45



Bai, J. and Ng, S. (2002), ‘Determining the number of factors in approximate factor models’, Econometrica 70(1), 191-221.

Bai, J. and Ng, S. (2013), ‘Principal components estimation and identification of static factors’, Journal of Econometrics
176(1), 18-99.

Bernstein, D. S. (2005), Matriz Mathematics: Theory, Facts, and Formulas, Princeton University Press.

Chen, J., Gao, J. and Li, D. (2012a), ‘A new diagnostic test for cross-section uncorrelatedness in nonparametric panel data

models’, Econometric Theory 28(5), 1144-1163.

Chen, J., Gao, J. and Li, D. (2012b), ‘Semiparametric trending panel data models with cross-sectional dependence’, Journal

of Econometrics 171(1), 71-85.

Chen, Z. and Leng, C. (2016), ‘Dynamic covariance models’, Journal of the American Statistical Association

111(515), 1196-1208.

Connor, G., Hagmann, M. and Linton, O. (2012), ‘Efficient semiparametric estimation of the fama-french model and
extensions’, Econometrica 80(2), 713-754.

Dong, C. and Gao, J. (2018), ‘Specification testing driven by orthogonal series for nonlinear cointegration with endogeneity’,

Econometric Theory 34(4), 754789.

Dong, C., Gao, J. and Peng, B. (2019), ‘Estimation in a semiparametric panel data model with nonstationarity’, Econo-

metric Reviews 38, 961-977.

Dong, C. and Linton, O. (2018), ‘Additive nonparametric models with time variable and both stationary and nonstationary

regressors’, Journal of Econometrics 207(1), 212-236.

Fan, J., Liao, Y. and Mincheva, M. (2013), ‘Large covariance estimation by thresholding principal orthogonal complements’,

Journal of the Royal Statistical Society: Series B 75(4), 603—680.

Fan, J., Liao, Y. and Wang, W. (2016), ‘Projected principal component analysis in factor models’, Annals of Statistics
44(1), 219-254.

Fan, Y. and Li, Q. (1996), ‘Consistent model specification tests: omitted variables, parametric and semiparametric func-

tional forms’, Econometrica 64(4), 865-890.

Jiang, B., Yang, Y., Gao, J. and Hsiao, C. (2017), Recursive estimation in large panel data models: Theory and practice.
Working paper available at https://ssrn.com/abstract=2915749.

Lam, C. and Yao, Q. (2012), ‘Factor modeling for high-dimensional time series: Inference for the number of factors’, Annals

of Statistics 40(2), 694-726.

Magnus, J. R. and Neudecker, H. (2007), Matriz Differential Calculus with Applications in Statistics and Econometrics,
third edn, John Wiley & Sons Ltd.

Moon, H. R. and Weidner, M. (2015), ‘Linear regression for panel with unknown number of factors as interactive fixed
effects’, Econometrica 83(4), 1543-1579.

Su, L. and Chen, Q. (2013), ‘Testing homogeneity in panel data models with interactive fixed effects’, Econometric Theory
29(6), 1079-1135.

Su, L., Jin, S. and Zhang, Y. (2015), ‘Specification test for panel data models with interactive fixed effects’, Journal of
Econometrics 186(1), 222-244.

Sun, Y., Cai, Z. and Li, Q. (2016), ‘A consistent nonparametric test on semiparametric smooth coefficient models with

integrated time series’, Econometric Theory 32(4), 988-1022.
Vogt, M. (2012), ‘Nonparametric regression for locally stationary time series’, Annals of Statistics 40(5), 2601-2633.
Wang, H. and Xia, Y. (2009), ‘Shrinkage estimation of the varying coefficient’, Journal of the American Statistical Asso-

ciation 104(486), 747-757.

46



