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Supplemental Section 1. Underlying model for partial least-squares regression 
Partial least-squares (PLS) regression is a useful multivariate regression analysis 

method. Consider linear relationships of n samples between explanatory variables xij (i 
= 1−n; j = 1−m) and objective variables yi (in this paper, only a single variable yi is 
considered): 
 

yi = b1xi1 + b2xi2 + b3xi3 + ... + bmxim + fi    (S1), 
 
where bj and fi are the coefficients of xij and the residual, respectively. Eq. S1 can be 
rewritten using objective variables y = (y1 y2 y3 ... yn)T, regression coefficients b = (b1 
b2 b3 ... bm)T, y-residuals f = (f1 f2 f3 ... fn)T, and explanatory variables X = (x1 x2 x3 ... 
xm): 
 

y = Xb + f       (S2), 
 
where xj = (x1j x2j x3j ... xnj)T. In this study, we use the nonlinear iterative partial least 
squares (NIPALS) [S1] algorithm to predict the regression coefficients between X and 
y, which are scaled by a combination of mean centering and standardization (in our 



case, the NIPALS algorithm is non-iterative because the objective variables y are not 
expressed as a matrix but rather a single vector). The objective variables y can be 
expressed as follows in the NIPALS algorithm: 
 

y = Tc + f = XW(PTW)-1c + f     (S3), 
 
where T = (t1 t2 t3 ... ta), (a indicates the number of factors considered in the PLS 
regression), P = (p1 p2 p3 ... pa), W = (w1 w2 w3 ... wa), and c = (c1 c2 c3 ... ca)T are 
X-scores, X-loadings, X-weights, and y-weights, respectively. The first X-weight 
component w1 and the first X-score component t1 are calculated as follows: 
 

w1 = XTy/||XTy||       (S4), 
t1 = Xw1       (S5). 

 
Component wa is obtained in order to maximize covariance between X and y. The 
component ta is the latent variable used to build the multivariate regression model with 
a small number of variables. The first X-loading component p1 and the first y-weight 
component c1 can be obtained by a single regression to X and y using the latent 
variable t1. Therefore, the components p1 and c1 are also calculated as follows: 
 

p1 = XTt1/t1Tt1       (S6), 
c1 = yTt1/t1Tt1       (S7). 

 
Finally, the projection data to X and y (i.e., t1p1T and t1c1) are removed from the 
original X and y: 
 

X' = X − t1p1T       (S8), 
y' = y − t1c1       (S9). 

 
The deflated data X' and y' are used as the next X and y in Eq. S4 to determine the 
second components t2, p2, and c2. The latent variables ta are estimated so that they are 
uncorrelated with each other by repeating the deflation execution to X and y. After 
calculating the a-th principal components of each variable, we can obtain the PLS 
regression coefficients bPLS with predicted objective variables 𝒚" that satisfy 𝒚" = 
XbPLS: 
 

bPLS = W(PTW)-1c      (S10). 
 
In the PLS method, we use an index to determine the superiority of the regression 
coefficients. Wold et al. proposed variable importance in projection (VIP) scores, 



which evaluate the influence of explanatory variables X on the PLS regression model 
[S2, S3]. The VIP score for the j-th variable is expressed as: 
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In this equation, wjf indicates the weights of the j-th variable and f-th component. SSYf 
is the sum of the squares of y explained by the f-th component and SSYtotal is the total 
sum of the squares of y explained by all components; both values are given as follows: 
 

SSYf = (bPLSf)2tfTtf      (S12), 
SSYtotal = (bPLS)2TTT      (S13), 

 
where bPLSf is the f-th component of the PLS regression coefficients bPLS, J is the 
number of explanatory variables X, and F is the total number of components. 
Explanatory variables with larger VIP scores are important for building the PLS 
regression model. 
 

  



 

Supplemental Section 2. Additional PLS regression analysis 
Additional PLS regressions were performed to investigate (i) DOS energy 

alignment and (ii) the inclusion of perovskites that contains Pb2+ and Sn2+ at A-sites. 
Due to the lack of bulk modulus data for Pb2+- and Sn2+-containing perovskites and 
data format alignment, we recalculated the entire PLS regression using slightly 
different datasets of explanatory variables from those shown in Figure 2 in the main 
text. Therefore, the diagnostic plots shown in Supplemental Figures S4(a) and S9(a), 
which correspond to the datasets in Figure 2 in main text, shows differences that help 
to compare the PLS regression results under the same regression conditions. 
 
  



 
 

Supplemental Figure S1. Plot of predicted residual error sum of squares (PRESS) 
against the number of components in the PLS regression model for test data. The 
minimum PRESS value occurs at ten components. 
 
  



 
Supplemental Figure S2. Diagnostic PLS-regression plots of logarithmic dielectric 
constant, ln (ε), for the samples only perovskite with vertices-shared BO6 octahedra, i.e. 
face- and edge-shared perovskites of R33 and P63/mmc symmetries are removed from 
the samples. The resulting statistical evaluation parameters are as follows; 
RMSE(training) = 0.43, RMSE(test) = 0.57, R2(training) = 0.79, and R2(test) = 0.60. 
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Supplemental Figure S3. Diagnostic PLS-regression plots of logarithmic dielectric 
constant, ln (ε), obtained by adding band gap data to the explanatory variables. The 
resulting statistical evaluation parameters are as follows; RMSE(training) = 0.29, 
RMSE(test) = 0.54, R2(training) = 0.92, and R2(test) = 0.84. 
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Supplemental Figure S4. Diagnostic PLS-regression plots of logarithmic dielectric 
constant, ln (ε), using the DOS energy scale aligned with: (a) the Fermi level and (b) 
the O 2s core level for DOS-derived explanatory variables. RMSEs of the training and 
test data are presented in the plots. (c) VIPs for various descriptors derived from PLS 
regression. Upper and lower bar graphs correspond to PLS derived VIPs using DOS 
descriptors whose energies are aligned to the Fermi level and the O 2s core level, 
respectively. 
 
  



 
Supplemental Figure S5. (a) Relationship between DFPT-derived dielectric constants 
and Shannon’s ionic radii of A ions, which has relatively high PLS-VIP scores. (b) 
Averaged dielectric constant (dot) and corresponding standard deviation (error bar) for 
each A ion. 
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Supplemental Figure S6. Relationship between Bader charge of B ions and dielectric 
constants. (Several compounds with a low dielectric constant (ε < 1) are removed from 
the figure as outliers.) The line in the figure corresponds to the results of the 
least-squares linear fitting. The correlation coefficient R is –0.45, and the 
root-mean-square error (RMSE) is 0.40 for the fitted function. 
  

2.5 3 3.5 4

0

1

2

3

Bader charge of B ions

Lo
ga

rit
hm

 o
f d

ie
le

ct
ric

 c
on

st
an

ts
 



 

 

 
Supplemental Figure S7. Relationship between dielectric constants and interatomic 
distance between (a) two A sites and (b) two B sites. Panel (c) is a magnification of 
panel (b) for several specific A and B compositions. 

3 3.5 4 4.5
100

101

102

103

Interatomic distance for A-A ions /Å

D
ie

le
ct

ric
 c

on
st

an
ts

 (a)

3 3.5 4 4.5
100

101

102

103

Interatomic distance for B-B ions /Å

D
ie

le
ct

ric
 c

on
st

an
ts

 (b)

3.7 3.8 3.9 4 4.1
100

101

102

103

Interatomic distance for B-B ions /Å

D
ie

le
ct

ric
 c

on
st

an
ts

 (c)  CaTi
 SrTi
 BaTi
 CaSn



 
Supplemental Figure S8. Correlation matrix of dielectric constants as functions of 
two descriptors among the six explanatory variables a−f for all sample data. The 
dielectric constants (ln ε) are shown by color gradation. Relatively high dielectric 
materials (red plots) are condensed in some of regions, but the blue plots also coexist 
in the same region, indicating no significant correlation (one of examples is the 
correlation graph between B cation DOS and charge difference). 
 
  



 
Supplemental Figure S9. Diagnostic PLS-regression plots of logarithmic dielectric 
constant, ln (ε) for the sample sets (a) without and (b) with perovskites that contains 
Pb2+ or Sn2+ at A-site. RMSEs of training and test data are presented in the plots. (c) 
VIPs for various descriptors derived from PLS regression. Upper and lower bar graphs 
correspond to PLS derived VIPs with and without perovskites that contains Pb2+ or 
Sn2+ at A-site in the regression samples, respectively. 
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