
Supplementary Material for the paper entitled:

FDA: Theoretical and practical efficiency of the local

linear estimation based on the kNN smoothing of the

conditional distribution when there are missing data

and functional covariables

1. The model and its estimation

Consider n pairs of random variables (Xi, Yi), for i = 1, . . . , n which are drawn

from the pair (X,Y ) ∈ F × IR, where F is a Hilbert space equipped with the

norm ‖.‖. We study, for all y ∈ IR and all x ∈ F , the LLE of the CDF given by:

F (y|x) = IP(Y ≤ y|X = x).

We assume, for a fixed (y, x) ∈ IR × F , that the CDF F (y|x) is smoothed

enough to be locally approximated by a linear function. That is, for all x0 in a

neighborhood of x, we have:

F (y|x0) = ayx + byx(x0 − x) + ρyx(x0 − x, x0 − x) + o(‖x0 − x‖2), (1.1)

where byx (resp. ρyx) is a linear (resp. bilinear) continuous operator from F

(resp. F × F) to IR. The operators ayx and byx are estimated by the kNN

method as the minimizers of the following rule:

min
a,b∈IR×F

n∑
i=1

(1IYi≤y − a− b(Xi − x))
2
K

(
‖x−Xi‖

hk

)
, (1.2)

where K is a kernel and hk = min{h ∈ IR+ such that
∑n
i=1 1IB(x,h)(Xi) = k}

with B(x, r) = {z ∈ F : ‖x− z‖ ≤ r} denoting the topologically closed ball, in

F , centered at x and with radius r and 1IA is the indicator function on the set

A.
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2. Asymptotic properties of the estimator F̂ (y|x)

Let (x, y) be a fixed point in F × IR), Nx (resp., Ny) a fixed neighborhood of

x (resp., of y). Furthermore, we assume that our nonparametric model satisfies

the following conditions:

(H1) For any r > 0, the function φx(r) := IP(X ∈ B(x, r)) > 0 is an invertible

function and there exist 0 < c < 1 < c∗ <∞, such that

lim
r→0

φx(rc)

φx(r)
< 1 < lim

r→0

φx(rc∗)

φx(r)
.

(H2) The function F (·|·) such that (1.1) with a continuous operator ρxy and

the coefficients (cj)j such that∑
j=J+1

c2j = Oa.co(J
−1).

(H3) The function P (·) is continuous on Nx and such that P (z) > 0, for all

z ∈ Nx.

(H4) The kernel K is a differentiable function which is supported within (0, 1).

Moreover, its first derivative K ′ exists and is such that there exist two

constants C and C∗ satisfying −∞ < C∗ < K ′(t) < C < 0 for 0 ≤ t ≤ 1.

(H5) The number of neighbors k is such that

lnn

k
→ 0 as n→∞.

Theorem 1. Under Assumptions (H1)-(H5), we obtain

|F̂ (y|x)− F (y|x)| = O(J−1) +O

(
φ−1x

(
k

n

)2
)

+Oa.co.

(√
lnn

k

)
, (2.1)

as min(n, J)→∞.

Proof of Theorem 1. The proof is based on similar ideas as those used by

Chikr-Elmezouar et al. (2018). Indeed, we introduce the following notations,
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for j, j′ = 1, . . . , J :

Sn,j′,j =
1

nh2kφx(hk)

n∑
i=1

cij′cijδiKi(hk),

T 0
n,j =

1

nhkφx(hk)

n∑
i=1

cijδiKi(hk)1IYi≤y,

e∗n,j = Sn,0,j =
1

nhkφx(hk)

n∑
i=1

cijδiKi(hk),

T 0∗
n,j =

1

nhkφx(hk)

n∑
i=1

cijδiKi(hk)(1IYi≤y − F (y|Xi)),

en,j =
1

nhkφx(hk)

n∑
i=1

cijδiKi(hk)ρxy(Xi − x,Xi − x),

where Ki(hk) = K(h−1k ‖x−Xi‖). Under these notations, we can write:
âyx

hk b̂1
...

hk b̂J

 = (Sn)−1(T 0
n),

where Sn = (Sn,j′,j)j′,j=0,...,J and T 0
n = (T 0

n,j)j=0,...,J So, by the regularity

assumption (1.1) and the assumption (H2) imply that

F (y|Xi) = ayx +

J∑
j

cijbyx(vj) + ρyx(Xi − x,Xi − x) +O(J−1).

Further, we denote by T 0∗
n = (T 0∗

n,j)j=0,...,J and we put en = (en,j)j=0,...,J and

e∗n = (e∗n,j)j=0,...,J . So, we have

T 0∗
n = T 0

n − (T 0
n − T 0∗

n )

= Sn


âyx

hk b̂1
...

hk b̂J

− Sn


ayx

hkb1
...

hkbJ

+ en +O(J−1)e∗n.

It follows that

âyx − ayx = e′1
(
S−1n T 0∗

n − S−1n en −O(J−1)S−1n e∗n
)
,
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Thus, Theorem 1’s result will be a consequence of the following lemmas.

Lemma 1. Under conditions (H1), (H4)and (H5), we get, for all j, j′ = 1, . . . , J ,

Sn,j′,j = Oa.co. (1) .

Lemma 2. Under the conditions of the Theorem 1, we obtain, for all j =

1, . . . , J ,

IE
[
T 0∗
n,j

]
= 0 and IE [en,j ] = O

(
φ−1x

(
k

n

)2
)
.

Lemma 3. Under the conditions of Theorem 1, we obtain, for all j = 1, . . . , J ,

T 0∗
n,j − IE

[
T 0∗
n,j(x)

]
= Oa.co.

(√
lnn

k

)
,

and

en,j − IE [en,j ] = O

(
φ−1x

(
k

n

)2
)

+Oa.co.

(√
lnn

k

)
.

Corollary 1. Under the conditions of Theorem 1, we have

e′1S
−1
n T 0∗

n = Oa.co.

(√
lnn

k

)
,

and

e′1S
−1
n en = O

(
φ−1x

(
k

n

)2
)

+Oa.co.

(√
lnn

k

)
.

Notice that the proofs of the intermediate results are given in short ways because

they follow the same ideas as in Chikr-Elmezouar et al. (2019). The main

challenge, here, is how to handle the additional variable δ. In what follows,

when no confusion is possible, we will denote by C and C∗ some strictly positive

generic constants. Similarly to Burba et al. (2009), we assume, in the proofs

that, the random variables cijcij′ are nonnegative. The other cases can be

deduced by taking

cijcij′ = (cijcij′)
+ − (cijcij′)

−

where (cijcij′)
+ = max(cijcij′ , 0) and (cijcij′)

− = −min(cijcij′ , 0). Then, we

adopt the same treatment for cij (1IYi≤y − F (y|Xi)) and cij ρxy(Xi−x,Xi−x).
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Proof of Lemma 1. Similarly to Chikr-Elmezouar et al. (2019), it suffices to

show that

S̈n,j′,j(h) = Oa.co. (1) for h = h±k ,

with

S̈n,j′,j(h) =
1

nh2φx(h)

n∑
i=1

cij′cijδiKi(h).

To do that we prove that

S̈n,j′,j(h)− IE
[
S̈n,j′,j(h)

]
= Oa.co.

(√
lnn

nφx(h)

)
and IE

[
S̈n,j′,j(h)

]
= O(1).

(2.2)

For the left one , we put

∆̃i =
1

h2φx(h)
cij′cijδiKi(h),

and we write∣∣∣S̈n,j′,j(h)− IE
[
S̈n,j′,j(h)

]∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

(
∆̃i − IE[∆̃i]

)∣∣∣∣∣ .
As (vj)j≥1 is an orthonormal basis, for all j ≤ J , we obtain

|c1j | ≤ ‖vj‖‖x−X1‖ ≤ ‖x−X1‖.

Hence,

IE [c1j′cijδ1K1(h)] ≤ IE
[
‖x−X1‖2K1(h)

]
≤ Ch2φx(hk).

By using Assumptions (H1) and (H4), we obtain that

IE[∆̃i] < C∗,
∣∣∣∆̃i

∣∣∣ < C/φx(h) and IE
∣∣∣∆̃i

∣∣∣2 < C∗/φx(h).

Then, by using the classical Bernstein’s inequality (see Uspensky (1937), Page

205), we deduce, for η > 0, that

IP

{∣∣∣∣∣ 1n
n∑
i=1

(
∆̃i − IE[∆̃i]

)∣∣∣∣∣ > η

√
lnn

nφx(h)

}
≤ C∗n−Cη

2

.

Now, for the right hand side expectation in (2.2), we have

IE[S̈n,j′,j(h)] =
1

h2φx(h)
IE [c1kcijK1(h)] .
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Once again we use the fact that the basis (vj)j≥1 is orthonormal to get

IE [c1kcijK1(h)] ≤ IE
[
‖x−X1‖2K1(h)

]
≤ Ch2φx(h),

which allows to achieve the proof of this Lemma.

Proof of Lemma 2. Similarly to the Lemma 1’s proof, he claimed results of this

lemma are a consequences of the following statement

IE
[
T̈ 0∗
n,j

]
= 0 and IE [ën,j ] = O

(
φ−1x

(
k

n

)2
)
,

where

T̈ 0∗
n,j =

1

nhφx(h)

n∑
i=1

cijδiKi(h)(1IYi≤y − F (y|Xi)), h = h±k ,

ën,j =
1

nhφx(h)

n∑
i=1

cijδiKi(h)ρxy(Xi − x,Xi − x), h = h±k .

Now, for the first term we have

IE[T̈ 0∗
n,j ] =

1

hφx(h)
IE [c1jδ1K1(x) (1IY1≤y − F (y|X1))] .

Therefore, we conditione by X1, we show that

IE[T̈ 0∗
n,j ] =

1

hφx(h)
IE [c1jK1(h)P (X1)(IE [1IY1≤y|X1]− F (y|X1))] .

Thus

IE[T̈ 0∗
n,j ] = 0.

The second term may be treated in the same manner. The proof of Lemma 2

is now finished.

Proof of Lemma 3. The proof of this lemma can be accomplished by the same

manner as for the Lemma 1’s proof.
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