Supplementary Material for the paper entitled:

FDA: Theoretical and practical efficiency of the local linear estimation based on the $k \mathrm{NN}$ smoothing of the conditional distribution when there are missing data and functional covariables

1. The model and its estimation

Consider n pairs of random variables $\left(X_{i}, Y_{i}\right)$, for $i=1, \ldots, n$ which are drawn from the pair $(X, Y) \in \mathcal{F} \times \mathbb{R}$, where \mathcal{F} is a Hilbert space equipped with the norm $\|$.$\| . We study, for all y \in \mathbb{R}$ and all $x \in \mathcal{F}$, the LLE of the CDF given by:

$$
F(y \mid x)=\mathbb{P}(Y \leq y \mid X=x)
$$

We assume, for a fixed $(y, x) \in \mathbb{R} \times \mathcal{F}$, that the $\operatorname{CDF} F(y \mid x)$ is smoothed enough to be locally approximated by a linear function. That is, for all x_{0} in a neighborhood of x, we have:

$$
\begin{equation*}
F\left(y \mid x_{0}\right)=a_{y x}+b_{y x}\left(x_{0}-x\right)+\rho_{y x}\left(x_{0}-x, x_{0}-x\right)+o\left(\left\|x_{0}-x\right\|^{2}\right) \tag{1.1}
\end{equation*}
$$

where $b_{y x}$ (resp. $\rho_{y x}$) is a linear (resp. bilinear) continuous operator from \mathcal{F} (resp. $\mathcal{F} \times \mathcal{F}$) to \mathbb{R}. The operators $a_{y x}$ and $b_{y x}$ are estimated by the $k \mathrm{NN}$ method as the minimizers of the following rule:

$$
\begin{equation*}
\min _{a, b \in \mathrm{R} \times \mathcal{F}} \sum_{i=1}^{n}\left(\mathbb{I}_{Y_{i} \leq y}-a-b\left(X_{i}-x\right)\right)^{2} K\left(\frac{\left\|x-X_{i}\right\|}{h_{k}}\right), \tag{1.2}
\end{equation*}
$$

where K is a kernel and $h_{k}=\min \left\{h \in \mathbb{R}^{+}\right.$such that $\left.\sum_{i=1}^{n} \mathbb{I}_{B(x, h)}\left(X_{i}\right)=k\right\}$ with $B(x, r)=\{z \in \mathcal{F}:\|x-z\| \leq r\}$ denoting the topologically closed ball, in \mathcal{F}, centered at x and with radius r and \mathbb{I}_{A} is the indicator function on the set A.

2. Asymptotic properties of the estimator $\widehat{\boldsymbol{F}}(y \mid x)$

Let (x, y) be a fixed point in $\mathcal{F} \times \mathbb{R}), \mathcal{N}_{x}$ (resp., \mathcal{N}_{y}) a fixed neighborhood of x (resp., of y). Furthermore, we assume that our nonparametric model satisfies the following conditions:
(H1) For any $r>0$, the function $\phi_{x}(r):=\mathbb{P}(X \in B(x, r))>0$ is an invertible function and there exist $0<c<1<c^{*}<\infty$, such that

$$
\lim _{r \rightarrow 0} \frac{\phi_{x}(r c)}{\phi_{x}(r)}<1<\lim _{r \rightarrow 0} \frac{\phi_{x}\left(r c^{*}\right)}{\phi_{x}(r)} .
$$

(H2) The function $F(\cdot \mid \cdot)$ such that 1.1 with a continuous operator $\rho_{x y}$ and the coefficients $\left(c_{j}\right)_{j}$ such that

$$
\sum_{j=J+1} c_{j}^{2}=O_{a . c o}\left(J^{-1}\right) .
$$

(H3) The function $P(\cdot)$ is continuous on \mathcal{N}_{x} and such that $P(z)>0$, for all $z \in \mathcal{N}_{x}$.
(H4) The kernel K is a differentiable function which is supported within $(0,1)$. Moreover, its first derivative K^{\prime} exists and is such that there exist two constants C and C^{*} satisfying $-\infty<C^{*}<K^{\prime}(t)<C<0$ for $0 \leq t \leq 1$.
(H5) The number of neighbors k is such that

$$
\frac{\ln n}{k} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Theorem 1. Under Assumptions (H1)-(H5), we obtain

$$
\begin{equation*}
|\widehat{F}(y \mid x)-F(y \mid x)|=O\left(J^{-1}\right)+O\left(\phi_{x}^{-1}\left(\frac{k}{n}\right)^{2}\right)+O_{\text {a.co. }}\left(\sqrt{\frac{\ln n}{k}}\right), \tag{2.1}
\end{equation*}
$$

as $\min (n, J) \rightarrow \infty$.

Proof of Theorem 1. The proof is based on similar ideas as those used by Chikr-Elmezouar et al. (2018). Indeed, we introduce the following notations,
for $j, j^{\prime}=1, \ldots, J$:

$$
\begin{aligned}
S_{n, j^{\prime}, j} & =\frac{1}{n h_{k}^{2} \phi_{x}\left(h_{k}\right)} \sum_{i=1}^{n} c_{i j^{\prime}} c_{i j} \delta_{i} K_{i}\left(h_{k}\right) \\
T_{n, j}^{0} & =\frac{1}{n h_{k} \phi_{x}\left(h_{k}\right)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}\left(h_{k}\right) \mathbb{I}_{Y_{i} \leq y} \\
e_{n, j}^{*} & =S_{n, 0, j}=\frac{1}{n h_{k} \phi_{x}\left(h_{k}\right)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}\left(h_{k}\right), \\
T_{n, j}^{0 *} & =\frac{1}{n h_{k} \phi_{x}\left(h_{k}\right)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}\left(h_{k}\right)\left(\mathbb{I}_{Y_{i} \leq y}-F\left(y \mid X_{i}\right)\right), \\
e_{n, j} & =\frac{1}{n h_{k} \phi_{x}\left(h_{k}\right)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}\left(h_{k}\right) \rho_{x y}\left(X_{i}-x, X_{i}-x\right),
\end{aligned}
$$

where $K_{i}\left(h_{k}\right)=K\left(h_{k}^{-1}\left\|x-X_{i}\right\|\right)$. Under these notations, we can write:

$$
\left(\begin{array}{c}
\widehat{a}_{y x} \\
h_{k} \widehat{b}_{1} \\
\vdots \\
h_{k} \widehat{b}_{J}
\end{array}\right)=\left(S_{n}\right)^{-1}\left(T_{n}^{0}\right)
$$

where $S_{n}=\left(S_{n, j^{\prime}, j}\right)_{j^{\prime}, j=0, \ldots, J}$ and $T_{n}^{0}=\left(T_{n, j}^{0}\right)_{j=0, \ldots, J}$ So, by the regularity assumption (1.1) and the assumption (H2) imply that

$$
F\left(y \mid X_{i}\right)=a_{y x}+\sum_{j}^{J} c_{i j} b_{y x}\left(v_{j}\right)+\rho_{y x}\left(X_{i}-x, X_{i}-x\right)+O\left(J^{-1}\right)
$$

Further, we denote by $T_{n}^{0 *}=\left(T_{n, j}^{0 *}\right)_{j=0, \ldots, J}$ and we put $e_{n}=\left(e_{n, j}\right)_{j=0, \ldots, J}$ and $e_{n}^{*}=\left(e_{n, j}^{*}\right)_{j=0, \ldots, J}$. So, we have

$$
\begin{aligned}
T_{n}^{0 *} & =T_{n}^{0}-\left(T_{n}^{0}-T_{n}^{0 *}\right) \\
& =S_{n}\left(\begin{array}{c}
\widehat{a}_{y x} \\
h_{k} \widehat{b}_{1} \\
\vdots \\
h_{k} \widehat{b}_{J}
\end{array}\right)-S_{n}\left(\begin{array}{c}
a_{y x} \\
h_{k} b_{1} \\
\vdots \\
h_{k} b_{J}
\end{array}\right)+e_{n}+O\left(J^{-1}\right) e_{n}^{*}
\end{aligned}
$$

It follows that

$$
\widehat{a}_{y x}-a_{y x}=e_{1}^{\prime}\left(S_{n}^{-1} T_{n}^{0 *}-S_{n}^{-1} e_{n}-O\left(J^{-1}\right) S_{n}^{-1} e_{n}^{*}\right)
$$

Thus, Theorem 1 s result will be a consequence of the following lemmas.
Lemma 1. Under conditions (H1), (H4)and (H5), we get, for all $j, j^{\prime}=1, \ldots, J$,

$$
S_{n, j^{\prime}, j}=O_{\text {a.co. }} \text { (1). }
$$

Lemma 2. Under the conditions of the Theorem 1, we obtain, for all $j=$ $1, \ldots, J$,

$$
\mathbb{E}\left[T_{n, j}^{0 *}\right]=0 \quad \text { and } \quad \mathbb{E}\left[e_{n, j}\right]=O\left(\phi_{x}^{-1}\left(\frac{k}{n}\right)^{2}\right) .
$$

Lemma 3. Under the conditions of Theorem 1, we obtain, for all $j=1, \ldots, J$,

$$
T_{n, j}^{0 *}-\mathbb{E}\left[T_{n, j}^{0 *}(x)\right]=O_{\text {a.co. }}\left(\sqrt{\frac{\ln n}{k}}\right),
$$

and

$$
e_{n, j}-\mathbb{E}\left[e_{n, j}\right]=O\left(\phi_{x}^{-1}\left(\frac{k}{n}\right)^{2}\right)+O_{\text {a.co. }}\left(\sqrt{\frac{\ln n}{k}}\right) .
$$

Corollary 1. Under the conditions of Theorem 1, we have

$$
e_{1}^{\prime} S_{n}^{-1} T_{n}^{0 *}=O_{\text {a.co. }}\left(\sqrt{\frac{\ln n}{k}}\right)
$$

and

$$
e_{1}^{\prime} S_{n}^{-1} e_{n}=O\left(\phi_{x}^{-1}\left(\frac{k}{n}\right)^{2}\right)+O_{\text {a.co. }}\left(\sqrt{\frac{\ln n}{k}}\right) .
$$

Notice that the proofs of the intermediate results are given in short ways because they follow the same ideas as in Chikr-Elmezouar et al. (2019). The main challenge, here, is how to handle the additional variable δ. In what follows, when no confusion is possible, we will denote by C and C^{*} some strictly positive generic constants. Similarly to Burba et al. (2009), we assume, in the proofs that, the random variables $c_{i j} c_{i j^{\prime}}$ are nonnegative. The other cases can be deduced by taking

$$
c_{i j} c_{i j^{\prime}}=\left(c_{i j} c_{i j^{\prime}}\right)^{+}-\left(c_{i j} c_{i j^{\prime}}\right)^{-}
$$

where $\left(c_{i j} c_{i j^{\prime}}\right)^{+}=\max \left(c_{i j} c_{i^{\prime}}, 0\right)$ and $\left(c_{i j} c_{i j^{\prime}}\right)^{-}=-\min \left(c_{i j} c_{i j^{\prime}}, 0\right)$. Then, we adopt the same treatment for $c_{i j}\left(\mathbb{I}_{Y_{i} \leq y}-F\left(y \mid X_{i}\right)\right)$ and $c_{i j} \rho_{x y}\left(X_{i}-x, X_{i}-x\right)$.

Proof of Lemma 1. Similarly to Chikr-Elmezouar et al. (2019), it suffices to show that

$$
\ddot{S}_{n, j^{\prime}, j}(h)=O_{a . c o .}(1) \text { for } h=h_{k}^{ \pm}
$$

with

$$
\ddot{S}_{n, j^{\prime}, j}(h)=\frac{1}{n h^{2} \phi_{x}(h)} \sum_{i=1}^{n} c_{i j^{\prime}} c_{i j} \delta_{i} K_{i}(h) .
$$

To do that we prove that

$$
\begin{equation*}
\ddot{S}_{n, j^{\prime}, j}(h)-\mathbb{E}\left[\ddot{S}_{n, j^{\prime}, j}(h)\right]=O_{a . c o .}\left(\sqrt{\frac{\ln n}{n \phi_{x}(h)}}\right) \quad \text { and } \quad \mathbb{E}\left[\ddot{S}_{n, j^{\prime}, j}(h)\right]=O(1) \tag{2.2}
\end{equation*}
$$

For the left one, we put

$$
\widetilde{\Delta}_{i}=\frac{1}{h^{2} \phi_{x}(h)} c_{i j^{\prime}} c_{i j} \delta_{i} K_{i}(h)
$$

and we write

$$
\left|\ddot{S}_{n, j^{\prime}, j}(h)-\mathbb{E}\left[\ddot{S}_{n, j^{\prime}, j}(h)\right]\right|=\left|\frac{1}{n} \sum_{i=1}^{n}\left(\widetilde{\Delta}_{i}-\mathbb{E}\left[\widetilde{\Delta}_{i}\right]\right)\right| .
$$

As $\left(v_{j}\right)_{j \geq 1}$ is an orthonormal basis, for all $j \leq J$, we obtain

$$
\left|c_{1 j}\right| \leq\left\|v_{j}\right\|\left\|x-X_{1}\right\| \leq\left\|x-X_{1}\right\|
$$

Hence,

$$
\mathbb{E}\left[c_{1 j^{\prime}} c_{i j} \delta_{1} K_{1}(h)\right] \leq \mathbb{E}\left[\left\|x-X_{1}\right\|^{2} K_{1}(h)\right] \leq C h^{2} \phi_{x}\left(h_{k}\right)
$$

By using Assumptions (H1) and (H4), we obtain that

$$
\mathbb{E}\left[\widetilde{\Delta}_{i}\right]<C^{*}, \quad\left|\widetilde{\Delta}_{i}\right|<C / \phi_{x}(h) \quad \text { and } \quad \mathbb{E}\left|\widetilde{\Delta}_{i}\right|^{2}<C^{*} / \phi_{x}(h)
$$

Then, by using the classical Bernstein's inequality (see Uspensky (1937), Page 205), we deduce, for $\eta>0$, that

$$
\mathbb{P}\left\{\left|\frac{1}{n} \sum_{i=1}^{n}\left(\widetilde{\Delta}_{i}-\mathbb{E}\left[\widetilde{\Delta}_{i}\right]\right)\right|>\eta \sqrt{\frac{\ln n}{n \phi_{x}(h)}}\right\} \leq C^{*} n^{-C \eta^{2}}
$$

Now, for the right hand side expectation in $\sqrt[2.2]{2}$, we have

$$
\mathbb{E}\left[\ddot{S}_{n, j^{\prime}, j}(h)\right]=\frac{1}{h^{2} \phi_{x}(h)} \mathbb{E}\left[c_{1 k} c_{i j} K_{1}(h)\right] .
$$

Once again we use the fact that the basis $\left(v_{j}\right)_{j \geq 1}$ is orthonormal to get

$$
\mathbb{E}\left[c_{1 k} c_{i j} K_{1}(h)\right] \leq \mathbb{E}\left[\left\|x-X_{1}\right\|^{2} K_{1}(h)\right] \leq C h^{2} \phi_{x}(h)
$$

which allows to achieve the proof of this Lemma.

Proof of Lemma 2. Similarly to the Lemma 1]s proof, he claimed results of this lemma are a consequences of the following statement

$$
\mathbb{E}\left[\ddot{T}_{n, j}^{0 *}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\ddot{e}_{n, j}\right]=O\left(\phi_{x}^{-1}\left(\frac{k}{n}\right)^{2}\right)
$$

where

$$
\begin{aligned}
& \ddot{T}_{n, j}^{0 *}=\frac{1}{n h \phi_{x}(h)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}(h)\left(\mathbb{I}_{Y_{i} \leq y}-F\left(y \mid X_{i}\right)\right), \quad h=h_{k}^{ \pm}, \\
& \ddot{e}_{n, j}=\frac{1}{n h \phi_{x}(h)} \sum_{i=1}^{n} c_{i j} \delta_{i} K_{i}(h) \rho_{x y}\left(X_{i}-x, X_{i}-x\right), \quad h=h_{k}^{ \pm} .
\end{aligned}
$$

Now, for the first term we have

$$
\mathbb{E}\left[\ddot{T}_{n, j}^{0 *}\right]=\frac{1}{h \phi_{x}(h)} \mathbb{E}\left[c_{1 j} \delta_{1} K_{1}(x)\left(\mathbb{I}_{Y_{1} \leq y}-F\left(y \mid X_{1}\right)\right)\right] .
$$

Therefore, we conditione by X_{1}, we show that

$$
\mathbb{E}\left[\ddot{T}_{n, j}^{0 *}\right]=\frac{1}{h \phi_{x}(h)} \mathbb{E}\left[c_{1 j} K_{1}(h) P\left(X_{1}\right)\left(\mathbb{E}\left[\mathbb{I}_{Y_{1} \leq y} \mid X_{1}\right]-F\left(y \mid X_{1}\right)\right)\right] .
$$

Thus

$$
\mathbb{E}\left[\ddot{T}_{n, j}^{0 *}\right]=0
$$

The second term may be treated in the same manner. The proof of Lemma 2 is now finished.

Proof of Lemma 3. The proof of this lemma can be accomplished by the same manner as for the Lemma 1 s proof.

