Supplementary Material for the paper entitled:

FDA: Theoretical and practical efficiency of the local linear estimation based on the kNN smoothing of the conditional distribution when there are missing data and functional covariables

1. The model and its estimation

Consider *n* pairs of random variables (X_i, Y_i) , for i = 1, ..., n which are drawn from the pair $(X, Y) \in \mathcal{F} \times \mathbb{R}$, where \mathcal{F} is a Hilbert space equipped with the norm $\|.\|$. We study, for all $y \in \mathbb{R}$ and all $x \in \mathcal{F}$, the LLE of the CDF given by:

$$F(y|x) = \mathbb{P}(Y \le y|X = x).$$

We assume, for a fixed $(y,x) \in \mathbb{R} \times \mathcal{F}$, that the CDF F(y|x) is smoothed enough to be locally approximated by a linear function. That is, for all x_0 in a neighborhood of x, we have:

$$F(y|x_0) = a_{yx} + b_{yx}(x_0 - x) + \rho_{yx}(x_0 - x, x_0 - x) + o(||x_0 - x||^2), \quad (1.1)$$

where b_{yx} (resp. ρ_{yx}) is a linear (resp. bilinear) continuous operator from \mathcal{F} (resp. $\mathcal{F} \times \mathcal{F}$) to \mathbb{R} . The operators a_{yx} and b_{yx} are estimated by the kNN method as the minimizers of the following rule:

$$\min_{a,b\in\mathbb{R}\times\mathcal{F}}\sum_{i=1}^{n}\left(\mathbb{I}_{Y_{i}\leq y}-a-b(X_{i}-x)\right)^{2}K\left(\frac{\|x-X_{i}\|}{h_{k}}\right),$$
(1.2)

where K is a kernel and $h_k = \min\{h \in \mathbb{R}^+ \text{ such that } \sum_{i=1}^n \mathbb{I}_{B(x,h)}(X_i) = k\}$ with $B(x,r) = \{z \in \mathcal{F} : ||x - z|| \le r\}$ denoting the topologically closed ball, in \mathcal{F} , centered at x and with radius r and \mathbb{I}_A is the indicator function on the set A.

2. Asymptotic properties of the estimator $\widehat{F}(y|x)$

Let (x, y) be a fixed point in $\mathcal{F} \times \mathbb{R}$), \mathcal{N}_x (resp., \mathcal{N}_y) a fixed neighborhood of x (resp., of y). Furthermore, we assume that our nonparametric model satisfies the following conditions:

(H1) For any r > 0, the function $\phi_x(r) := \mathbb{P}(X \in B(x, r)) > 0$ is an invertible function and there exist $0 < c < 1 < c^* < \infty$, such that

$$\lim_{r \to 0} \frac{\phi_x(rc)}{\phi_x(r)} < 1 < \lim_{r \to 0} \frac{\phi_x(rc^*)}{\phi_x(r)}.$$

(H2) The function $F(\cdot|\cdot)$ such that (1.1) with a continuous operator ρ_{xy} and the coefficients $(c_j)_j$ such that

$$\sum_{j=J+1} c_j^2 = O_{a.co}(J^{-1}).$$

- (H3) The function $P(\cdot)$ is continuous on \mathcal{N}_x and such that P(z) > 0, for all $z \in \mathcal{N}_x$.
- (H4) The kernel K is a differentiable function which is supported within (0, 1). Moreover, its first derivative K' exists and is such that there exist two constants C and C^{*} satisfying $-\infty < C^* < K'(t) < C < 0$ for $0 \le t \le 1$.
- (H5) The number of neighbors k is such that

$$\frac{\ln n}{k} \to 0 \text{ as } n \to \infty$$

Theorem 1. Under Assumptions (H1)-(H5), we obtain

$$|\widehat{F}(y|x) - F(y|x)| = O(J^{-1}) + O\left(\phi_x^{-1}\left(\frac{k}{n}\right)^2\right) + O_{a.co.}\left(\sqrt{\frac{\ln n}{k}}\right), \quad (2.1)$$

as $\min(n, J) \to \infty$.

Proof of Theorem 1. The proof is based on similar ideas as those used by Chikr-Elmezouar et al. (2018). Indeed, we introduce the following notations,

for
$$j, j' = 1, ..., J$$
:

$$S_{n,j',j} = \frac{1}{nh_k^2 \phi_x(h_k)} \sum_{i=1}^n c_{ij'} c_{ij} \delta_i K_i(h_k),$$

$$T_{n,j}^0 = \frac{1}{nh_k \phi_x(h_k)} \sum_{i=1}^n c_{ij} \delta_i K_i(h_k) \mathbb{I}_{Y_i \le y},$$

$$e_{n,j}^* = S_{n,0,j} = \frac{1}{nh_k \phi_x(h_k)} \sum_{i=1}^n c_{ij} \delta_i K_i(h_k),$$

$$T_{n,j}^{0*} = \frac{1}{nh_k \phi_x(h_k)} \sum_{i=1}^n c_{ij} \delta_i K_i(h_k) (\mathbb{I}_{Y_i \le y} - F(y|X_i)),$$

$$e_{n,j} = \frac{1}{nh_k \phi_x(h_k)} \sum_{i=1}^n c_{ij} \delta_i K_i(h_k) \rho_{xy}(X_i - x, X_i - x),$$

where $K_i(h_k) = K(h_k^{-1} ||x - X_i||)$. Under these notations, we can write:

$$\begin{pmatrix} \hat{a}_{yx} \\ h_k \hat{b}_1 \\ \vdots \\ h_k \hat{b}_J \end{pmatrix} = (S_n)^{-1} (T_n^0),$$

where $S_n = (S_{n,j',j})_{j',j=0,\ldots,J}$ and $T_n^0 = (T_{n,j}^0)_{j=0,\ldots,J}$ So, by the regularity assumption (1.1) and the assumption (H2) imply that

$$F(y|X_i) = a_{yx} + \sum_{j}^{J} c_{ij} b_{yx}(v_j) + \rho_{yx}(X_i - x, X_i - x) + O(J^{-1}).$$

Further, we denote by $T_n^{0*} = (T_{n,j}^{0*})_{j=0,...,J}$ and we put $e_n = (e_{n,j})_{j=0,...,J}$ and $e_n^* = (e_{n,j}^*)_{j=0,...,J}$. So, we have

$$\begin{aligned} T_n^{0*} &= T_n^0 - (T_n^0 - T_n^{0*}) \\ &= S_n \begin{pmatrix} \hat{a}_{yx} \\ h_k \hat{b}_1 \\ \vdots \\ h_k \hat{b}_J \end{pmatrix} - S_n \begin{pmatrix} a_{yx} \\ h_k b_1 \\ \vdots \\ h_k b_J \end{pmatrix} + e_n + O(J^{-1})e_n^*. \end{aligned}$$

It follows that

$$\hat{a}_{yx} - a_{yx} = e_1' \left(S_n^{-1} T_n^{0*} - S_n^{-1} e_n - O(J^{-1}) S_n^{-1} e_n^* \right),$$

Thus, Theorem 1's result will be a consequence of the following lemmas.

Lemma 1. Under conditions (H1), (H4) and (H5), we get, for all j, j' = 1, ..., J,

 $S_{n,j',j} = O_{a.co.} \left(1\right).$

Lemma 2. Under the conditions of the Theorem 1, we obtain, for all $j = 1, \ldots, J$,

$$\mathbb{E}\left[T_{n,j}^{0*}\right] = 0 \quad and \quad \mathbb{E}\left[e_{n,j}\right] = O\left(\phi_x^{-1}\left(\frac{k}{n}\right)^2\right).$$

Lemma 3. Under the conditions of Theorem 1, we obtain, for all j = 1, ..., J,

$$T_{n,j}^{0*} - \operatorname{I\!E}\left[T_{n,j}^{0*}(x)\right] = O_{a.co.}\left(\sqrt{\frac{\ln n}{k}}\right),$$

and

$$e_{n,j} - \mathbb{E}\left[e_{n,j}\right] = O\left(\phi_x^{-1}\left(\frac{k}{n}\right)^2\right) + O_{a.co.}\left(\sqrt{\frac{\ln n}{k}}\right)$$

Corollary 1. Under the conditions of Theorem 1, we have

$$e_1' S_n^{-1} T_n^{0*} = O_{a.co.} \left(\sqrt{\frac{\ln n}{k}} \right),$$

and

$$e_1' S_n^{-1} e_n = O\left(\phi_x^{-1} \left(\frac{k}{n}\right)^2\right) + O_{a.co.}\left(\sqrt{\frac{\ln n}{k}}\right)$$

Notice that the proofs of the intermediate results are given in short ways because they follow the same ideas as in Chikr-Elmezouar et al. (2019). The main challenge, here, is how to handle the additional variable δ . In what follows, when no confusion is possible, we will denote by C and C^* some strictly positive generic constants. Similarly to Burba et al. (2009), we assume, in the proofs that, the random variables $c_{ij}c_{ij'}$ are nonnegative. The other cases can be deduced by taking

$$c_{ij}c_{ij'} = (c_{ij}c_{ij'})^+ - (c_{ij}c_{ij'})$$

where $(c_{ij}c_{ij'})^+ = \max(c_{ij}c_{ij'}, 0)$ and $(c_{ij}c_{ij'})^- = -\min(c_{ij}c_{ij'}, 0)$. Then, we adopt the same treatment for c_{ij} ($\mathbb{1}_{Y_i \leq y} - F(y|X_i)$) and $c_{ij} \rho_{xy}(X_i - x, X_i - x)$. *Proof of Lemma 1.* Similarly to Chikr-Elmezouar et al. (2019), it suffices to show that

$$\ddot{S}_{n,j',j}(h) = O_{a.co.}(1) \text{ for } h = h_k^{\pm},$$

with

$$\ddot{S}_{n,j',j}(h) = \frac{1}{nh^2\phi_x(h)} \sum_{i=1}^n c_{ij'}c_{ij}\delta_i K_i(h).$$

To do that we prove that

$$\ddot{S}_{n,j',j}(h) - \mathbb{E}\left[\ddot{S}_{n,j',j}(h)\right] = O_{a.co.}\left(\sqrt{\frac{\ln n}{n\phi_x(h)}}\right) \quad \text{and} \quad \mathbb{E}\left[\ddot{S}_{n,j',j}(h)\right] = O(1).$$
(2.2)

For the left one , we put

$$\widetilde{\Delta}_i = \frac{1}{h^2 \phi_x(h)} c_{ij'} c_{ij} \delta_i K_i(h),$$

and we write

$$\left|\ddot{S}_{n,j',j}(h) - \mathbb{E}\left[\ddot{S}_{n,j',j}(h)\right]\right| = \left|\frac{1}{n}\sum_{i=1}^{n}\left(\widetilde{\Delta}_{i} - \mathbb{E}[\widetilde{\Delta}_{i}]\right)\right|$$

As $(v_j)_{j\geq 1}$ is an orthonormal basis, for all $j\leq J$, we obtain

$$|c_{1j}| \le ||v_j|| ||x - X_1|| \le ||x - X_1||.$$

Hence,

$$\mathbb{E}\left[c_{1j'}c_{ij}\delta_1K_1(h)\right] \le \mathbb{E}\left[\|x - X_1\|^2 K_1(h)\right] \le Ch^2\phi_x(h_k).$$

By using Assumptions (H1) and (H4), we obtain that

$$\mathbb{E}[\widetilde{\Delta}_i] < C^*, \quad \left| \widetilde{\Delta}_i \right| < C/\phi_x(h) \quad \text{and} \quad \mathbb{E} \left| \widetilde{\Delta}_i \right|^2 < C^*/\phi_x(h).$$

Then, by using the classical Bernstein's inequality (see Uspensky (1937), Page 205), we deduce, for $\eta > 0$, that

$$\mathbb{P}\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} \left(\widetilde{\Delta}_{i} - \mathbb{E}[\widetilde{\Delta}_{i}] \right) \right| > \eta \sqrt{\frac{\ln n}{n \, \phi_{x}(h)}} \right\} \leq C^{*} n^{-C \eta^{2}}.$$

Now, for the right hand side expectation in (2.2), we have

$$\mathbb{E}[\ddot{S}_{n,j',j}(h)] = \frac{1}{h^2 \phi_x(h)} \mathbb{E}\left[c_{1k} c_{ij} K_1(h)\right].$$

Once again we use the fact that the basis $(v_j)_{j\geq 1}$ is orthonormal to get

$$\mathbb{E}\left[c_{1k}c_{ij}K_{1}(h)\right] \le \mathbb{E}\left[\|x - X_{1}\|^{2}K_{1}(h)\right] \le Ch^{2}\phi_{x}(h),$$

which allows to achieve the proof of this Lemma.

Proof of Lemma 2. Similarly to the Lemma 1's proof, he claimed results of this lemma are a consequences of the following statement

$$\mathbb{E}\left[\ddot{T}_{n,j}^{0*}\right] = 0 \quad \text{and} \quad \mathbb{E}\left[\ddot{e}_{n,j}\right] = O\left(\phi_x^{-1}\left(\frac{k}{n}\right)^2\right),$$

where

$$\ddot{T}_{n,j}^{0*} = \frac{1}{nh\phi_x(h)} \sum_{i=1}^n c_{ij}\delta_i K_i(h)(\mathbb{1}_{Y_i \le y} - F(y|X_i)), \quad h = h_k^{\pm},$$

$$\ddot{e}_{n,j} = \frac{1}{nh\phi_x(h)} \sum_{i=1}^n c_{ij}\delta_i K_i(h)\rho_{xy}(X_i - x, X_i - x), \quad h = h_k^{\pm}.$$

Now, for the first term we have

$$\mathbb{E}[\ddot{T}_{n,j}^{0*}] = \frac{1}{h\phi_x(h)} \mathbb{E}\left[c_{1j}\delta_1 K_1(x) \left(\mathbb{1}_{Y_1 \le y} - F(y|X_1)\right)\right]$$

Therefore, we conditione by X_1 , we show that

$$\mathbb{E}[\ddot{T}_{n,j}^{0*}] = \frac{1}{h\phi_x(h)} \mathbb{E}\left[c_{1j}K_1(h)P(X_1)(\mathbb{E}\left[\mathbb{1}_{Y_1 \le y} | X_1\right] - F(y|X_1))\right].$$

Thus

$$\mathbb{E}[\ddot{T}_{n,j}^{0*}] = 0.$$

The second term may be treated in the same manner. The proof of Lemma 2 is now finished.

Proof of Lemma 3. The proof of this lemma can be accomplished by the same manner as for the Lemma 1's proof.