Preparation of human dihydroorotate dehydrogenase for interaction studies with lipid bilayers

Supplementary material

Juan Manuel Orozco Rodriguez^a, Ewa Krupinska^a, Hanna Wacklin-Knecht^{b,c}, Wolfgang Knecht^a

^aDepartment of Biology & Lund Protein Production Platform, Lund University, Lund, Sweden; ^bDepartment of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden; ^cEuropean Spallation Source ERIC, Lund, Sweden

Contact:

Juan Manuel Orozco Rodriguez: Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden, e-mail: <u>Manuel.Orozco@biol.lu.se</u>

Wolfgang Knecht: Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden, e-mail: <u>Wolfgang.Knecht@biol.lu.se</u>

Preparation of human dihydroorotate dehydrogenase for interaction studies with lipid bilayers

Supplementary material

Table S1. Expression conditions resulting in the highest volumetric and specific DHODH activities in the lysates of TUNER(DE3) *E. coli* cells for different constructs. Cell lysates were prepared by resuspending cell pellets in Assay Buffer and disrupting the cell suspension using a VibraCell ultrasonicator (20% amplitude, 3 s per pulse, 3×10 pulses). Enzymatic activity and protein concentrations were determined as outlined in Material and Methods.

Protein construct	OD ₆₀₀ at induction	Temperature (°C)	IPTG (µM)	Media	Activity (U/L culture)	Specific activity (U/mg)
His- <i>Ec</i> DHODH	0.6	18	100	TB	7633	4.36
DHODH-His	0.8	18	20	TB	3734	1.60
His- ∆29DHODH	0.6	18	100	TB	2229	1.16
His- ∆10DHODH	0.6	18	100	TB	250	0.13
Δ29DHODH- His	0.6	18	1000	TB	1092	0.42

Compound	Molecular Weight	Volume	Density	Area per lipid molecule (A_m)
	$g mol^{-1}$	Å ³	$\mathrm{g~cm}^{-3}$	\AA^2
POPC	760	1243 ¹	1.016	64.2 ²
TOCL	1502	2 395 ¹	1.041	129.8 ³
Q ₁₀	863.4	1576.5 ⁴	0.909	N.C.
∆29DHODH	39 780	26 858 ⁵	1.241 ⁶	1520 ⁵
<i>Ec</i> DHODH	36 775	26 858 ⁵	1.1856	1520 ⁵

Table S2. Physical properties used for QCM-D calculations.

N.C. = Not calculated.

¹Calculated from component volumes according to Armen *et al.* 1998 ^[1].

²From Kucerka *et al.* 2011^[2]

³From Pan *et al.* 2015 ^[3].

⁴Assuming a quinone headgroup and 10 isoprene units.

⁵Assuming a spherical protein with diameter = 44 Å.

⁶Assuming a hydration of 50%.

DHODH A29DHODH Ecdhodh	MAWRHLKKRAQDAVIILGGGGLLFASYLMATGDERFYAEHLMPTLQGLLDPESAHRLAVR GMATGDERFYAEHLMPTLQGLLDPESAHRLAVR YY-PFV-RKALFQLDPERAHEFTF- :* .: . **** **.::.	60 33 24
DHODH ∆29DHODH EcDHODH	FTSLGLLPRARFQDSDMLEVRVLGHKFRNPVGIAAGFDKHGEAVDGLYKMGFGFVFTSLGLLPRARFQDSDMLEVRVLGHKFRNPVGIAAGFDKHGEAVDGLYKMGFGFV-QQLRRITGTPFEALVRQKVPAKPVNCMGLTFKNPLGLAAGLDKDGECIDALGAMGFGSI.*::*.*::*:: </td <td>115 88 83</td>	115 88 83
DHODH ∆29DHODH EcDHODH	EIGSVTPKPQEGNPRPRVFRLPEDQAVINRYGFNSHGLSVVEHRLRARQQKQAKLTEDGL EIGSVTPKPQEGNPRPRVFRLPEDQAVINRYGFNSHGLSVVEHRLRARQQKQAKLTEDGL EIGTVTPRPQPGNDKPRLFRLVDAEGLINRMGFNNLGVDNLVENVKKAHYDG ***:***:** ** :**:*** : :::*** ***. *:. :::	175 148 135
DHODH ∆29DHODH EcDHODH	PLGVNLGKNKTSVDAAEDYAEGVRVLGPLADYLVVNVSSPNTAGLRSLQGKAELRRLL PLGVNLGKNKTSVDAAEDYAEGVRVLGPLADYLVVNVSSPNTAGLRSLQGKAELRRLL VLGINIGKNKDTPVEQGKDDYLICMEKIYAYAGYIAINISSPNTPGLRTLQYGEALDDLL **:*:**** : :.:** :.: *.*::***** ***:** * **	233 206 195
DHODH ∆29DHODH EcDHODH	TKVLQERDGLRRVHRPAVLVKIAPDLTSQDKEDIASVVKELGIDGLIVTNTTVSRPAG TKVLQERDGLRRVHRPAVLVKIAPDLTSQDKEDIASVVKELGIDGLIVTNTTVSRPAG TAIKNKQNDLQAMHHKYVPIAVKIAPDLSEEELIQVADSLVRHNIDGVIATNTTLDRSLV * : ::::.*: :*: : *******:::: ::*. :***:*.***:.*	291 264 255
DHODH ∆29DHODH EcDHODH	LQGALRSETGGLSGKPLRDLSTQTIREMYALTQGRVPIIGVGGVSSGQDALEKIRAGASL LQGALRSETGGLSGKPLRDLSTQTIREMYALTQGRVPIIGVGGVSSGQDALEKIRAGASL QGMKNCDQTGGLSGRPLQLKSTEIIRRLSLELNGRLPIIGVGGIDSVIAAREKIAAGASL .:******: **: :**: :**: :**:***********	351 324 315
DHODH ∆29DHODH EcDHODH	VQLYTALTFWGPPVVGKVKRELEALLKEQGFGGVTDAIGADHRREFPGENLYFQ VQLYTALTFWGPPVVGKVKRELEALLKEQGFGGVTDAIGADHRR VQIYSGFIFKGPPLIKEIVTHI	405 368 337

Figure S1. Multiple sequence alignment of DHODH, $\Delta 29$ DHODH and *Ec*DHODH. The alignment was done with CLUSTAL OMEGA(1.2.4)^[4]. In the DHODH sequence, the mitochondrial signal and transmembrane segment that determines both its import and correct insertion into the inner mitochondrial membrane^[5] are marked in yellow and blue, respectively. The $\alpha 1-\alpha 2$ micro domain connecting the N-terminus of DHODH to its catalytic domain, which is found in nearly all family 2 DHODH, is shown in green.^[6]. Remaining residues due to the TEV-cleavage site in DHODH-His, His- $\Delta 29$ DHODH and His-*Ec*DHODH are marked in grey.

Fig S2. QCM-D frequency (Δ f) and dissipation (Δ D) traces for the interaction between *Ec*DHODH (0.4 mg/mL) and lipid bilayers consisting of (A) 100 mol% POPC. (B) 90 mol% POPC + 10% Q₁₀. (C) 90 mol% POPC + 10% TOCL. (D) 80 mol% POPC + 10% Q₁₀ + 10% TOCL. Frequency traces are shown in blue, dissipation traces are shown in red. Asterisks (*) indicate addition of the lipid vesicles. Arrows indicate addition of the protein. Rinses with Milli-Q water and Buffer (10 mM Tris-HCl, 100 mM NaCl, pH 7.4) are indicated in the figures.

References

 Armen, R. S.; Uitto, O. D.; Feller, S. E. Phospholipid component volumes: Determination and application to bilayer structure calculations. *Biophysical Journal*. 1998, 75, 734-744.

2. Kucerka, N.; Nieh, M. P.; Katsaras, J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. *Biochimica Et Biophysica Acta-Biomembranes*. **2011**, 1808, 2761-2771.

3. Pan, J. J.; Cheng, X. L.; Sharp, M.; Ho, C. S.; Khadka, N.; Katsaras, J. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. *Soft Matter.* **2015**, 11, 130-138.

4. Madeira, F.; Park, Y. m.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D.; Lopez, R. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Research*. **2019**, 47, W636-W641.

5. Rawls, J.; Knecht, W.; Diekert, K.; Lill, R.; Loffler, M. Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. *European journal of biochemistry / FEBS.* **2000**, 267, 2079-87.

6. Vicente, E. F.; Sahu, I. D.; Costa-Filho, A. J.; Cilli, E. M.; Lorigan, G. A. (2015) Conformational changes of the HsDHODH N-terminal Microdomain via DEER Spectroscopy in *J Phys Chem B* pp. 8693-8697