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EC.1. Solving for the Optimal Tool Usage Policy

Step 1 in Algorithm 1 considers the states where the tool is last observed as defective (i.e., u= 1). It

is optimal to retire the tool at any cumulative counter if the run counter is nH−1 (i.e., line 3). This

is because the tool fails with probability 1 if the process action is taken at run counter nH − 1 and

Cr ≥ 0. Then comparing the value of retiring the tool and continuing the production at the order

specified in lines 4-8 allows us to calculate V (v, τ,w,1), ∀(v, τ,w,1)∈ S1. In Step 2, we consider the

states where the tool is last observed as normal (i.e., u= 0). For these states, the optimal action

is to retire the tool at any run counter given that the cumulative counter is nX + nH − 1 (i.e.,

line 11). This is again because the failure happens with probability 1 and Cr ≥ 0. Comparing the

values of the possible actions at the order specified in lines 12-23 allows us to calculate V (v, τ,0),

∀(v, τ,0)∈ S0. Algorithm 1 terminates with the calculation of V (0,0,0), i.e., the maximum lifetime

value of a new tool. The optimal policy is also generated as a by-product.

EC.2. Proofs

We first show a side result in Lemma EC.2.1 that will be used in the proof of Lemma 1.

Lemma EC.2.1. If the random variable X has a nondecreasing hazard rate and its pmf satisfies

fX(2)

fX(1)
≥ fX(3)

fX(2)
≥ . . .≥ fX(nX)

fX(nX − 1)
,

then it follows that

fX(x+ 1)∑nX
t=x+2 fX(t)

≥ fX(x)∑nX
t=x+1 fX(t)

, ∀x∈ {1, . . . , nX − 2}.

Proof of Lemma EC.2.1. Since X has a nondecreasing failure rate, it follows that

fX(x+ 2)∑nX
t=x+2 fX(t)

≥ fX(x+ 1)∑nX
t=x+1 fX(t)

, ∀x∈ {0, . . . , nX − 2},

which can be equivalently written as

f(x+ 2)

f(x+ 1)
≥
∑nX

t=x+2 fX(t)∑nX
t=x+1 fX(t)

, ∀x∈ {0, . . . , nX − 2}.

The result follows because f(x+ 1)/f(x)≥ f(x+ 2)/f(x+ 1) for all x∈ {1, . . . , nX − 2}.
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Algorithm 1 Calculation of the maximum lifetime value

1: Step 1: Calculate V (v, τ,w,1), ∀(v, τ,w,1)∈ S1:

2: for w= 1 to nX − 1 do

3: V (v,nH − 1,w,1) =Cr for v ∈ {w, . . . , nX +nH − 2}.
4: for τ = nH − 2 to 0 do

5: for v= nX − 1 + τ to τ +w do

6: V (v, τ,w,1) = max{Cr, (1−πf,1(v, τ,w)(m−Cd +V (v+ 1, τ + 1,w,1))}
7: end for

8: end for

9: end for

10: Step 2: Calculate V (v, τ,0), ∀(v, τ,0)∈ S0:

11: V (nX +nH − 1, τ,0) =Cr for τ ∈ {nH , . . . , nX +nH − 1}.
12: for v= nX +nH − 2 to nX do

13: for τ = v to v−nX + 1 do

14: V (v, τ,0) = max{Cr, (1−πf,0(v, τ)(m−Cd +V (v+ 1, τ + 1,0))}
15: end for

16: end for

17: for v= nX − 1 to 0 do

18: V (v,0,0) = max{Cr, (1−πf,0(v,0)(m−Cd +V (v+ 1,1,0))}
19: for τ = 1 to v do

20: V (v, τ,0) = max


Cr

(1−πf,0(v, τ)(m−πd(v+ 1, τ + 1)Cd +V (v+ 1, τ + 1,0))

−Ci +πd(v, τ)V (v,0, v− τ + 1,1) + (1−πd(v, τ))V (v,0,0)
21: end for

22: end for

Proof of Lemma 1. (i) By using the Bayes rule, we rewrite πd(v, τ) as

πd(v, τ) = P(X ≤ v|X > v− τ,X +H >v)

=
P(v− τ <X ≤ v,X +H >v)

P(X > v− τ,X +H >v)
(EC.1)

for all (v, τ,0)∈ S0. Conditioning on X, we expand P(v− τ <X ≤ v,X +H >v) as

fX(v− τ + 1)F̄H(τ) + fX(v− τ + 2)F̄H(τ − 1) + . . .+ fX(v)F̄H(1) (EC.2)

Similarly, we condition on the value of X and rewrite P(X > v− τ,X +H >v) as

fX(v− τ + 1)F̄H(τ) + fX(v− τ + 2)F̄H(τ − 1) + . . .+ fX(v)F̄H(1) + F̄X(v+ 1) (EC.3)

The result follows from plugging the expressions in (EC.2) and (EC.3) into Equation (EC.1). Notice

that (EC.2) is equal to (EC.3) for v≥ nX , and therefore, πd(v, τ) is then equal to 1.

(ii) We note that

πd(v, τ) =

∑v

x=v−τ+1 fX(x)F̄H(v−x+ 1)∑v

x=v−τ+1 fX(x)F̄H(v−x+ 1) + F̄X(v+ 1)
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≤
∑v

x=v−τ+1 fX(x)F̄H(v−x+ 1) + fX(v− τ)F̄H(τ + 1)∑v

x=v−τ+1 fX(x)F̄H(v−x+ 1) + F̄X(v+ 1) + fX(v− τ)F̄H(τ + 1)

= πd(v, τ + 1)

for all τ ∈ {0,1, . . . , v− 1} at any given value of v ∈ {1, . . . , nX − 1}, hence, the result follows.

(iii) We need to show that πd(v, τ)≤ πd(v+ 1, τ), i.e.,

P(v− τ <X ≤ v,X +H >v)

P(X > v− τ,X +H >v)
≤ P(v+ 1− τ <X ≤ v+ 1,X +H >v+ 1)

P(X > v+ 1− τ,X +H >v+ 1)
, (EC.4)

holds for all v ∈ {τ, . . . , nX − 2} at any given value of τ ∈ {1, . . . , nX − 1}. We rewrite (EC.4) as

A

A+ F̄X(v+ 1)
≤ B

B+ F̄X(v+ 2)
, (EC.5)

where

A , fX(v− τ + 1)F̄H(τ) + fX(v− τ + 2)F̄H(τ − 1) + . . .+ fX(v)F̄H(1),

B , fX(v− τ + 2)F̄H(τ) + fX(v− τ + 3)F̄H(τ − 1) + . . .+ fX(v+ 1)F̄H(1).

Notice that inequality (EC.5) holds if and only if

AF̄X(v+ 2)≤BF̄X(v+ 1). (EC.6)

Plugging the equations

F̄H(x) =
τ−1∑
y=x

fH(y) + F̄H(τ), x= 1, . . . , τ

into A and B, and then expanding the right and left hand sides of (EC.6) reveals that (EC.6) holds

when the inequalities∑t

x=0 fX(v−x)

F̄X(v+ 1)
≤
∑t

x=0 fX(v−x+ 1)

F̄X(v+ 2)
, t= 0,1, . . . , τ − 1 (EC.7)

hold. The inequalities in (EC.7) are satisfied if and only if

fX(v− t)
F̄X(v+ 1− t)

≤ fX(v+ 1)

F̄X(v+ 2)
, t= 0,1, . . . , τ − 1,

which always hold by Lemma EC.2.1. �

We next show another side result that will be used in the proofs of Lemma 2 and Lemma 3.

Lemma EC.2.2. Suppose that ai ≥ 0, bi > 0 for i= 1, . . . , k and it holds that

0≤ a1
b1
≤ . . .≤ ak

bk
. (EC.8)

Then the following relations hold:
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(i) ∑k−1
i=1 ai∑k−1
i=1 bi

≤
∑k

i=1 ai∑k

i=1 bi
≤
∑k

i=2 ai∑k

i=2 bi
(EC.9)

(ii) For 0≤w1 ≤w2 ≤ . . .≤wk,

a1 + . . .+ ak
b1 + . . .+ bk

≤ wjaj + . . .+wkak
wjbj + . . .+wkbk

, j ∈ {1, . . . , k}. (EC.10)

Proof of Lemma EC.2.2. (i) The left inequality in (EC.9) holds if and only if

a1 + . . .+ ak−1
b1 + . . .+ bk−1

≤ ak
bk
,

which further holds because aibk ≤ akbi, ∀i ∈ {1, . . . , k − 1} by (EC.8). Furthermore, it is easily

verified that the right inequality in (EC.9) holds if and only if

a1
b1
≤ a2 + . . .+ ak
b2 + . . .+ bk

,

which further holds because a1bi ≤ b1ai, ∀i∈ {2, . . . , k} by (EC.8).

(ii) We first show that

(aj + . . .+ ak)(wjbj + . . .wkbk)≤ (bj + . . .+ bk)(wjaj + . . .wkak), j ∈ {1, . . . , k}. (EC.11)

This holds because

(wv −wu)aubv ≤ (wv −wu)avbu, u∈ {j, j+ 1, . . . , k− 1}, v ∈ {u+ 1, u+ 2, . . . , k}

holds by (EC.8) for all j ∈ {1, . . . , k − 1} given the property 0 ≤ w1 ≤ . . . ≤ wk. Consequently,

(EC.10) holds for j = 1 by (EC.11). To show (EC.10) for j ∈ {2, . . . , k}, we note that

(a1 + . . .+ aj−1)(wjbj + . . .wkbk)≤ (b1 + . . .+ bj−1)(wjaj + . . .wkak), j ∈ {2, . . . , k} (EC.12)

by (EC.8). Combining (EC.12) and (EC.11) for j ∈ {2, . . . , k} shows that (EC.10) holds. �

Proof of Lemma 2. (i) By using the Bayes rule, we rewrite πf,0(v, τ) as

πf,0(v, τ) = P(X +H = v+ 1|X > v− τ,X +H >v)

=
P(X +H = v+ 1,X > v− τ)

P(X > v− τ,X +H >v)
. (EC.13)

for all (v, τ,0)∈ S0. We condition on the value of X and expand P(X +H = v+ 1,X > v− τ) as

fX(v+ 1)fH(0) + fX(v)fH(1) + . . .+ fX(v− τ + 2)fH(τ − 1) + fX(v− τ + 1)fH(τ). (EC.14)
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By conditioning on the value of H, we expand P(X > v− τ,X +H >v) as

F̄X(v+ 1)fH(0) + F̄X(v)fH(1) + . . .+ F̄X(v− τ + 1)fH(τ) + F̄X(v+ 1− τ)F̄H(τ + 1). (EC.15)

The result follows from plugging the expressions in (EC.14) and (EC.15) into (EC.13).

(ii) We rewrite P(X > v− τ,X+H >v) in the denominator of (EC.13) by conditioning on X as

fX(v− τ + 1)F̄H(τ) + fX(v− τ + 2)F̄H(τ − 1) + . . .+ fX(v)F̄H(1) + F̄X(v+ 1)F̄H(0). (EC.16)

Notice that if the value of τ is increased by 1, then the numerator in (EC.14) increases by fX(v−

τ)fH(τ + 1) and the denominator in (EC.16) increases by fX(v− τ)F̄H(τ + 1). Taking ak = fX(v−

τ)fH(τ) and bk = fX(v−τ)F̄H(τ+1) in Lemma EC.2.2(i), the result follows from the first inequality

in Lemma EC.2.2(i) because the random variable H has a nondecreasing hazard rate.

(iii) We need to show that πf,0(v, τ)≤ πf,0(v+ 1, τ), i.e.,

fX(v+ 1)fH(0) + fX(v)fH(1) + . . .+ fX(v− τ + 1)fH(τ)

F̄X(v+ 1)fH(0) + F̄X(v)fH(1) + . . .+ F̄X(v− τ + 1)fH(τ) + F̄X(v+ 1− τ)F̄H(τ + 1)
(EC.17)

≤ fX(v+ 2)fH(0) + fX(v+ 1)fH(1) + . . .+ fX(v− τ + 2)fH(τ)

F̄X(v+ 2)fH(0) + F̄X(v+ 1)fH(1) + . . .+ F̄X(v− τ + 2)fH(τ) + F̄X(v+ 2− τ)F̄H(τ + 1)

holds for all v ∈ {τ, τ + 1, . . . ,min{nX +nH − 2, nX + τ − 2}} at any given value of τ ∈ {0, . . . , nX +

nH − 2}. For convenience in presentation, we let

C(v), fX(v+ 1)fH(0) + fX(v)fH(1) + . . .+ fX(v− τ + 1)fH(τ),

D(v), F̄X(v+ 1)fH(0) + F̄X(v)fH(1) + . . .+ F̄X(v− τ + 1)fH(τ),

and rewrite (EC.17) as

C(v)

D(v) + F̄X(v+ 1− τ)F̄H(τ + 1)
≤ C(v+ 1)

D(v+ 1) + F̄X(v+ 2− τ)F̄H(τ + 1)
. (EC.18)

We prove (EC.18) in two steps: In the first step, we show that the inequality

C(v)

D(v)
≤ C(v+ 1)

D(v+ 1)
(EC.19)

holds. To this end, we first note that

C(v)

D(v)
=
a1 + a2 + . . .+ aτ + aτ+1

b1 + b2 + . . .+ bτ + bτ+1

≤ a2c2 + . . .+ aτcτ + aτ+1cτ+1

b2c2 + . . .+ bτcτ + bτ+1cτ+1

, (EC.20)

where the equality follows from taking ai = fX(v− τ + i)fH(τ + 1− i) and bi = F̄X(v− τ + i)fH(τ +

1 − i) for i ∈ {1, . . . , τ + 1}, and the inequality follows from Lemma EC.2.2(ii) by taking ci =
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fH(τ + 2− i)/fH(τ + 1− i) for i∈ {2, . . . , τ + 1} and using the property c2 ≤ . . .≤ cτ+1. In addition,

it can easily be verified that

a2c2 + . . .+ aτcτ + aτ+1cτ+1

b2c2 + . . .+ bτcτ + bτ+1cτ+1

≤ a2c2 + . . .+ aτ+1cτ+1 + fX(v+ 2)fH(0)

b2c2 + . . .+ bτ+1cτ+1 + F̄X(v+ 2)fH(0)

=
C(v+ 1)

D(v+ 1)
(EC.21)

since fX(v + 2)bi ≥ F̄X(v + 2)ai, ∀i ∈ {2, . . . , τ + 1}. Combining (EC.20) and (EC.21) shows that

(EC.19) holds.

In the second step, we first note that (EC.18) holds when

F̄X(v− τ + 2)

F̄X(v− τ + 1)
≤ C(v+ 1)

C(v)
(EC.22)

because (EC.19) holds. We will verify that (EC.22) holds by considering the two cases v≤ nX − 2

and v > nX − 2 separately. First, suppose v≤ nX − 2. In this case, we note that if the inequality

fX(v− τ + 2) + fX(v− τ + 3) + . . .+ fX(nX)

fX(v− τ + 1) + fX(v− τ + 2) + . . .+ fX(nX − 1)

≤ fX(v+ 2)fH(0) + fX(v+ 1)fH(1) + . . .+ fX(v− τ + 2)fH(τ)

fX(v+ 1)fH(0) + fX(v)fH(1) + . . .+ fX(v− τ + 1)fH(τ)
(EC.23)

holds, then (EC.22) holds. Since we know fH(τ)≥ fH(τ−1)≥ . . . ,≥ fH(0), taking ai = fX(nX− i+

1) and bi = fX(nX − i) for i∈ {1,2, . . . , nX − v+ τ −1}, j = nX − v−1, and wi = fH(i−nX + v+ 1)

for i ∈ {j, j + 1, . . . , nX − v + τ − 1} in Lemma EC.2.2(ii) implies that (EC.23) holds, and hence,

the result follows. In the second case, we suppose that v > nX − 2 and note that if the inequality

fX(v− τ + 2) + fX(v− τ + 3) + . . .+ fX(nX)

fX(v− τ + 1) + fX(v− τ + 2) + . . .+ fX(nX − 1)

≤ fX(nX)fH(v+ 2−nX) + fX(nX − 1)fH(v+ 3−nX) + . . .+ fX(v− τ + 2)fH(τ)

fX(nX − 1)fH(v+ 2−nX) + fX(nX − 2)fH(v+ 3−nX) + . . .+ fX(v− τ + 1)fH(τ)
(EC.24)

holds, then (EC.22) holds. Taking ai = fX(nX − i+ 1), bi = fX(nX − i) and wi = fH(i−nX + v+ 1)

for i ∈ {1,2, . . . , nX − v + τ − 1} in Lemma EC.2.2(ii) implies that (EC.24) holds, and hence, the

result follows. �

Proof of Lemma 3. (i) By using the Bayes rule, we rewrite πf,1(v, τ,w) as

πf,1(v, τ,w) = P(X +H = v+ 1|w≤X ≤ v− τ,X +H >v)

=
P(X +H = v+ 1,w≤X ≤ v− τ)

P(w≤X ≤ v− τ,X +H >v)
(EC.25)

for all (v, τ,w,1)∈ S1. We condition on X and expand P(X +H = v+ 1,w≤X ≤ v− τ) as

fX(w)fH(v−w+ 1) + fX(w+ 1)fH(v−w) + . . .+ fX(v− τ)fH(τ + 1). (EC.26)
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Similarly, we condition on X and rewrite P(X ≤ v− τ,X +H >v) as

fX(w)F̄H(v−w+ 1) + fX(w+ 1)F̄H(v−w) + . . .+ fX(v− τ)F̄H(τ + 1). (EC.27)

The result follows from plugging the expressions in (EC.26) and (EC.27) into Equation (EC.25).

(ii) We first show that πf,1(v, τ,w)≤ πf,1(v, τ + 1,w), i.e.,

P(X +H = v+ 1,w≤X ≤ v− τ)

P(w≤X ≤ v− τ,X +H >v)
≤ P(X +H = v+ 1,w≤X ≤ v− τ − 1)

P(w≤X ≤ v− τ − 1,X +H >v)
(EC.28)

for all v ∈ {w + 1, . . . , nX + nH − 3} and τ ∈ {0, . . . ,min(nH , v − w)− 1} at a given value of w ∈

{1, . . . , nX − 1}. After writing (EC.28) as

fX(w)fH(v−w+ 1) + . . .+ fX(v− τ − 1)fH(τ + 2) + fX(v− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 1) + . . .+ fX(v− τ − 1)F̄H(τ + 2) + fX(v− τ)F̄H(τ + 1)

≤ fX(w)fH(v−w+ 1) + . . .+ fX(v− τ − 1)fH(τ + 2)

fX(w)F̄H(v−w+ 1) + . . .+ fX(v− τ − 1)F̄H(τ + 2)
,

it is easy to verify that this inequality holds follows from Lemma EC.2.2(i) with k = v − τ , ai =

fX(v+ 1− τ + i)fH(τ + 1) and bi = fX(v+ 1− τ + i)F̄ (τ + 1) for i∈ {1, . . . , k} because the random

variable H has a nondecreasing hazard rate.

We next show that πf,1(v, τ,w)≥ πf,1(v, τ,w+ 1), i.e.,

fX(w)fH(v−w+ 1) + fX(w+ 1)fH(v−w) + . . .+ fX(v− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 1) + fX(w+ 1)F̄H(v−w) + . . .+ fX(v− τ)F̄H(τ + 1)

≥ fX(w+ 1)fH(v−w) + . . .+ fX(v− τ)fH(τ + 2)

fX(w+ 1)F̄H(v−w) + . . .+ fX(v− τ)F̄H(τ + 2)
(EC.29)

for all (v, τ,w,1)∈ S1 with w ∈ {1, . . . , nX − 2}. Notice that this immediately follows from the first

inequality in Lemma EC.2.2(i) because the random variable H has a nondecreasing hazard rate.

Finally, we show that πf,0(v, τ) ≤ πf,1(v, τ,w) for all (v, τ,w,1) ∈ S1. To do this, we first note

that, after getting a common denominator and comparing the pairs of terms from the left and right

hand sides, the inequality

fX(v− τ + 1)fH(τ) + . . .+ fX(v+ 1)fH(0)

fX(v− τ + 1)F̄H(τ) + . . .+ fX(v+ 1)F̄H(0)

≤ fX(w)fH(v−w+ 1) + . . .+ fX(v− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 1) + . . .+ fX(v− τ)F̄H(τ + 1)
= πf,1(v, τ,w) (EC.30)

holds for all (v, τ,w,1)∈ S1 if the set of inequalities

F̄H(i)fH(j)≤ F̄H(j)fH(i), i∈ {τ + 1, . . . , v−w+ 1}, j ∈ {0,1, . . . , τ} (EC.31)

holds. The set of inequalities in (EC.31) holds because the random variable H has a nondecreasing

hazard rate. The result then follows by noting that πf,0(v, τ) cannot be greater than the left hand
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side in (EC.30). This can be seen by noting that the numerator of the left hand side in (EC.30) is

the numerator of πf,0(v, τ) given by (EC.14), while the denominator of the left hand side in (EC.30)

is obtained by expanding P(X > v− τ,X +H >v) by conditioning on H and then subtracting the

nonnegative term F̄X(v+ 2)F̄H(0).

(iii) We need to show that πf,1(v, τ,w)≤ πf,1(v+ 1, τ,w), i.e.,

fX(w)fH(v−w+ 1) + . . .+ fX(v− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 1) + . . .+ fX(v− τ)F̄H(τ + 1)

≤ fX(w)fH(v−w+ 2) + fX(w+ 1)fH(v−w+ 1) + . . .+ fX(v+ 1− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 2) + fX(w+ 1)F̄H(v−w+ 1) + . . .+ fX(v+ 1− τ)F̄H(τ + 1)
. (EC.32)

holds for all v ∈ {w+ τ,w+ τ + 1, . . . , τ +nX − 2} at any given value of τ ∈ {0, . . . , nH − 1}.
We first consider the inequality

fX(w)fH(v−w+ 1) + . . .+ fX(v− τ)fH(τ + 1)

fX(w)F̄H(v−w+ 1) + . . .+ fX(v− τ)F̄H(τ + 1)

≤ fX(w+ 1)fH(v−w+ 1) + . . .+ fX(v+ 1− τ)fH(τ + 1)

fX(w+ 1)F̄H(v−w+ 1) + . . .+ fX(v+ 1− τ)F̄H(τ + 1)
. (EC.33)

After obtaining a common denominator in Inequality (EC.33) and comparing the pairs of terms

from the left and right hand sides of the numerator, we observe that it is sufficient that the following

set of inequalities is satisfied for (EC.33) to hold:

fX(v+ 2− j)fX(v+ 1− i)
{
F̄H(j)fH(i)− fH(j)F̄H(i)

}
≤ fX(v+ 1− j)fX(v+ 2− i)

{
F̄H(j)fH(i)− fH(j)F̄H(i)

}
i, j ∈ {τ + 1, . . . , v−w+ 1} (EC.34)

Notice that (EC.34) holds as equality for i= j. For j < i, we know that F̄H(j)fH(i)−fH(j)F̄H(i)≥ 0

because the random variable H has a nondecreasing failure rate, and therefore (EC.34) holds if

fX(v+ 2− j)
fX(v+ 1− j)

≤ fX(v+ 2− i)
fX(v+ 1− i)

. (EC.35)

On the other hand, for j > i, the nondecreasing failure rate of the random variable H implies that

F̄H(j)fH(i)− fH(j)F̄H(i)≤ 0. Consequently, (EC.34) holds if

fX(v+ 2− j)
fX(v+ 1− j)

≥ fX(v+ 2− i)
fX(v+ 1− i)

(EC.36)

for j > i. We notice that the conditions in (EC.35) and (EC.36) hold under the property in (4).

Therefore, we conclude that Inequality (EC.33) holds.

We next apply Lemma EC.2.2(i) by taking k= v−w+ 2− τ , ai = fX(v+ 2− τ − i)fH(τ + i) and

bi = fX(v+ 2− τ − i)F̄H(τ + i) for i∈ {1, . . . , k} and find that

fX(2)fH(v) + . . .+ fX(v+ 1− τ)fH(τ + 1)

fX(2)F̄H(v) + . . .+ fX(v+ 1− τ)F̄H(τ + 1)

≤ fX(1)fH(v+ 1) + fX(2)fH(v) + . . .+ fX(v+ 1− τ)fH(τ + 1)

fX(1)F̄H(v+ 1) + fX(2)F̄H(v) + . . .+ fX(v+ 1− τ)F̄H(τ + 1)
. (EC.37)

It follows from (EC.37) and (EC.33) that (EC.32) holds, and hence, the result follows. �
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Proof of Proposition 1. We use induction on the steps of the value iteration algorithm as the

proof technique. Let V k(v, τ,w,1) denote the total expected reward (i.e., also referred to as value

function) at the kth iteration of the value iteration algorithm. Since the absorbing end-of-life state

of the MDP is reached in a finite number of steps, V k(v, τ,w,1) converges to the optimal infinite-

horizon expected reward as k increases (Proposition 7.2.1, Bertsekas 2005).

(i) We first show that V (v, τ,w,1) is a nonincreasing function of v. To start with, we let

V 0(v, τ,w,1) = Cr for all (v, τ,w,1) ∈ S1, which is trivially a nonincreasing function. As the

induction hypothesis, we assume V k(v, τ,w,1) ≥ V k(v + 1, τ,w,1) for k > 0, and want to show

V k+1(v, τ,w,1) ≥ V k+1(v + 1, τ,w,1) for all (v, τ,w,1) ∈ S1 with v < nX + τ − 1. To this end, we

first show that

V k
P (v, τ,w,1) = (1−πf,1(v, τ,w))(m−Cd +V k(v+ 1, τ + 1,w,1))

≥ (1−πf,1(v, τ,w))(m−Cd +V k(v+ 2, τ + 1,w,1))

≥ (1−πf,1(v+ 1, τ,w))(m−Cd +V k(v+ 2, τ + 1,w,1))

= V k
P (v+ 1, τ,w,1)

for all (v, τ,w,1) ∈ S1 with v < nX + τ − 1, where the first inequality follows from the induction

hypothesis, and the second inequality follows from Assumption 1(i) and m−Cd + V k(v + 2, τ +

1,w,1) being positive. Therefore, it follows that

V k+1(v, τ,w,1) = max{0, V k
P (v, τ,w,1)} ≥max{0, V k

P (v+ 1, τ,w,1)}= V k+1(v+ 1, τ,w,1).

To show V (v, τ,w,1) is nonincreasing in τ , the proof follows the similar steps with the main

difference of using Assumption 1(ii) instead of Assumption 1(i). Therefore, we omit the details.

(ii) Let V 0(v, τ,w,1) = 0 for all (v, τ,w,1) ∈ S1, which is trivially a nondecreasing function. As

the induction hypothesis, we assume V k(v, τ,w,1)≤ V k(v, τ,w+ 1,1) for k > 0 and want to show

V k+1(v, τ,w,1)≤ V k+1(v, τ,w+ 1,1) for all (v, τ,w,1)∈ S1 with w< v− τ . Note that

V k
P (v, τ,w,1) = (1−πf,1(v, τ,w))(m−Cd +V k(v+ 1, τ + 1,w,1))

≤ (1−πf,1(v, τ,w))(m−Cd +V k(v+ 1, τ + 1,w+ 1,1))

≤ (1−πf,1(v, τ,w+ 1))(m−Cd +V k(v+ 1, τ + 1,w+ 1,1))

= V k
P (v, τ,w+ 1,1)

for all (v, τ,w,1)∈ S1 with w< v−τ , where the first inequality follows from the induction hypothe-

sis, and the second inequality follows from Assumption 1(iii) and m−Cd+V k(v+1, τ +1,w+1,1)

being positive. Thus, it follows that

V k+1(v, τ,w,1) = max{0, V k
P (v, τ,w,1)} ≤max{0, V k

P (v, τ,w+ 1,1)}= V k+1(v, τ,w+ 1,1). �
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Proof of Theorem 1. (i) We first show the existence of a critical threshold i∗(t,w) for a given

value of t and w. It is known from Proposition 1 that V (t+ i, i,w,1), and therefore,

VP (t+ i, i,w,1) = (1−πf,1(t+ i, i,w)) (m−Cd +V (t+ i+ 1, i+ 1,w,1))

are nonincreasing functions of i for all t ∈ {w, . . . , nX − 1} and w ∈ {1, . . . , nX − 1}. Recall that

V (t+ i, i,w,1) = max{VP (t+ i, i,w,1),Cr} for all i ∈ {0, . . . , nH − 1}, t ∈ {w, . . . , nX − 1} and w ∈

{1, . . . , nX − 1}. Since VP (t+ i, i,w,1) is nonincreasing in i and Cr is constant, a critical threshold

i∗(t,w) ∈ {0, . . . , nH − 1} exists such that the ‘process’ action is optimal for i < i∗(t,w) and the

‘retire-the-tool’ action is optimal for i≥ i∗(t,w) at states (t+ i, i,w,1)∈ S1.

Due to the existence of a critical threshold, one of the following two cases must hold for any t

and w value:

(A) it is always optimal to retire, i.e., i∗(t,w) = 0. Then, (1−πf,1(t,0,w))(m−Cd +Cr)≤Cr.

(B) it is optimal to process at state (t + i∗(t,w) − 1, i∗(t,w) − 1,w,1) and to retire at state

(t+ i∗(t,w), i∗(t,w),w,1), implying that

(1−πf,1(t+ i∗(t,w)− 1, i∗(t,w)− 1,w))(m−Cd +Cr)>Cr (EC.38)

and

(1−πf,1(t+ i∗(t,w), i∗(t,w),w))(m−Cd +Cr)≤Cr, (EC.39)

respectively.

In case A, the inequality can be rewritten as πf,1(t,0,w)≥ (m−Cd)/(m−Cd+Cr), and hence, the

result follows. In case B, the inequality (EC.38) can be rewritten as πf,1(t+ i∗(t,w)− 1, i∗(t,w)−

1,w) < (m − Cd)/(m − Cd + Cr). It then follows that πf,1(t + i, i,w) < (m − Cd)/(m − Cd + Cr)

at all the states (t + i, i,w,1) with i ≤ i∗(t,w) − 1 because πf,1(t + i, i,w) cannot increase as i

decreases. Furthermore, the inequality (EC.39) can be rewritten as πf,1(t+ i∗(t,w), i∗(t,w),w)≥

(m−Cd)/(m−Cd +Cr). It then follows that πf,1(t+ i, i,w)≥ (m−Cd)/(m−Cd +Cr) at all the

states (t+ i, i,w,1) with i≥ i∗(t,w) because πf,1(t+ i, i,w) is nondecreasing in i.

(ii) The nonincreasing behavior of i∗(t,w) in t follows from the characterization of i∗(t,w) and the

nondecreasing behavior of πf,1(v, τ,w) in v (Assumption 1.i). Similarly, the nondecreasing behavior

of i∗(t,w) in w follows because πf,1(v, τ,w) is nonincreasing in w (Assumption 1.iii). �

Proof of Proposition 2. Theorem 2(i) shows that i∗(v,w) is the optimal number of products to

process with a tool at state (v,0,w,1). There are two cases to consider: (i) if i∗(v,w) is zero, then

it is optimal to take the retire-the-tool action right after the inspection and no production reward

can be gained; i.e., g(v,w) =Cr. (ii) If i∗(v,w) ∈ {1, . . . , nH − 1}, the expected production reward
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from the processing of the ith product is given by (m−Cd)
∏i

j=1(1− πf,1(v+ j − 1, j − 1,w)) for

i= 1, . . . , i∗(v,w). On the other hand, the expected reward of retiring at the i∗(v,w)th product is

given by Cr
∏i∗(v,w)

j=1 (1−πf,1(v+ j− 1, j− 1,w)). The result follows from adding these terms. �

Proof of Proposition 3. We prove parts (i)-(iii) together. Let V k(v, τ,0) denote the value func-

tion at the kth iteration of the value iteration algorithm. As stated in the proof of Proposition 1, the

value function V k(v, τ,0) converges to the optimal infinite-horizon expected reward as k increases.

As the induction hypothesis, at a given k > 0, we assume that

(H1) V k(v, τ,0)≥ V k(v+ 1, τ,0), ∀v ∈ {0, . . . , nX +nH − 2} and τ ∈ {max(v−nX + 1,0), . . . , v},

(H2) V k(v, τ + 1,0)≥ V k(v, τ,0), ∀v ∈ {1, . . . , nX +nH −1} and τ ∈ {max(v−nX + 1,0), . . . , v−1},

(H3) V k(v, τ,0)≥ V k(v, τ, v− τ,1), ∀(v, τ, v− τ,1)∈ S1 (i.e., it is sufficient to consider w= v− τ as

it is already known from Proposition 1(ii) that V (v, τ,w,1) cannot increase as w decreases),

(H4) V k(v,0,w,1)≥ V k(v+ 1,0,w+ 1,1) for w ∈ {1, . . . , nX − 2} and v ∈ {w, . . . , nX − 2}.

For k= 0, we let V 0(s) =Cr for all s∈ S0∪S1∪{∇}, which is trivially a nonincreasing function.

We do the proof in two parts. In the first part, we will show that H1, H3 and H4 hold for k+ 1

under the Assumption 2(i), 2(iii) and 2(iv). In the second part, we will show that H2, H3 and H4

hold for k+ 1 under the Assumption 2(ii), 2(iii) and 2(iv). We start with noting that

V k
P (v, τ,0) = (1−πf,0(v, τ))

(
m−πd(v+ 1, τ + 1)Cd +V k(v+ 1, τ + 1,0)

)
≥ (1−πf,0(v, τ))

(
m−πd(v+ 1, τ + 1)Cd +V k(v+ 2, τ + 1,0)

)
≥ (1−πf,0(v+ 1, τ))(m−πd(v+ 2, τ + 1)Cd +V k(v+ 2, τ + 1,0))

= V k
P (v+ 1, τ,0)

for all v ∈ {0, . . . , nX +nH−3} and τ ∈ {max(v−nX +1,0), . . . , v}. The first inequality above follows

from the induction hypothesis H1. The second inequality follows from πf,0(v + 1, τ) ≥ πf,0(v, τ)

and πd(v + 2, τ + 1) ≥ πd(v + 1, τ + 1) (Assumption 2.i), the assumption m − Cd + Cr > 0, and

V k(v+2, τ +1, v− τ +2,0)≥Cr (i.e., this is because at any k > 0 we already know V k(v, τ,0)≥Cr
for all (v, τ,0)∈ S0 as the ‘retire-the-tool’ is always a feasible action). We next show that

V k
I (v, τ) = −Ci +πd(v, τ)V k(v,0, v− τ + 1,1) + (1−πd(v, τ))V k(v,0,0)

≥ −Ci +πd(v, τ)V k(v+ 1,0, v− τ + 2,1) + (1−πd(v, τ))V k(v+ 1,0,0)

≥ −Ci +πd(v+ 1, τ)V k(v+ 1,0, v− τ + 2,1) + (1−πd(v+ 1, τ))V k(v+ 1,0,0)

= V k
I (v+ 1, τ)
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for all v ∈ {0, . . . , nX − 2} and τ ∈ {1, . . . , v}. The first inequality above follows from the induction

hypotheses H1 and H4, and the second inequality follows from πd(v + 1, τ) ≥ πd(v, τ) (Assump-

tion 2.i) and the induction hypothesis H3. Consequently, it holds that

V k+1(v, τ,0) =

max
{
V k
P (v, τ,0), V k

I (v, τ),Cr
}
∀(v, τ)∈ {(v, τ,0)∈ S0 : v < nX ,0< τ}

max
{
V k
P (v, τ,0),Cr

}
∀(v, τ)∈ {(v, τ,0)∈ S0 : v≥ nX or τ = 0}

is a nonincreasing function of v because the maximum of nonincreasing functions is also a nonin-

creasing function. Furthermore, V k+1(v+ i,0, v− τ + i,1) is nondecreasing in i because

V k+1(v,0, v− τ,1) = max{(1−πf,1(v,0, v− τ + 1))
(
m−Cd +V k(v,0, v− τ + 1,1)

)
,Cr}

≥ max{(1−πf,1(v+ 1,0, v− τ + 2))
(
m−Cd +V k(v+ 1,0, v− τ + 2,1)

)
,Cr}

= V k+1(v+ 1,0, v− τ + 1,1),

where the inequality follows from the induction hypothesis H4 and Assumption 2(iv). Thus, H1

and H4 hold for k+ 1. We next show H3 for k+ 1. To this end, we first show

V k
P (v, τ,0) = (1−πf,0(v, τ))(m−πd(v+ 1, τ + 1)Cd +V k(v+ 1, τ + 1,0))

≥ (1−πf,0(v, τ))(m−Cd +V k(v+ 1, τ + 1, v− τ,1))

≥ (1−πf,1(v, τ, v− τ))(m−Cd +V k(v+ 1, τ + 1, v− τ,1)) = V k
P (v, τ, v− τ,1)

for all (v, τ) ∈ {(v, τ) : (v, τ,w,1) ∈ S1,w = v − τ}, where the first inequality follows from Cd ≥ 0,

πd(v + 1, τ + 1) ≤ 1 and the induction hypothesis H3, and the second inequality follows from

Assumption 2(iii) and m−Cd+V k(v+1, τ+1, v−τ,1)> 0. Consequently, for all (v, τ)∈ {(v, τ,0)∈

S0 : v < nX ,0< τ}, where inspection is a feasible action, it follows that

V k+1(v, τ,0) = max{V k
P (v, τ,0), V k

I (v, τ),Cr}

≥ max{V k
P (v, τ,0),Cr}

≥ max{V k
P (v, τ, v− τ,1),Cr}= V k+1(v, τ, v− τ,1),

and, for all (v, τ) ∈ {(v, τ,0) ∈ S0 : v ≥ nX or τ = 0}, where inspection is not a feasible action, it

similarly follows that

V k+1(v, τ, v− τ + 1,0) = max{V k
P (v, τ, v− τ + 1,0),0}

≥ max{V k
P (v, τ, v− τ,1),0}= V k+1(v, τ, v− τ,1).

Thus, H3 holds k+ 1.

We omit the details of the second part of the proof as it is very similar to the first part except

using the induction hypothesis H2 and Assumption 2(ii) instead of H1 and Assumption 2(i). �
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Proof of Theorem 2. (i) The existence of u∗(t), t= 0, . . . , nX−1, will be proved by showing that

if retire-the-tool action is optimal at state (v, τ,0), then the retire-the-tool action is also optimal

at state (v+ 1, τ + 1,0) for all possible v and τ values in S0.

Suppose that the retire-the-tool action is optimal at state (v, τ,0), but the retire-the-tool action

is not optimal at state (v + 1, τ + 1,0). This would imply VP (v, τ,0) < Cr and VI(v, τ) < Cr and

either VP (v+ 1, τ + 1,0)>Cr or VI(v+ 1, τ + 1)>Cr. We first note that VP (v+ 1, τ + 1,0)>Cr is

not possible because

VP (v, τ,0) = (1−πf,0(v, τ)) (m−πd(v+ 1, τ + 1)Cd +V (v+ 1, τ + 1,0))

≥ (1−πf,0(v+ 1, τ + 1)) (m−πd(v+ 2, τ + 2)Cd +V (v+ 2, τ + 2,0)) = VP (v+ 1, τ + 1,0)

but VP (v, τ,0) < Cr, leading to a contradiction. Notice that the inequality above follows from

Assumption 2(i)-(ii), monotonicity of the value function established in Proposition 3(i), Cd ≥ 0,

the assumption m−Cd +Cr ≥ 0, and V (v+ 2, τ + 2,0)≥Cr.

We also note that VI(v+ 1, τ + 1,0)>Cr is not possible because

VI(v, τ) = −Ci +πd(v, τ)V (v,0, v− τ + 1,1) + (1−πd(v, τ))V (v,0,0)

≥ −Ci +πd(v, τ)V (v+ 1,0, v− τ + 1,1) + (1−πd(v, τ))V (v+ 1,0,0)

≥ −Ci +πd(v+ 1, τ + 1)V (v+ 1,0, v− τ + 1,1) + (1−πd(v+ 1, τ + 1))V (v+ 1,0,0)

= VI(v+ 1, τ + 1)

but VI(v, τ)<Cr, leading to a contradiction. Notice that the first inequality above follows from the

monotonicity of the value function established in Proposition 1(i) and 3(i). The second inequality

follows from Assumption 2(i)-(ii) and Proposition 3(ii).

Consequently, we show by contradiction that the retire-the-tool action must be optimal at state

(v+1, τ+1,0) if the retire-the-tool action is already optimal at state (v,τ ,0). This implies, at a fixed

value of t= v− τ , there exists a threshold u∗(t) such that it is optimal to take the retire-the-tool

action at states (t+ i, i,0)∈ S0 for i∈ {u∗(t), u∗w+1, . . . , nX +nH−1− t} for any t∈ {1, . . . , nX−1}.

(ii) The threshold `∗(t) exists when the following holds: if ‘process’ action is optimal at (v, τ,0),

then the ‘process’ action is also optimal at (v−1, τ −1,0) for all possible v and τ values in S0 with

a fixed t= v− τ . The states on the 45-degree line with t ∈ {0, . . . , nX − 1} can be partitioned into

three groups of states: (a) (nX + i, nX − t+ i,0) for i= 1, . . . , nH − 1, (b) (nX , nX − t,0), and (c)

(t+ i, i,0) for i= 0, . . . , nX − 1− t.

For any t, suppose that the state (v, τ,0) is in group (a) or in group (c) with i= 1. It is easy

to verify that if ‘process’ is optimal at state (v, τ,0), then ‘process’ is also optimal at state (v −

1, τ − 1,0). Specifically, if it is known V (v, τ,0) > Cr (since the ‘process’ action is optimal), it is
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not possible to have V (v− 1, τ − 1,0) = Cr (from Proposition 3.i), and hence, the ‘process’ must

also be optimal at state (v− 1, τ − 1,0) (since ‘inspection’ is not feasible at (v− 1, τ − 1,0)). So, in

the remainder of the proof, we consider the remaining states.

For t ∈ {0, . . . , nX − 1}, suppose that the state (v, τ,0) is in group (b). We want to show that

if ‘process’ is optimal at state (v, τ,0), then ‘process’ is also optimal at state (v− 1, τ − 1,0). For

t = nX − 1, this reduces to showing that if ‘process’ is optimal at state (nX ,1,0), then ‘process’

is also optimal at state (nX − 1,0,0). This trivially holds because ‘inspection’ is not feasible at

(nX−1,0,0) and V (nX−1,0,0)>Cr (from Proposition 3.i). For t≤ nX−2, suppose that ‘process’

is optimal at state (nX , nX− t) and ‘inspection’ is optimal at state (nX−1, nX− t−1). This implies

that VP (nX , nX − t,0)>Cr and VI(nX − 1, nX − t− 1)>VP (nX − 1, nX − t− 1,0); i.e.,

(1−πf,0(nX , nX − t))(m−Cd +V (nX + 1, nX − t+ 1,0))>Cr (EC.40)

and

−Ci +πd(nX − 1, nX − t− 1)V (nX − 1,0, t+ 1,1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0)

> (1−πf,0(nX − 1, nX − t− 1))(m−Cd +V (nX , nX − t,0)). (EC.41)

Replacing V (nX−1,0, t+1,1) with g(nX−1, t+1) and adding up (EC.40) and (EC.41), we obtain

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0) (EC.42)

+(1−πf,0(nX , τ))V (nX + 1, nX − t+ 1,0)

>Ci + ∆f (nX , nX − t; 1,1)(m−Cd) + (1−πf,0(nX − 1, nX − t− 1))V (nX , nX − t,0) +Cr.

Since V (nX , nX − t,0)≥ V (nX + 1, nX − t+ 1,0) (Proposition 3.i), it can be shown that if (EC.42)

holds then the inequality

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0) (EC.43)

>Ci + ∆f (nX , nX − t; 1,1)(m−Cd +V (nX , nX − t,0)) +Cr

also holds. For v ∈ {0, . . . , nX − 1}, let r(v) denote m(E(X|X > v)− v− 1) + (m−Cd)(E(H) + 1),

representing the production reward of a tool, which is just found normal in an inspection performed

at cumulative counter v, if it is run until failure. Plugging the inequality V (nX − 1,0,0)≤ r(nX −
1) + Cr (i.e., the maximum lifetime value of a tool cannot be greater than a policy which runs

the tool until failure and still collects the salvage reward) on the left-hand-side of the inequality

(EC.43) and plugging V (nX , nX − t,0)≥Cr on the right hand side of the inequality (EC.43) give

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))(r(nX − 1) +Cr)

>Ci + ∆f (nX , nX − t; 1,1)(m−Cd +Cr) +Cr. (EC.44)
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However, this inequality cannot be true if the condition (8) holds. Thus, by contradiction, if ‘pro-

cess’ is optimal at (nX , nX − t,0), then ‘process’ is also optimal at (nX − 1, nX − t− 1,0).

Finally, for t∈ {0, . . . , nx−3}, suppose that the state (v, τ,0) is in group (c) with i≥ 2. We want

to show that if ‘process’ is optimal at state (v, τ,0), then ‘process’ is also optimal at state (v−1, τ−
1,0). Suppose that ‘process’ is optimal at (v, τ,0) but ‘inspection’ is optimal at (v − 1, τ − 1,0).

This implies VP (v, τ,0)>VI(v, τ) and VI(v− 1, τ − 1)>VP (v− 1, τ − 1,0); i.e.,

(1−πf,0(v, τ))(m−πd(v+ 1, τ + 1)Cd +V (v+ 1, τ + 1,0)) (EC.45)

>−Ci +πd(v, τ)V (v,0, v− τ + 1,1) + (1−πd(v, τ))V (v,0,0)

and

−Ci +πd(v− 1, τ − 1)V (v− 1,0, v− τ + 1,1) + (1−πd(v− 1, τ − 1))V (v− 1,0,0)

> (1−πf,0(v− 1, τ − 1))(m−πd(v, τ)Cd +V (v, τ,0)). (EC.46)

The following inequalities can easily be verified by using the monotonicity of the value function:

V (v− 1,0, v− τ + 1,1) ≤ m−Cd +V (v,0, v− τ + 1,1) (EC.47)

V (v− 1,0,0) ≤ m+V (v,0,0). (EC.48)

Plugging (EC.47) and (EC.48) into (EC.46) leads to the inequality

−Ci +πd(v− 1, τ − 1)(m−Cd +V (v,0, v− τ + 1,1)) + (1−πd(v− 1, τ − 1))(m+V (v,0,0))

> (1−πf,0(v− 1, τ − 1))(m−πd(v, τ)Cd +V (v, τ,0)). (EC.49)

Since V (v+ 1, τ + 1, v− τ + 1,0)≤ V (v, τ, v− τ + 1,0), (EC.45) implies that

(1−πf,0(v, τ))(m−πd(v+ 1, τ + 1)Cd +V (v, τ, v− τ + 1,0)) (EC.50)

>−Ci +πd(v, τ)V (v,0, v− τ + 1,1) + (1−πd(v, τ))V (v,0,0).

Noting that V (v,0, v− τ + 1,1) = g(v, v− τ + 1), and adding (EC.49) and (EC.50) lead to

∆d(v, τ ; 1,1) (V (v,0,0)− g(v, v− τ + 1)) +
(
πf,0(v, τ)πd(v+ 1, τ + 1)−πf,0(v− 1, τ − 1)πd(v, τ)

)
Cd

>∆f (v, τ ; 1,1)(V (v, τ,0) +m)−m+Cd
(
∆d(v+ 1, τ + 1;1,1) +πd(v− 1, τ − 1)

)
,

which further implies

∆d(v, τ ; 1,1) (r(v) +Cr− g(v, v− τ + 1)) +
(
πf,0(v, τ)πd(v+ 1, τ + 1)−πf,0(v− 1, τ − 1)πd(v, τ)

)
Cd

>∆f (v, τ ; 1,1)(Cr +m)−m+Cd
(
∆d(v+ 1, τ + 1;1,1) +πd(v− 1, τ − 1)

)
because V (v,0,0)≤ r(v) +Cr and V (v, τ,0)≥ Cr. However, this inequality cannot be true if the

condition (9) holds. Thus, it follows that if ‘process’ is optimal at state (v, τ,0) then ‘process’ is

optimal at state (v− 1, τ − 1,0). �
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Proof of Theorem 3. (i) Recall that the existence of u∗(t), t= 0, . . . , nX − 1, is proved in Theo-

rem 2(i) by showing that if ‘retire-the-tool’ is optimal at state (v, τ,0), then ‘retire-the-tool’ is also

optimal at state (v+ 1, τ + 1,0) for all possible v and τ values in S0. Similarly, the following two

results together imply that u∗(t) is nonincreasing in t: (a) If ‘retire-the-tool’ is optimal at state

(v, τ,0), then ‘retire-the-tool’ is also optimal at state (v+ 1, τ,0). (b) If ‘retire-the-tool’ is optimal

at state (v, τ,0), then ‘retire-the-tool’ is also optimal at state (v, τ + 1,0). Both results (a) and (b)

can be shown by following the same steps as in part Theorem 2(i), so we omit a detailed proof.

To show result (a), Assumption 2(i), Proposition 1(ii) and Proposition 3(ii)-(iii) are used. To show

result (b), Assumption 2(ii), Proposition 1(i)-(ii) and Proposition 3(ii) are used.

(ii) The existence of threshold `∗(t), t = 0, . . . , nX − 1, has been proved in Theorem 2(ii). It is

sufficient to show the following additional result to establish `∗(t)≥ `∗(t+1) for any t{0, . . . , nX−2}:
if ‘process’ is optimal at a state on the 45-degree line with t+1 as the difference between cumulative

and run counters, then ‘process’ is also optimal at the state with one less run counter (i.e., the left

neighbor state on the 45-degree line with t as the difference between cumulative and run counters).

For a specific t ∈ {0, . . . , nX − 2}, there are two sets of states that we need to consider separately:

(a) (nX , nX − t− 1,0), and (b) (nX − i, nX − t− i,0), i= 1, . . . , nX − 2− t (i.e., for t= nX − 2, this

set is empty).

For case (a), suppose that ‘process’ is optimal at state (nX , nX − t − 1,0) but ‘inspection’ is

optimal at state (nX − 1, nX − t− 1). This implies that VP (nX , nX − t− 1,0) > Cr and VI(nX −
1, nX − t− 1)>VP (nX − 1, nX − t− 1); i.e.,

(1−πf,0(nX , nX − t− 1))(m−Cd +V (nX + 1, nX − t,0))>Cr (EC.51)

and

−Ci +πd(nX − 1, nX − t− 1)V (nX − 1,0, t+ 1,1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0)

> (1−πf,0(nX − 1, nX − t− 1))(m−Cd +V (nX , nX − t,0)). (EC.52)

Replacing V (nX−1,0, t+1,1) with g(nX−1, t+1) and adding up inequalities (EC.51) and (EC.52),

we obtain that

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0) (EC.53)

+(1−πf,0(nX , nX − t− 1))V (nX + 1, nX − t,0)

>Ci + ∆f (nX , nX − t− 1; 1,0)(m−Cd) + (1−πf,0(nX − 1, nX − t− 1))V (nX , nX − t,0) +Cr.

Since V (nX , nX − t,0) ≥ V (nX + 1, nX − t,0) (Proposition 3.i), it can be shown that if (EC.53)

holds then the inequality

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))V (nX − 1,0,0)

>Ci + ∆f (nX , nX − t− 1; 1,0)(m−Cd +V (nX , nX − t,0)) +Cr.
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also holds, which further implies

πd(nX − 1, nX − t− 1)g(nX − 1, t+ 1) + (1−πd(nX − 1, nX − t− 1))(r(nX − 1) +Cr)

>Ci + ∆f (nX , nX − t− 1; 1,0)(Cr +m−Cd) +Cr

because r(nX−1)+Cr ≥ V (nX−1,0,0) and V (nX , nX− t,0)≥Cr. However, this inequality cannot

be true if the condition (10) holds. Thus, by contradiction, if ‘process’ is optimal at (nX , nX − t,0)

then ‘process’ is also optimal at (nX , nX − t− 1,0).

For case (b), consider the states (v, τ,0) with v= nX−i and τ = nX−t−i, for i= 1, . . . , nX−2−t.

Suppose that ‘process’ is optimal at (v, τ,0) and ‘inspection’ is optimal at (v−1, τ,0). This implies

that VP (v, τ,0)>VI(v, τ) and VI(v− 1, τ)>VP (v− 1, τ,0); i.e.,

(1−πf,0(v, τ))(m−πd(v+ 1, τ + 1)Cd +V (v+ 1, τ + 1,0)) (EC.54)

>−Ci +πd(v, τ)V (v,0, v− τ + 1,1) + (1−πd(v, τ))V (v,0,0)

and

−Ci +πd(v− 1, τ)V (v− 1,0, v− τ,1) + (1−πd(v− 1, τ))V (v− 1,0,0)

> (1−πf,0(v− 1, τ))(m−πd(v, τ + 1)Cd +V (v, τ + 1,0)). (EC.55)

Notice that Proposition 1(ii) and (EC.47) imply V (v−1,0, v− τ,1)≤m−Cd+V (v,0, v− τ + 1,1).

Plugging this inequality and the inequality (EC.48) on the left-hand side of (EC.55), plugging

V (v, τ + 1,0) ≥ V (v + 1, τ + 1,0) (Proposition 3.i) on the left-hand side of (EC.54), and finally,

adding (EC.54) and (EC.55) lead to

∆d(v, τ ; 1,0) (V (v,0,0)− g(v, v− τ + 1)) +
(
πf,0(v, τ)πd(v+ 1, τ + 1)−πf,0(v− 1, τ)πd(v, τ + 1)

)
Cd

>∆f (v, τ ; 1,0)(V (v, τ + 1,0) +m)−m+Cd
(
∆d(v+ 1, τ + 1;1,0) +πd(v− 1, τ)

)
,

which further implies

∆d(v, τ ; 1,0) (r(v) +Cr− g(v, v− τ + 1)) +
(
πf,0(v, τ)πd(v+ 1, τ + 1)−πf,0(v− 1, τ)πd(v, τ + 1)

)
Cd

>∆f (v, τ ; 1,0)(Cr +m)−m+Cd
(
∆d(v+ 1, τ + 1;1,0) +πd(v− 1, τ)

)
,

because V (v,0,0) ≤ r(v) +Cr and V (v, τ + 1,0) ≥ Cr. However, this inequality cannot be true if

the condition (11) holds. Thus, it follows that if ‘process’ is optimal at state (v, τ,0), then ‘process’

is also optimal at state (v− 1, τ,0). �



ec18

EC.3. Estimation of the Degradation-Process Parameters

We let the probability distributions of X and H have a known parametric form with unknown

parameters θX and θH . In this section, we present how the parameters θX and θH can be estimated

from historical data. Suppose that the last inspection of tool i had been performed when the

cumulative counter was equal to yi. Let zi denote the current value of the cumulative counter for

tool i, i= 1, . . . , n. There are four scenarios to consider:

(a) The tool is found in the normal phase in the last inspection, and it has not failed yet by the

time it is retired. This event occurs with probability P(X +H > zi,X > yi). Let Ta denote the set

of indices of these tools.

(b) The tool is found normal in the last inspection and it has failed afterwards. This event occurs

with probability P(X +H = zi,X > yi). Let Tb be the set of indices of these tools.

(c) The tool is found defective in the last inspection, and it has not failed yet by the time it is

retired. This event occurs with probability P(X +H > zi,X ≤ yi). Let Tc denote the set of indices

of these tools.

(d) The tool is found defective in the last inspection and it has failed afterwards. This event

occurs with probability P(X +H = zi,X ≤ yi). Let Td denote the set of indices of these tools.

We maximize the log-likelihood function, which can be characterized as

∑
i∈Ta

log

nX∑
x=yi+1

fX(x;θX)(1−FH(zi−x;θH)) +
∑
i∈Tb

log

zi∑
x=yi+1

fX(x;θX)fH(zi−x;θH)

+
∑
i∈Tc

log

yi∑
x=0

fX(x;θX)(1−FH(zi−x;θH)) +
∑
i∈Td

log

yi∑
x=0

fX(x;θX)fH(zi−x;θH),

in terms of the unknown parameters θX and θH . Although a closed-form solution is not necessarily

available for the resulting maximum-likelihood estimates, they can easily be identified numerically

by using standard optimization packages. In Section 6, we apply this estimation technique by using

the real-world tool maintenance logs from the production lines at our industrial partner.
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