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Abstract

This document contains the supplementary material to the paper “Kernel Meets Sieve:
Post-Regularization Confidence Bands for Sparse Additive Model”. All the proofs in the
supplementary material assume that true nonparametric function f(x1,...,x4) belongs
to the ATLAS model A4(s). In Appendix A, we outlines the proof of Theorem 3.2. In
Appendix B, we introduce an accelerated method to derive our estimator. Appendix C
proves the validity of bootstrap confidence bands. In Appendix D, we prove Propositions
3.1.Appendix E collects the technical lemmas on the estimation rate. Appendix F states
some auxiliary results on the bootstrap confidence bands. In Appendix H, we lists

several useful results on empirical processes.

A Proof of the Statistical Rate of Kernel-Sieve Hybrid Estimator

For all the proofs in the following of the paper (including the supplementary material), we consider
the most general case that true nonparametric function f(z1,...,z4) belongs to the ATLAS model
Ag(s). Since SpAM is a strictly smaller family of Ay(s), all the proofs apply to KCy(s) as well.
This section outlines the proof of Theorem 3.2 on the statistical estimation rate of the kernel-
sieve hybrid estimator in (2.7). Before presenting the main proof, we list several technical lemmas
whose proofs are deferred to Appendix E in the supplementary material.
The following lemma provides the restricted eigenvalue condition on the empirical Hessian

matrix of the kernel-sieve hybrid loss in (2.6), which is &, = n ' OUW, w7

*Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115; Email:
junweiluGhsph.harvard.edu, 'Booth School of Business, The University of Chicago, Chicago, IL 60637, USA;
Email: mkolar@chicagobooth.edu, ¥Department of Computer Science, Northwestern University, Evanston, IL 60208;
Email: hanliu@northwestern.edu



Lemma A.1. Under Assumptions (A1)-(A5), suppose B € R=D™ and o € R satisfy the cone

restriction

> 185l <3 118512+ 3vmlaf
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for some index set S C [d] with cardinality s. Denote 8 = (o, 87)T. If s\/m3log(dm)/(nh) +

sm?/(nh) = o(1), there exists a constant ppyi, such that with high probability,
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inf 673,60 > + al3.
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The estimation error for the kernel-sieve hybrid estimator comes from three sources: (1) noise €,
(2) approximation error by finite B-spline bases, and (3) approximation error by s local additive
functions to the true function. The following lemma provides the rate for the B-spline approximation

error, which further illustrates how the number of B-spline basis functions m influences the rate.

Lemma A.2. Recall that {f;. ?:1 are defined in Definition 4.1. Let &, = (61(2),...,0n(2))T
where 6;(z) = 2?22 [i2(Xji) — fmj(Xjs) for @ = 1,...n, where fp;(-) is defined in (2.4). Under
Assumptions (A1)-(A5) there exists a constant C' > 0 such that the following three inequalities

hold with probability at least 1 — 1/n,

1

sup max *H‘Ilz;-WZ(sZHQ < Cys-m™2, (A.1)
zeX J22 M

1
sup %y\pﬂwzég < CVs-m™?, (A2)
zeX

1
sup —|[W1/?6. |3 < Csm™. (A.3)
zex M

Our next lemma bounds the approximation error of charts under the ATLAS model (4.1). We

can see that both the number of bases m and the bandwidth A play a role in the estimation.

Lemma A.3. Let £, = (fl(z)’ s 7£n(z))T and ¢, = (Cl(z)v SRR Cn(z))Tv where éz(z) = fl(Xli) -
fi(z) and G(2) = f( X1y ..o, Xai) — Z?Zl [j=(Xji) for i € [n]. Under Assumptions (A1)-(A5) there

exists a constant C' > 0 such that the following three inequalities hold with probability at least



1—-1/n,

hlog(dh—1) N m®/?log(dh~") N h?
n n vm |’

1
S ax — \II,T»WZ s+ ) <C
Zgﬁ;?é[;]‘n” W2 (€ +C )2 < <

1
sup —[WHW. (€. + )| < € (h2 + V/A/n),
zex N

1
sup —|[WLY2(&, + ¢.)|13 < Ch2.
zex N

The following lemma quantifies the statistical error arising from the noise .

Lemma A.4. Let T), = sup,¢y max;e[q) n_lH‘Ilz;-WZszg, where € = (1, ...,6,)7. Under Assump-
tions (A1)-(A5) and if m(nh)~! = o(1), there exists a constant C' > 0 such that with probability

at least 1 — 1/n,

T,, < C+/log(dm2h=2)/(nh).
We are now ready to present the main proof of Theorem 3.2.

Proof of Theorem 3.2. We denote n, =€+ 9, + &€, + ¢, and define the event
4.7 4 o
& = ¢supmax — [ ¥, W.n. |2 < A U sup — |y W n.la < AvVm ¢ .
zeX J22 M zex M

Using Lemma A.2, Lemma A.3 and Lemma A.4, there exist constants ¢, C' such that P(€) > 1—¢/n

if the tuning parameter satisfies the following inequality

2},—2 —1 3/2 -1 2
A C’( [log(dm?2h—2) VEemo [hlog(dh—1) L m log(dh™1) N h ) (AA)
nh n n vm

In the rest of this proof, we are always conditioning on the event £.

Denote S, := {j € {2,...,d}| f;. # 0} and A = B, — B, where A; = @&, — fi(z) and

~

A; = B; — Bj for j > 2. We start by showing that A falls into the cone

Az = {A Y jese 1All2 <33 eq, 1Al +3v/m|Aq]}.



Since B4 is a minimizer of the objective function,

1 ~ 1 . ~
EIIWi/Z(Y B3 - EHWi/Q(Y — OB )3+ AMIBll12 = AllBlh 2 + Avm(|a.| - [fi(2)]) 0.
On the event £, we have the following inequality

4 4 4
sup —m7 W WA < supmax — || WL W.n. |2 Asallr2 + sup — [ &5 W.n. ||2] Ayl
zex M zeX 22 M 2ex M

< )‘HAQ:dHLQ + Am‘Al‘

The first inequality is due to the Holder’s inequality and the second one is by the definition of £.

Furthermore, we derive the following inequality

d

ZnIWow A - A (1B ] - 18,1) — Wm(la] - ()

Jj=2

IN

1
~[WiPeA|3
n

A

Ao~ R d
< gllﬂ —Blli2 + MWmla. — fi(z)] — /\Z(Ilﬁjll — 1185l

=2

3A 3\ A
< IA S vmlar - 5 S Al

JES: JjeSE

The last inequality shows that A € A.,.
Next, we prove the rate of convergence by contradiction. Suppose that for some fixed ¢, which

will be specified later, we have

e X, W2 A| > t. (A.5)

|
Jn

Equation (A.5) implies that there exists some z € X’ such that

. 1 ~ 1 ~
0> min  S[WYAY - - WYY - wB) 5+ AIBi iz — Az

AcA. S 2Al>t

Using the fact that A, is a cone, we can replace the constraint Hf]i/ZAH >t by HZA]imAH =t and



the above inequality still preserves. Combining the event £, we have

: 1 ~ 1 A
0> min WYY - @B} - —[WIAY - ®B,) 5+ AR(B1) — AR(B+)
AcA. |E A=t T n (A.6)
] R .
> min —[|[WLPWA|3 - 2AR(A) + AR(B1) — AR(B4).
AcA S 2A =t T
From Lemma A.1, we can bound the R.H.S. by
2R(A) = R(B+) +R(B+) <3 4] +3Vm|A|
jes
A7
< 3V5 1A g glle + 3VIA A
< 64/25m/pmin Hgi/QAH?
Combining (A.6) and (A.7), we get a quadratic inequality
2/
0> 2 Tsmt' (A.8)

Setting t = 21/8m/pmin - A, we obtain from (A.8) that 0 > ¢? — [QA\/sm/pmin] t = 0, which is a
contradiction. Therefore, sup, ¢y n_1/2||Wi/ZlIIAH2 < 2A/sm/pmin. Using the rate for A in (A.4)

and h = o(1), we have

sup

1
! (A

—1 3/2 ~1 2
Wi/z‘I’AHzSC\/%( log(dmh=1) Vs m>/?log(dh )+ h >

nh * mb/2 + n vm

Now, using Lemma A.1, since A € A,, we have that

|Azdll12 + Vm|ALl < Vsl|Aggllz + Vm|Ai] < V/sm/(pmnn) [WBA|

for any z € X', which leads to the following inequality

N ~ log(dmh—1 3/20g(dh~t h?
sugfmraz—ﬁ(zmuﬂ—mmsczsm( og(dmh7l) | vs  mlog(dh”) )
zEe

nh mb/2 n vm

with probability at least 1 — ¢/n. To obtain the best rate on the right hand side of the equation,



we choose h =< n~Y6 and m = nl/® to obtain
d o~
sup {maz SO ED e ﬂjllz} = Op (log(dn)n /1)
z€ =2

According to Corollary 15 in Chapter XI of de Boor (2001), given a function g(z) =Y ;" Br¢r(z),

we have
m

lgl3 = m=" ) 6. (A.10)

k=1

Therefore, we have Hf— fll2 < pi sv/mX and, when h < n~Y/6 and m < n'/6, the rate becomes

|F = £13 = Op (n=**10g(dn) ).

This completes the proof. ]

B Accelerated Algorithm

This section presents details of our method to accelerate Algorithm 1. To estimate fi, we need
to compute the estimator @, for a number of z values z € {z1,...,2p}. A naive approach is to
run Algorithm 1 M times, once for each value of z’s. We provide a more efficient algorithm which
significantly reduces the computational cost. From Algorithm 1 and (2.15), the most expensive

operation is evaluation of the gradient
1
ViL.(8)) = —— WL w. (Y - \I:ﬁ@) . (B.1)

Computing V; L, ([35:)) for a single z requires O(dm?n) flops. If we trivially repeat the computation
for M different z’s, the computational complexity is O(dm?nM) which is challenging when M is
large. However, we can exploit the structure of Vjﬁz(ﬁg)) to reduce the computational complexity.

According to (B.1) and the fact that ¥, (Xi1) = ¢r(Xi1) — ¢jk(2), the k-th coordinate of V; L, ( S:))



has a formulation

(Vjﬁz(ﬁg)))kz —% > Kn(Xin — 2)¢r(Xi)Yi + diu(z Z Kp(Xi1 — 2)
i€[n] . ze[n] (B.2)
+ > ﬂé?{i > Kn(Xi — 2)[¢r(Xi1) — $in(2)] [6s(Xi1) — s (2)] }
Leld],s€[m)] i=1

The computation of Vjﬁz(ﬁgf)) is mostly spent on evaluating the formulation
Z Kn(Xi1 — 2)u (B.3)

for z € {z1,..., 20} where uy, ..., u, are fixed quantities (e.g., u; could be Y;, ¢ (X;1) or Yier(Xi1)
when evaluating (B.2)) independent of z. We introduce a fast method to calculate the general
form ¢(z) and apply it to the computation of (B.2). Without loss of generality, we assume that
z1 < ... < zy. The naive method to evaluate {q(2¢)}sc[ar) separately for different 2 has the
computational complexity O(nM ). However, if the kernel function has some special structure, we
can reduce the complexity to O(n + M). For example, for the uniform kernel K (u) = 1 1{|u| < 1},
when we vary the value of z from z; to 241, we just need to subtract u; for those i € {v: X, €
[2¢ — h, 241 — h)} and add u; for those i € {v : X, € (20 + h,zp41 + h]}. For M > h~!, the
cardinality of {i : X;1 € (20 — h, 241 — h| U (2¢ + h, 241 + h]} does not increase with n or d.
Therefore, the complexity to evaluate {q(2¢)}se[ar is reduced to O(n + K). For the Epanechnikov
kernel K(u) = (3/4) - (1 — u?)1{|u|] < 1}, suppose ¢(z) is known and define I, = {i : X;; €

(2¢ = h, ze41 — h] U (20 + h, 2¢1 + ]} We have q(ze41) = q(2¢) + Aq(2¢), where

3
Aq(ze) = q(ze41) — a(z0) = 12(1—( Xi1/h)?) ZXnJr—Zuz
i€y i€y i€y
Similar to the argument for the case of uniform kernel, we also have |I,| = O(1) if K > h~!. The
computational complexity of > ;; (1-X 2)u; and the other two summations above for z = 1,..., 2x
is O(n + K) and hence the computational complexity of {q(z¢)}xe(x] for Epanechnikov kernel is

also O(n + K). We can also apply a similar trick to many other kernels. Now we turn back to the



calculation of the gradient Vjﬁz(ﬁsr ). Let p1(2) =n~t 30 Kn(Xa — 2),

Yk(l)(z) = - ZKh il — Z)}/Za Y( ZKh il — Z)qbk( z]) )
=1

Y]C(S)(z) = - ZKh il — z)¢k( zg) and Rks ZKh il — Z>¢k< Zj)(ﬁs( zu)
i=1

For different values of z, we denote the components of 34 corresponding to the k-th B-spline
basis for the j-th covariate as Bjj.,. According to the expansion in (B.2), we can write the k-th

coordinate of V;L( S:)) as

(75£.80) =¥+ 0@V + - Y B (Bunle) — 20V 2))
¢e(d],se[m]

—2 Y B (0P 6) - Gk ()).

¢e(d],s€[m]
Based on the previous discussion on the calculation of ¢(z) in (B.3), we note that it takes O(n +
M) operations to evaluate py(z), Yk(l)(z),Yk(z)(z),Yk(?’)(z) and Rys(z) for M different values of z.
Therefore, the computational complexity of each iteration in Algorithm 1 can be reduced from
O(dm?nM) to O(dm?(n + M)). Therefore under the case M = O(n), we can estimate f; using the
introduced procedure with the same computational complexity as (2.10). Since most of existing
algorithms for the group Lasso involve evaluating the gradient (Yuan and Lin, 2007; Friedman et al.,

2010; Farrell, 2013; Qin et al., 2013), the above argument is applicable to other solvers as well.

C Covering Properties of the Bootstrap Confidence Bands

In this section, we prove the theorems on the coverage probabilities for the Gaussian multiplier
bootstrap confidence bands wa in (2.19). We will first prove Theorem 3.7 and Theorem 3.5 can

be proven by following the same steps.

C.1 Proof of Theorem 3.7

We first prove that Cfm in (2.19) is honest. To simplify the notation, we will use X to represent the

interval [—D,,, D,] when there is no confusion. The strategy to prove the result is to establish a



sequence of processes from ﬁn(z) that approximate En(z) We consider the following four stochastic

processes
-~ 1 - EKh(Xil — Z)‘I’Taz
H, = i = ‘e ) 1
0= e e
. 1 & oKu(Xi—2)0Le.
(1) _ . h\Ail ez
H(2) = == ;f 5 : (C.2)

1 " Kh(Xil —Z)‘I’Té\z
Hn = ) e
()= = Z

on(2)

, (C.3)

Zn(2) = vk -5, (2) (Ji(2) = fa(2) (C.4)

Corollary 3.1 of Chernozhukov et al. (2014a) provides sufficient conditions for the confidence
band to be asymptotically honest. Specifically, we need to verify the following high-level conditions:
H1 There exists a Gaussian process G, (z) and a sequence of random variables W such that

WY 4 sup,cy Gn(z). Furthermore, E[sup,cy G,] < Cy/logn and

P(’WnZ - W'r?’ > 5177,) < O1pn

for some e1,, and d1,,.

H2 For any € > 0, the anti-concentration inequality

sup |G (2)| — =
z€X

supP ( < e> < Cey/logn.
z€eR
holds.
H3 Let c,(a) be the (1 — a)-quantile of W, and ¢,(a) be the 1 — « quantile of W,,. There exists

Tn, €on, and do, such that

P(cph(a) < cp(a+ 1) —e2n) <02 and P (Cu(a) > cn(a— ) + 2,) < dop.



H4 There exists €3, and d3, such that

8\/]/9\1(2) 1
ov/p1(z)

P (Sup > 53n> < d3p.

2€X

If the high-level conditions H1 - H4 are verified, Corollary 3.1 in Chernozhukov et al. (2014a)
implies that

]P)(fl S Czya) >1l1—-a-— (Eln + €on + E€3n +51n +52n +53n>

In the remaining part of the proof, we show that the conditions are satisfied.

The roadmap is to establish that the process in (C.4) is close to the process in (C.1) following
the chain Zn — ﬁn — ]I?]L(ql) — Iﬁln After that, we can check conditions H1 — H3. Since we do not
use the population o, (z) = E[6,,(2)] in the intermediate processes, we do not need to check the
condition H4.

In order to verify the condition H1, we first bound the difference between sup,c y ﬁn(z) and

Sup,cy Zn(z). We begin by considering two auxiliary processes

\/% > eiKn(Xin —2)®h0. and  Z)(z) = Vnh (ff(z) - f1(2)> ,
n i=1

}ﬁlln(z) =

Notice that the above processes are un-normalized version of (C.2) and (C.4), that is, H/,(z) =
Gn(2)Hp(2) and Z! (2) = 6n(2) Zn(z). The following lemma provides a direct bound for the difference

between H/ (z) and Z),(z).
Lemma C.1. Under the same conditions of Theorem 3.7, there exists a constant ¢g > 0/2 such

that with probability 1 — ¢/n,

sup |H (z) — Z! (2)| < Cn~.
z2€X

We defer the proof of the lemma to Section F.5 and proceed to prove Theorem 3.7. We also

need to study ¢ and 7,(z) in the following lemmas.

10



Lemma C.2. Let the estimator for Var(e) = 02 be 0% = 1 37 | 2. Let

_ [s2log(dmh~t)  s32  slog(dhT!) 9
T =4/ 7 M N TE B — + sv/mh”. (C.5)

Under the same conditions of Theorem 3.7,, there exists constants ¢, C' such that IP’(\82 —a? >

Cn™°) <6/n.

Lemma C.3. Let X/ = n '&W2WT. Under the same conditions of Theorem 3.7, there exist

constants ¢, C' such that for sufficiently large n, with probability 1 — ¢/n, for any z € X,
chel0, <076, < Cch'eld..

We defer the proof of this lemma to Section F.6. Notice that we can no longer choose h =< n~1/6,
m = n!/6 used for the estimation rate in Theorem 3.2. This is because we need to under-regularize

our estimator to make the bias terms ignorable.

From Lemmas C.3 and F.3, we have an upper bound of the inverse of 2(z) = é\ZTE’ZOZ as

sup Vh -5, (z) < C. (C.6)
2€X

With Lemma C.1 and Lemma C.3, we are ready to bound the difference between sup, . ﬁn(z)
and sup,cy Z,(z). Let ¢o be the constant in Lemma C.1. We choose h, m satisfying the scaling
condition of Theorem 3.7. We denote ¢ = ¢y — /2 and observe that ¢ > 0 by Lemma C.1. From

Lemma C.1 and (C.6), we have

P (supzeX ‘IFH”(Z) — Zn(z)‘ > C’n_c> (supzex ‘]ﬁlﬁz(z) — Z;l(z)‘ > C&n(z)n_co/\/ﬁ>

<P
<P <supZeX ‘]ﬁl;l(z) - Zl(z)‘ > C2n*‘30> <1/n.

Define V) = sup,cy H,(z) and VZ = sup.cy Zy(2). Since sup.cy H,(z) is a Gaussian process

conditional on { X1 }ie[n), we verify H1 by

P (|v,9 V> on—c) <P <sup IHL, (2) — Zn(2)] > on—c> <
zeX

(C.7)

S |-

11



The condition H2 follows from H1 and the anti-concentration inequality in Corollary 2.1 of
Chernozhukov et al. (2014a).

Next, we check H3 by bounding the difference between (C.1) and (C.2). We first approximate
ﬁn(z) by ]ﬁl,(ll)(z). By Lemma C.2, if we choose h, m satisfying the scaling condition of Theorem 3.7.,
with probability 1 — 6/n, |6 — 0| < C\/ram!/* = o(n=°), where r,, is defined in (C.5).

We denote V, = Sup,cy ﬁn(z), ‘771(1) = sup,cxy ﬁg)(z) and the difference between Vj, — 1771(1).
Let AH® (2) = H{Y(2) — Ha(z). We have

sup !AH(I)(2)| < |6 —o|sup Vh -5, (z) (sup I (z) + sup Ig(z)> ,
2€X ze€X zeX 2€X

where I1(z) =n 130 | Kp(Xin — z)}\IfZ:(éz —0.)| and L(z) =n~t Y1 Kp(Xi — 2) | P46
In order to bound ;(z), we first state a technical lemma that characterizes the estimation error

between §Z and 0,.

Lemma C.4. Let 6, be a minimizer of (2.16). Suppose that Assumptions (A1), (A2), (A4)-(A6)
hold and B2 in (3.5) is finite. If the parameter v in the optimization program (2.16) is chosen as
n (3.11), then with probability 1 — ¢/d,

0 ST} 1 n 1 d 1 1 h
sup(oz—ez)Tzz(ez—ez)gc*i)f(Og( /pl ( mog m) \/W) ©8)
zeX zZE

We defer the proof of this lemma to Section F.4. Using Lemma C.4 we bound I;(z). Applying

Cauchy-Schwarz inequality, we have

N o121 ™ 12
sup ’Il ’ < sup < ZKh il — % (‘I’Z:(OZ — 92>> ) (Tl, ZKh(Xil — Z))
=1

(dm
zEX p% (2) nh nh nh

(C.9)

where the last inequality is due to Proposition 3.1, Lemma C.4 and

supn 1ZKh X — z) = suppi(z) +o(1).
zEX i—1 zeEX

12



For I(z), we have the following inequality

1
sup [12(2)| < sup — [ @TW_1|2,016-1
zex N

zeX
1
< sup EHWi/g‘I'.j‘I’.TjWi/zHzHWi/lezHGZW (C.10)
zE
C
< o supV/p(E) - vim = 0(1/vim).
FAS

Therefore, combining (C.9) and (C.10), we have

Under the scaling conditions of Theorem 3.7, there exists a constant ¢ such that \/r,m!/* = O(n=°).

Since o¢; 4 €i, we also have sup,cy ]ﬁlg)(z) 4 sup,c ¢ H,(z). Combining with (C.7), we have

B

Therefore, we can bound the probability

7 V7

> ZCn*C) <on~ L

P(V,Z < Eu(a) +20n7°) > P(VZ <ep()) — P(|V,, — V2| > 2Cn~°)

>1—a—2c/n", (C.11)
which implies that the estimated quantile has the following lower bound
Cn(a) > cp(a+2Cn"°) — 2en™°. (C.12)

Similarly, we also have ¢, (a) < ¢,(a —2Cn™°) + 2cn™¢. By setting 7, = 2Cn"¢, g9, = 2cn™¢ and

¢, we have

Oop, = 2cn~

P (¢n(a) > cp(a+2Cn~¢) — 2en™ ¢ and ¢y(a) < cp(a —20n%) 4+ 2en™°) < 2¢/n,

which verifies the condition H3.

Now, since we have checked the high-level conditions H1 — H3, since the high-level conditions

13



H1 — H4 are verified, the result follows from Corollary 3.1 in Chernozhukov et al. (2014a) such
that
P(f1(z) € Cz,a(z),v,z €EX)>1-a—-Cn""

which completes the proof of the theorem.

D Proof of Propositions 3.1

Let J be arbitrary subset of [d] and for any (o, 8) = (o, 8% ,...,80)T € C H)(J), where (Cg)(,]) is
defined (3.1), we consider the functions hi(z1) = o and hj(x;) = >} Bjptjk(z;), for j =2,...,d.

From the cone restriction in (3.1), we have

Yo UBilz<x Y 1Bsllz + wv/mlal.

i¢ T jET A1

By the B-spline property de Boor (2001), there exists a constant ¢; > 0 such that

\quh Iy < 3 1812+ /2o

JEI\{1}
<r > 1Bille+ (5 + ) Vimlal

je\{1}

< (Ve + s+ ) vim-m S Iz (D.1)

jed

Let ¢ be the smallest constant satisfying cx > (\/CT + 1) K+ cfl/ 2, Combining the above with
(D.1), we have (hy,...,hq) € Cgm)(J).
We first aim to bound B1%,.8, = E[Kh(Xl —z) (Z?Zth(Xj))z} as

E[Kh(Xl — z)(Z? 1 /K i Yoiehi(@g)hi(xk)p1je(z + uh, xj, ) dudx jday,
= /Zj,khj(xj)hk(xk)pl,j,k(z’$j7xk)dxjd‘rk +O(h?)

> U gl () x = 2] = 222

d:lthiQ(p,

14



Therefore, for any z € X, by the definition in (3.4),

T p1(z) 2
ﬁ+22/6+ j 1 JHLQ(M = 2ﬁ2 ( )ZjEJ||hj||L2(pz) (D2)
Applying the cone restriction on (hq, ..., hy), we further have

2
(Tl ) = i (Znh i)

jeJ
1 Cm
> WZH}L HL2(NZ) =z (C,‘i—i-l <ZH,63H2+WL04 )

7j=1

Combining the above inequality with (D.2), we obtain that with probability ¢(J) for any z € X,

Cm~ 1By 2
BrS.8, > pi(2)- =

(v)
m (H,BH% + ma2) , for any ,3+ S C,B (J)

This completes the proof.

E Auxiliary Lemmas for Estimation Rate

In this section, we give detailed proofs of technical lemmas stated in Section A. The principal
technique used in the proofs of this section is the control of the suprema of empirical processes. In
the entire section, we will abuse the notation 0%3 as the variance for certain empirical process.

E.1 Restricted eigenvalue condition

We provide a proof of Lemma A.1 in this section. Before stating the main part of the proof, we

begin with a technical lemma.

Lemma E.1 (Resctricted eigenvalue condition). With probability larger than 1 — ¢/(dm), for any

= (a, BN, with o € R and B € RE-D™ and any z € X it holds that

S log(dm) m 1
075,60 > 07,0 — MO ™ 1 h?)|e|?
> o E ¢ s 61
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where ||6]|12 = |a| + [|8]1,2. Moreover, for any j € [d] there exists a constant C' such that

sup lH\II.J-WZ\IJEF- < Cm™1'.

2
1

Proof. The proof strategy is to study suprema of the entries of 3. — 3.. We denote the (u,v)
entry of ¥, as ¥, (u,v) and similarly for iz Let E,, denote the empirical expectation. We first

study the random variable

Lkt jj = Sgg(En — E)[Kn(Xi1 — 2)¢j5(Xij)¢jn (Xig)]-

Notice that Zy ;5 = supzex[flz =3 )0+ (G —-2)m+k,1+(j'—2)m+K) for 4,5/ > 2 and k € [m)].

In order to bound Zjy;;/, we turn to study the covering number of the space

Gn = {g:(x1,22,23) = ' K(h™ (w1 — 2))¢u(w2)jw (w3) | 2 € X, 21, 39,23 € X'}

Let Fj, = {h ' K(h™!(- — 2)) |z € X} and let | K|ty be the total variation of K(-). From Lemma

H.3, we have
2||K|[rvA

4
1
e >, 0<e<l,

SgpN(FmLz(Q),e) < (

where the supremum is taken over all probability measures @) on R. Let F, be an € / L-cover of Fy,
with respect to @), where L > 91|l for any k. We construct an e-cover for G, with respect to

P,=n"1Y"  6x,.. X, as
Gn = {fl(ﬂfl)%k(@)%'k’(%) | f1 € fh} :
For a function g, = h= K (h~(z1 — 2))tbji(22)dym (a3) € G, let
o = W K (h (a1 — 2))ju(22) b (23) € G

be the corresponding element in the cover. Here h 'K (h™(z; — %)) € F}, is the corresponding
element in the cover for h"K(h~1(z; — 2)) € Fj. If we are able to show that g, — §ZH%Q(Q) < €2,

then G, is the e-cover for Gy,. Combining with Lemma 3, Giné and Nickl (2009) (also see Lemma
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H.3), the covering number of G;, can be bounded as
2||K||rvAL\?
N (G 22(F,). ) < (A (E.1)
€

Now we show ||g, — §Z||%2(Q) <€

lgs — B:la(0) = B [(Kn(X1 — 2) — Kn(X1 — 2) (X thyn (X))

< Eq [(Kn(X1 — 2) — Kp(X1 — 2)))* < €&
Observe that all functions in Gy, are bounded by U = 4h™}| K|« and

0% :=E [(Kh (X — 2) (wjk(Xj)¢j'k’(Xj’))2]
R [ (07 (3 — ) B 06 () | 1]
< Bm?h?E [K? (b 1(X1 - 2))]

= Bm 27! / K% (u) p1(z + uh)du < B*m™2h71,

where the first and last inequalities are due to Assumption (A1l). The bound above does not
depend on the particular choice of z. If m(nh)™! = o(1), we have no} > CU?log (Us™ '), and

from Lemma H.2, we have
log(Cam)

nm2h ’

E[Zyx 5] < C1 (E.2)

where the constants C1, Co are independent of k, k', j,j'. As |Zyx ;7| < 4h™! and 0% < Cm™2h~2,

we can apply Lemma H.4 to obtain

P(Zkk/jj/ > B[ Zir ] + t\/Cm*2h*1 + 4R E [ Zyp 1] + 4t2h_1/3> < exp(—nt?). (E.3)
For t = logd/+\/n, there exists a constant C' such that

Ziwjjr < Clogdm/vVnm2h + C/(nh)
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with probability 1 — 1/d. Combining (E.2) with (E.3), there exists a constant C' such that

P Tigriir| > QB[ Zirriir] + t4/Cm—2h=1 + 4h—YE[Zppr 5] + 43R~ /3
<j7j,212171k5?]>€§6[m]| kk'jj | > [ kk]]]+ \/ m + [ kk]]]+ /

< IP)( max |Zkk’jj’ — E[Zkk’jj’” > t\/Cm*Qh*1 + 4h71E[Zkk:’jj’] + 4t2h_1/3 + E[Zkk’jj’}>
kK €[m) 5, >2

< (dm)?exp (—ntZ) .

Let t = 34/log(dm)/n, njr =14 (j —2)m + k and njpy = 14 (j' — 2)m + k') and we obtain that

— Op <1 + 1°g(dm)>. (E.4)

sup max
nh nm2h

zEX j7j,227k»k‘/€[m]

‘ ~

(3. — 2] (ngk, njow )

Similarly, we define Zg; = sup,¢ x (En, —E)[Kp(Xi1 — 2)1;1(X;;)]. Following the similar procedure

as above, we apply Lemma H.2 to obtain that for some constant C,
oh = E (K (X1 = 2) vn(X))’] < Cm~'n 7,
and U < h~!, which implies the following inequality
(E.5)

We now turn to study the remaining entries of f]z — ¥,. Using the same arguments as in (E.4)

and (E.5), we can derive an upper bound on the difference

~

supmax (X, (1+ (j—2)m+k,1) =, (1+ (j — 2)m + k, 1)’ =0Op <1 + log(dm)> . (E.6)

2€X J22 nh nmh

From Assumption (A1), the density function of X, pi(x), is smooth. Recall that pi(z) =
n~t o1 Kin(Xi1 — z). Applying the supreme norm rate for a kernel density estimator established
in Theorem 2.3 of Giné and Guillou (2002), we have ||p1 — E[p1]||oc = Op(1/log(1/h)/(nh)) and

therefore we can get the rate

~

sup [$.(1.1) — B (L.1)| = sup [ () — B (2)] = op< lg“h/h’> (£.7)
Z2€X 2€X n

18



Combining (E.4), (E.6) and (E.7), according to Hélder inequality, we have for any z € X

67 (2. = 206 < [01R 1% — Sellmar

< ||0||12 {sup max im ‘E (t,t") — Ez(t,t')‘ + sup |2.(1,1) — Ez(l,l)’}

zeX
< C( /mlog (dm) [log( l/h )

which completes the proof of the first part of the lemma.

An upper bound on sup,cy n || e, W, ¥L ”2 can be obtained in a way similar to the proof of
Lemma 6.2 in Zhou et al. (1998). For any 3; = (B1,...,8m)7, let u(z;) = 7%, Butvjr(z;). Let

the joint density function between X; and X; be py j(z1,2;). From Assumption (A1), we have for

any z € X,
1 1 T — 2
EﬁfE[‘I’-sz‘I’Z}]ﬁj —/hK< lh )uz(fj)pl,j($1,$j>d$1d$j
m (E.9)
< C/K(u)du/u2(xj)da:j <Cm™! Zﬂz
k=1
Furthermore, we also have
sup B E[W, 9T | X, = a]8; = / W2 () PN o
zex M p1($)
(E.10)

< B/K(u)du/uQ(:rj)d:cj < Cm_lgﬁ,%.

Let P, =n~13>0 0x;, x;;- We write the integration as

sup/Kh(xl — z)uQ(xj)dIP’n = I} + I, where
zEX

I = sup/Kh(azl — z)u2(:z;j)dIP’Xl,Xj and I, = sup
zeX zeX

/Kh(l‘l — z)u2(:nj)d(IP’n — PXl,X]-) .

Due to (E.9), we have I = Op(m™1)||3;]/3 and a similar argument to one in Lemma 6.2 of Zhou

et al. (1998) will derive Iy = o(h)||B;||3. This completes the proof. O
Based on Lemma FE.1, the remaining step is to prove Lemma A.1.

Proof of Lemma A.1. We can derive the restricted eigenvalue condition on the cone from Lemma E.1.
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We apply Lemma E.1 in the last step. If the cone condition

> IBill2 <3 11Bsll2 + 3v/mlal

jEeS*® jes

is satisfied, by Holder inequality, we have the upper bound

1Bll12 <4 1185l +3Vmlal < 45|82 + 3vmlal.

jes

With large probability, we have the following inequality

~ 1
eTzzezeTzzo—c*( %(dmu )HGH%Q
nh ’
> puinlol? + puinl|Bla/m — C M + 20— ) (dmlaf? + 45] 61R)
= Pmin min nh nh m 2
Z pmin‘a|2/2 + pminmiluﬁ"g/Q
for any z € X and sufficiently large n if s\/m3log(dm)/(nh) + sm?/(nh) = o(1). O

E.2 Proof of Lemma A.2

The proof can be separated into two cases: j = 1 and j > 2. For the simplicity of notation, we
write 0;(z) as d; in this proof. We first consider the situation when j > 2 and prove (A.1) and (A.3).

From Lemma A.1,

sup | W1/ 2o, @ W12 o /y/n = o 1@y W T2/ /12 < praaxrn ™/
zE

zeX

with high probability. Therefore

sup (W Wbl < sup < [WL20 T W2 o [ W25 < S sup < [ W28, (B

p—|
N
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To complete the proof, we need a bound on
1 1 &
sup —[|[W253 = sup — Y~ Kj(Xi — 2)6;. (E.12)
zex 1 zeX N
Using Equation (20) in Zhou et al. (1998) on B-spline, we have
d 2
& = (ijZ(in) - fnj;z(in)> < s*m~*
j=2
Define the following empirical process

1 n
Un(2) = — > Kn(Xa — 2)07 — E[Kn(X11 — 2)57].
=1

Applying Hoeffding’s inequality (Hoeffding, 1963), we have
nh?t?
P jg/’l\)fUn(Z) —-E EEEUH(Z) >t ) <exp —C’W . (E.13)

Let
gy = {gz(xl,xg) = h ' K(h Y@ — 2))0%(20) | 2 € X, € X 19 € Xd_l} ,

where 0(z2) = 2?22 fi(x25) — fnj(xe;). Similar to the covering number of G, in (E.1), since

§2(x9) < sm~* for any zo, we have for any measure Q,

m2he

4
SgpN(QZ,LZ(Q)je) < (WI('TVA> :

Furthermore, 0% := E[K; (X1 — 2)62]2 = O((sm™4)2h~1). Since g < U := Ch™!(sm™*) for any

g € G/ and m*(sn)~t = o(1), we have no% > C1U?log(C2vVsm~4U/c). By Lemma H.2, we have

sm~4

N log(m2/V/sh). (E.14)

E [sup Un(z)} <C
2€X

We set t = Cs(m*h)~1\/logn/n in (E.13) and combine it with (E.14) to obtain that, with probability

at least 1 —1/n ,
—4

sup Uy (2) < o
ZEX nh

log <m2/\/£) + CSW. (E.15)
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Finally, we bound the maximal of the expectation by

suEIE[Kh(XH —2)63] = suE/Kh (t — z)dPx, (t )52(u)dPX>2|X1:t(u)
S ze

(E.16)
< Csm™*sup / Kp(t — 2)dPx, (t) < Csm™
zE€EX
Combining (E.15) and (E.16), with probability at least 1 — 1/n, we have
aup L[ W26[3 = sup L3 6, (30— 216
zex M zeX N
< sup Uy (2) + sup E[Kx(X11 — 2)63]
2€X zeX
sm™4 sy/logn/n 4
<C Ny log(m? /v sh) + CW + Csm
— O(Sm_4), (E.17)

where the last equality is due to 2/v/nh? = o(1). Therefore, we prove the upper bound in (A.3).

Combing (E.17) with (E.11), we have we can conclude that

sup max — || @L W8], < . su W25, < 0y =
zG/IY)'J X — H H2 \/> p\/>|| z ||2— mb

This gives us the rate in (A.1).
The final step is to prove (A.2). Recall that W41 = (1,...,1)”. For the case j = 1, following

the proof for (A.3). According to (E.12), we have |§;| < sm~2 for any i € [n]. Let

U (2 Z Kn(Xi1 — 2)0; — E[K,(X11 — 2)01].
=1

We use Hoeffding’s inequality (Hoeffding, 1963) again and obtain

P <Sup U'(z) —E [Sup U;(z)] > t> < exp <—C”h2_ti> . (E.18)

zeX zeX sm

Applying symmetrization inequality again, we have

E [sup U,’L(z)} < QE[SUP Zfth i1 — )\51‘@7

2€X zex N
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where {{;}7_, are i.i.d. Rademacher variables independent of data. Let
Gn = {9z($17€62) WK (™ a1 — 2))0(z2) [ 2 € Xy 21 € X,z € Xd_l} ;

where 0(x2) ‘Z] o [i(xa) — fnj(l‘zj)‘. Just as the covering number of G}, we also have
§(wa) < sm~2 for any x9, we have for any measure Q,

2s1/2||K||TVA)4

m2he

SgpN(@{vLQ(Q),e) < (

The variance of the process 0% := E[Kp,(X;1—2)8;]2 = O(sm™*h™1). Since g < U := Ch~ ! (sm™4)1/2
for any g € G/ and m*(sn)™! = o(1), we have nod > C1U?log(Cas'/*m~'U/c). Applying

Lemma H.2 again, we have

/ Vsm~?
E [5161)}3 Un(z)} <C N log(m/V'sh). (E.19)

We let t = C/s(m?h)~1y/logn/n in (E.18) and use it with (1.19). Therefore, we achieve with

probability at least 1 —1/n |

-2 Vslogn/n
1) < O3 g (m2)v/sh) + o ¥21o8n/m E.2
Sgg U,(z)<C Ny og <m /V's ) +C T (E.20)

We again bound the supreme of the expectation

SuEIE[Kh(Xll —2)01] = Su;I\),’/Kh (t — z)dPx, (t )5(u)dPX>2‘X1:t(u)
zE€ zE

< Cy/sm™2 sup/Kh(t — 2)dPx, (t) < Cy/sm™2.

zeX

(E.21)

Combining (E.20) and (E.21), with probability at least 1 — 1/n, we have

sup—\\IJ.lw 0, < sup — ZKh i1 — 2)|d4]
zex M zex M

< sup Uy, (2) + sup E[Kj(X11 — 2)01] = O(v/sm™?).

zeX zeX

Therefore, we prove the upper bound in (A.2) which completes the proof of the lemma.
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E.3 Proof of Lemma A.3

For j > 2, we bound the two terms sup, ¢ y max;>2 %H\IITJWZEZHQ and sup, ¢ y max;>o %H\IIZ;WZCZHQ
separately. To bound the first term, let Af,(x) = fi(z) — fi(2) and ¥;; be the ith row of ¥,;. We

can rewrite the suprema as

1 1 ¢
sup max —H\Il’;erzﬁzHg = maxsup sup — Z Kn(Xi1 — 2)Afo(X1) v 5. (E.22)

zeXx J22 M J22 zeX veBm M

Let N, = {v1,...,vap} be a 1/2-covering of the sphere B™ = {v € R™ | ||v||2 < 1}. Observe that

for any v € B™, there exists w(v) € N, such that ||v — 7m(v)||2 < 1/2. Therefore we have
1 Z” T
sup — Kh(Xil — Z)AfZ(Xli)V ‘Ilij
veBm 5oy

1 & 1 @&
< sup — E Kn(Xi1 — 2)Af(X1)VEW, + sup — E Kp(Xia — 2)Afo(X1)vi ¥y
ke[M] i veipm i

1< 1 1<
S sup — Z Kh(Xﬂ — Z)Afz(Xlz)Vz‘Ilz] + = sup — Z Kh(Xﬂ — Z)Afz(Xh)VT\I’”
ke[M] T i 2 veBm 1 i

If we move the second term on the right hand side of the last inequality to the left hand side, we

obtain the inequality that

n

1< 1
sup — Z Kh(Xil — Z)AfZ(XU)VT‘I’ij § 2 sup — Z Kh(Xil — Z)AfZ(Xli)V%‘Ilij.
veBm 1 ke[M] T

Therefore, in order to bound (E.22), we need to study the following empirical process

1 n
Vn(z) = ng’lkaé)fM] Slél}; {n ; Kh(Xh‘ — Z)AfZ(Xh‘)Vg‘I’ij — E[Kh(XH — Z)AfZ(XH)Vg‘I’Z'j]} .

We define the following function class

Gy = {gz(iﬁl,@) = h ' K (21 — 2)/D)Afo(21) > Vietpi () ‘j >2,ke[M]ze€ X}
=1
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and, similarly to argument in the covering number of Gy in (E.1), we have

2\/EIIKIITVA>4

SICIQPN (g/// (Q)’ e) < dM< e

From (E.10), we bound the maximal of the expectation by

supE[(Vk ) | X7 = x] < CHka2
reX

Furthermore, we can bound the variance by expanding the expectation as the integration and

applying the Taylor expansion as follows

o} = E[Kp(X1 — 2)Af.(X1)vi ©;;)?

(s

< C(mh)™* /KQ(U)(fl(Z + hu) — f1(2))?px, (z + hu)du

) (f1(2) — 1(2))%px, (2)de - E [(v]W5)? | Xy = 1]

= C(mh)™! / K2 (u)(f1(2)uh + o(uh))*(px, (2) + p'x, (z)uh + o(uh))du

= Om U ()2 (2) / 2E2(u)du - h + o(m~th) = Chm"!

The uniform upper bound of Kj(z — 2)Af.(z) can be studied under two cases: (1) z is out of the

support and (2) z is in the support. In particular, we have
o if v ¢ [z — h,z+ h], then Kj(z — 2)Af2(x) = 0;

e if x € [z — h,z + h], then, by mean value theorem,
Kn(z—2)Af:(z) <h KB (@ = 2) (@)= F(2)] < hTH K looll 15 (2h) = 4 f1 112 1K [|oo-

Combining with the fact that |vI ¥,;;| < /m for any i,j,k, we conclude that ¢ < U :=

A F1 112 K [|oo/m for any g € G} Therefore by Lemma H.2 and M = 6™, we have

hlog(dMh=1) N C\/ﬁ‘ log(dMh~1)

EV,.(z) <C
mn n
1 h—1 3/2) -1
—oy/h Og(: )y o™ Oi(dh ). (E.23)
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Similar to the analysis of 0123, we also expand the expectation of the process as the integration and

use the Taylor expansion to bound it as follows

E[Kp(X1 — 2) AL (X1)vi 4]

=h! /K (m ; Z> (fi(z) = f1i(2)px, (x)dz - E [VZ‘I’U | X = o] do

(E.24)
— /K(u) [f1(2)uh + f1(2)(uh)?/2 + o(uh)?] [px, (2) + Px, (z)uh + o(uh)]

d
. <E Vi®y; | Xy = 2] + uh—E [Vi®; | Xy = 2] + 0(uh)> du < Ch?//m.

The last inequality is due to the fact that K(-) is an even function, [[¢j;|c < 1 and from (E.10).

Moreover, the constant is independent to j, k and z. Using Lemma H.4, we have

U2

P (V (z2) —EV,(z) > t\/Q (0% +2UEV,(2)) + ) < exp (—nt2) : (E.25)

Combining (E.23) and (E.24) with (E.25) for t = y/logn/n, with probability at least 1 — 1/n, we

have

vl W <2 Kp(X1 — 2)Af (X v,
Slelgr?ax H 2&z|l2 >£nkae)[(M]§2£nZ (X1 — 2)Afo(X1)vi ¥y

< Va(z) + max sup E[Kp (X1 — 2)Af(X1)vEi 4] (E.26)
IR zeX
-1 3/2 -1 2
hlog(dh—1) Lom log(dh™") LC h ’
n n \/TTL

where the last equality is because of n=1h = o(1).
Now we bound sup, ¢y max;>s = H‘I’ ‘W (. |l2. The procedure is similar to the first part of the

proof. We again apply the 1/2-covering of B¢ so that

su max oI w <2 max Ssu Kp( -z Iy, ..
s LIVl 2 o 3 T,

Motived by the above argument, we now turn to study the following empirical process

V,fb(z) = max Sup ZK}L Xh - Z)Cz( ) g‘l’ij - E[Kh(XH - z)g(z)vg\llij]
J>2,k€[M] zex | T
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and the function class inspired from the above empirical process

g”” = {gz(xl,xg) =h" IK((l’l *Z)/h Cz kat¢t IL']) ] > 2 ke [ ] %y X1, Ty € X}

Our method of bound the supreme of the process is same as the proof of previous lemmas. We need
to study the covering number of the function space. Assembling the concentration inequality of the
suprema with the upper bound of the expectation of suprema and suprema of the expectation, we
will arrive at the final bound. Therefore, we first bound the covering number

2WHKITVA>4

sup N (g//// (Q)) g) <dM < e

Q

Using Definition 4.1, there exists Li(z, a:\l) such that the approximation error is bounded by

< |Li(z,200)] - | Xin = 2 + U (2)|(Xin — 2)%.

d
Gi(2) = [F(Xin, - Xia) = Y fi=(Xy)

j=1

Therefore, the variance of the process V,! can be bounded by computing the expectation
op = E[K,(X1 — 2)¢G(2)vi®;;]2 < Chim™! (E.27)

and g < U :=4||L1(z,2\1) |2, | K |loov/m for all g € G;”. Lemma H.2 gives us

1 -1 3/2], -1
hlog(dh )+Cm og(dh )

EV,(z) <C
n n

(E.28)
Denote r(z) = E[L1(z, X\1) | X1 = z]. Using Definition 4.1,

E[Kn (X1 — 2)G(2) v W5

=p! /K (a: ; Z) (E[L1(z, X\1) | X1 = 2](z1 — 2) + U (2)(x — 2)°)

-E [V%‘IJU | Xy = x] px, (x)dx
= /K(U)("&(Z)Uh + (K"(2) + 1Ujlloo) (uh)? /2 + 0(uh)?) (px, (2) + Pk, (2)uh + o(uh))

d
: (E [Vi®; | Xy = 2] + uh—-E [Viw | X = 2] + 0(uh)> du < Ch?//m.  (E.29)
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The last inequality is due to Assumption (A1). Since X is compact, E [v} ;| X; = z| and (z)
are uniformly bounded on z € X. According to Lemma H.2 and Lemma H.4, similar to the first
part of the proof, (E.27), (E.28) and (E.29) can yield that for some constant C', with probability at

least 1 — 1/d, we can bound the suprema

1 -1 3/2) Bl h2
sup mafo\Il W_ (.l <C hlog(dh™!) +o og(dh”) +C . (E.30)
2€X 2 n n /m

Combining (E.26) and (E.30), we have the rate of sup,cy max;>o %H‘IITJWZ(SZ +¢2) 2

For the case when j =1, ¥q; = (1,..., 1)T € R™ and we can follow similar procedure to derive
sup —H\Il W. (& +¢2) H2 = sup ZKh (z — 11)(&( )+ Ci(z)) =Op <h2 + h/n) )

The final step is to bound sup, ¢y %|]WZ1/2£§||§ and sup,cy %HW;”C?H% We just repeat the
procedure again and consider V,”'(2) = sup,cxn ' Y or ) Kn(X1; — 2)&i(2) — E[Kp(X11 — 2)&(2)].

First, we find that
h3log(h—1/2 hlog(h~!

EV"(z) < C . - (E.31)
Next, we have the upper bound of the supreme of the expectation
sup [, (X1 - A = [ K (157 (1(0) - i) (a)d
= [ KO )uh+ o(uh) P, () + By, (2)uh -+ ofuh))du
= [f'(2)]?px, (2) / w?K (u)du - h? + o(h?) < Ch2. (E.32)

Combining (E.31) and (E.32) with Lemma H.4 with ¢t = log n//n, with probability at least 1 —1/n,

sup — ZKh i1 = 2)E2(2) < Va(2) + sup E[Kx (X1 — 2)&(2)]

2EX n zeX
3] -1 h5/41 -t log”
n n3/4 n

Similarly, we also have sup,cyn ' Y1 | Kp(Xi1 — 2)(2(2) = op(h?).
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E.4 Proof of Lemma A.4

For j =2,...,n, we define the process

N 1 “ 1 Xil —Z ' N
Gn(Z,k,j) - % ; EK (h) wjk(ij)Ez'

Since ¢; are subgaussian random variables, we have P(max; |¢;| > C'v/logn) < 1/n. Conditioning

on the event A = {max; |¢;| < C'v/logn}, we can apply the Mc’Diarmid’s inequality to obtain

h%t?
P <maxsup Gn(2,k,j) — E |maxsup Gy, (2, k, J) ]A} >t A) < exp (—Cn 5 ) . (E.33)
Jk zex Jk zex log“n

Next, we bound E [ max;  sup,cy Gn(z,k,7) | .A] . Using Dudley’s entropy integral (see Corollary
2.2.5 in van der Vaart and Wellner (1996)), conditioning on {Xj; };c[n] jea, we have with probability

1 — 1/n, there exists a constant C' such that

on —
E ‘ <E log N(G,, L2(P
1??§d12%8§)§n§25G”(z’k’3)M] < [/0 \/Og (Ghy L?(Pp), €)de | Al

where @n =n! Z?zl 0X1,.. Xiq» On = MAX]<j<d MAX] k< SUD ey @n[Kh(' - Z)wjk(‘)]Q and
Gh = {9:(x1,22) = W K (D (21 — 2))tbju(a2) |1 <k <m,2 € X, 21,22 € X}

From Lemma H.3 and similar to the previous computation on the covering number, for any measure

@, we have the uniform upper bound of covering number as

2HKllTVA>4

/ 2
sgpN (gh,L (Q),e) < dm < e

Following a similar argument as in the proof of Lemma A.1, we bound the variance of process by

Cauchy-Schwarz inequality as

0% :—E [(Kh (X1 — 2) ¢jk(Xj)‘°A)2]

< AR [K2 (W (X1 - 2)) B [95,:(X;) | X1] | A] < 0]l K13 (mh) ™,
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and g < ||K||soh™! for any g € G, . Since m(nh)~! = o(1), we have no% > h=2log(dm(2||K||rvA/(ho))).

Therefore, by Lemma H.2, we derive that

[/Jn\/logN Gl L2(B,), e)de

and E[max sup Gn(z,k, j) ) A} < C'/log(dm3h=2)/(mh).
ik zex

log(dm3h=2)
mh

.A] < Copy/log(dm(hop)=4) < C

Choosing t = C'log®n/(y/nh) in (E.33), we have

, log(dm3h=2)  log’n
p Gz k. j) > C
(%X:‘;E B T

log(dm3h—2
<P (maxsup Gn(z,k,j) > C og(dm

) 4 log " )A) +P(A) < 2/n.

Therefore, when m(nh)~! = o(1), with probability 1 —2/n,

log(dmh—1
sup max H‘I’.]W ell2 < \/ max max sup Gn(z,k,j) < 2C M.
2eX J N 1<j<d 1<k<m ,c x nh
When j = 1, recalling that We; = (1,...,1)7 € R", we have
1 n
sup — ||\I!T1WZE||2 =sup | = Y Ku(z — Xi)ei,
ZEX zeX |
and, similar to the case when j > 2, we can show that sup, n ™| ¥, W ez < Cy/log(h~1)/(nh)

with probability 1 — 2/n. This completes the proof.

F Auxiliary Lemmas for Bootstrap Confidence Bands

In this section, we describe the proof of these technical lemmas used in Section C. Section F.2 to

Section F.6 provide the proofs of lemmas in Section C.1 supporting the proof of Theorem 3.7.



F.1 Proof of Lemma C.2

Recall the rate 7, of the estimated function shown in Theorem 3.2 is

52 log(dimhfl) / 53 slog (dh=t + sk,

nm—2h Camoh2
We first establish a lemma on the estimation error of &;.
Lemma F.1. Let &, =Y; — f(Xil, ooy Xiq) for i =1,...,n. Under Assumption (A4), we have

1
P (max |&i —ei] < QCrn\/m> >1—-—.
i€[n] n

If h <n=°% m=n’ for § > 1/5, we have 7,v/m = o(n"1/%).

We defer the proof of the lemma to the end of this subsection. With the rate of max;c, |€; — &l

we can first bound the rate of 2 — 02. Using the triangle inequality, we have

. 1 ¢ 1 ¢
’UQ_UQ,SEZ g —e;)? Z| Ei)ei\—F’EZs?—aQ’. (F.1)
i=1 i=1

I II II1

From Lemma F.1, we have the convergence rate of the noise estimator

P(I > 4erim) <P <mz[1>]< & —eil> > 4der m> <1/n. (F.2)
S
Under Assumption (A4), &; are subgaussian random variables with variance-proxy o2. Using
Berstein’s inequality, we have
I, aZlogn 2 1< [o2logn 2
_ 4 £ < = _ | e )l <« 2
P(n;EZ o’ > Cy - < and P n;\ez\ Ele|| > ¢ - <
(F.3)

Suppose n is large enough, so that Ele| < /o2logn/n. We now can bound the second term by
P(II > 2¢(c + 1)Ele|rpv/m)

~ 1 n 2]
<P (maxlei —gi| > 20rn\/7n> +P (= Z le;| > Ele| + C\/@
ZE[TL] n = n
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Applying the fact that E|¢;| < 02, we have the upper bound of the third term as
P (III > 2¢(c + 1)o?r,/m) < 3/n. (F.4)
Combining (F.2), (F.3), (F.4) with (F.1), we have the estimation rate of the variance of noise as
P (5% — 0% > Cirpy/m) < 6/n. (F.5)

Now we come back to prove Lemma F.1.

Proof of Lemma F.1. Recall that the estimator of the true function is

d m
f(wl,...,xd) :]?1(371)4‘22 kw]k :IZ]

=2 k=1

Similar to Lemma A.2, let §; = Z?:Q [i(Xji) — fmj(Xji) and the B-spline theory (see Lemma 1,

Huang et al. (2010)) that 62 < sm~27. Define the event

d
£= {sgg {Maz ~ A+ 118; - ﬂjuz} < CTn} .
# i=2

From Theorem 3.2, we have P(£) > 1 — 1/n. Conditioning the event £, we have

max |€; — g;| = max
i€[n] i€[n]

f( X, -, Xiq) _]?(Xila--ind)}

<Héi[%>]<‘f1 Xi1) — fi( ,1‘+max
K3

d m
ZZ ﬁjk Bjk %k( i) +maX!5i!

s 1€[n]

d
< sup |fi() = fi(2)] + Vi 3 1B; = Bl + Vsm ™ < 20,
z i=2

where the second inequality is because of Hélder inequality as well as the fact that 1;, < 1 for all

j, k and the last inequality is since we are conditioning on . O

32



F.2 Proof of Lemma 3.4

The high level idea of proving Lemma 3.4 is similar to the proof of Lemma E.1. We aim to bound

the rate of sup, HfJZOZ — ¥.0.||co. Therefore, we consider the random variable

Ek] = Sup ngo Z 0 HOO = Sllp(E — E) Kh( i1 — Z)’l/J]k Z] Z Z 'l/]‘y/kl i’ )(oz)j/k/ .
2eX zeX j'=1k'=1

Recall that when j or k equals to 1, ¢j;, = 1. Similar to the proof of Lemma E.1, we have three
cases: (1) j =k =1, (2) only one of j or k equals to 1 and (3) neither of j, k equals to 1. We only
analyze the hardest case (3) in this proof and we can deal with the first two cases through a similar
procedure. For the minor differences among the analysis of these three cases, we refer to the proof
of Lemma E.1.

We first study the covering number of the space

Gn = { K (RN @y — 2))ik(y Z Z Vi (2:)(62) 11

zer,ke[d]}
'=1k'=1

Since G}, can be decomposed into a production of a few functions, we aim to apply Lemma H.1 to
bound its covering number. Lemma H.3 gives us the covering number of {A 'K (h™!(- — 2)) |z € X},

it remains to bound the covering number of

gg = {gz : Z Z Vi (20)(02) i } z € X}.

J'=1k=1

Given any z € X, we can find a z such that |z — Z| < e. We then have given any measure @,

d m 2
9. = 9=l72(q) = Eq [ DO i (Xig)[(02) ke — (oz)j’k/@

j'=1k'=1

< 1?0, — 6|3 < L?d||0, — 65|3 < 2L*dmp_2 (B/b) Lpmax - €%,

where the last inequality is due to Lemma F.4. Therefore,

sup (61, 17(Q),€) < /2L2dmpy 1 (B/D)LIX s (F6)
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According to Corollary 8 in Chapter XI of de Boor (2001), we have

min

< LZsup 1(62)jelloc = LVdsup |62 < 4Lppymvd,  (F.7)

3D 3 aEmEnIAM

j'=1k'=1

where the last inequality is due to Lemma F.3. By Lemma H.1, combining (F.6), (F.7) and Lemma

H.3, we have

= ) cmmd>5
SgpN(ghjL (Q).€) <d (P?mnbhﬁ : (F.8)

We then consider the envelop function of G, as

F(x) = 4h™ || Kl sup

E Z w]’k' (I,'j ’k’

j'=1k'=1

In order to study F(z), we define ¥ = E[¥,¥7,] and § = S er. We decompose F(x) into

F(l)(m) — 4h71HK||OO Z Z wjlk/ $] ’k’ and
j'=1k"'=1

@) d m B

Fo (@) = 4h™ | K]0 sup DO by () (0. — 0) k.

§'=1k'=1

According to Lemma F.2, we have
IV 1e(p) < 4mh™ 1Ko 813 < 4571 K]loo o
Similarly, we also have
a8 HL2 < 4mh” 1||KHooSllp 16 — 6113 < 8[| K| oc prmin-

Therefore, we have o2 < HF||%2(P) < 32h7 Y| K| o fmin- By Lemma H.2 we have

5 (log® d) log(|X|/ pumin)
E[%x Znj] < Cl\/ s . (F.9)
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We can also apply Lemma H.5 to obtain
IP(\/ﬁn%aX Zi; > 2v/nElmax Zyy| + Ch™ /2 Vi + Ch—1/2t> <t 1 (F.10)
7] 7‘7

Combining (F.9) with (F.10), we have

H’%X ij = OP(\/(10g2 d) log(‘X’/pmin)/nh>'

Finally, we finish the proof of the lemma by

[£:6: —ei|, . < Vm|[E.0. —ei]| = op(\/m(logz d) 1og(|xy/pmin)/nh).

F.3 Auxiliary Lemmas for Constraint Rate

In this section, we prove some auxiliary lemmas needed in the proof of Lemma 3.4.

Lemma F.2. Under Assumptions (A1), (A2) and (A6), there exists a constant pmax < 00 such
that for any B4 € RIt+(d-1m

B—{E[‘IIIO‘I’{o]B-i— < 3Pmax
184113 T 2m

(F.11)

Proof. We first derive some inequalities from (3.10). Given any j # k > 2, let u;(z;) =

S Bisthis(x), Ajr(j, k) = |pjx(xs, 2r) — pj(z)pj(zr)|, and we have

|BLE[®;¥1,]8,| = \// wj (@) up(wp)pjk(;, o) dajdug |
< ’/“j(fﬂj)pj(ﬂfj)dfcj/uk(wk)pk(fﬂk)dﬂfk} +//|Uj($j)uk($k)|Ajk:($j7xk)dxjdxkz

< 185 l211Bkll2 - 142, (F.12)

where the last inequality is due to E[;;(X;)] = 0 and (A.10). Therefore, we have

d
BIEWLYL]B, =) B EW P16 + ) B E[W,; W0
j=1 J#k
p d 3p
< PR N85 + D m 185 2l Bl - 1Aella < 583,
j=1 J#k

35



where the last inequality is due to Assumption (A6) and the Gershgorin circle theorem. O

Lemma F.3. Under Assumptions (A1), (A2), (A3) and (A6), there exists a constant pyax < 00

such that for any z € X and any 34 € RIH(d-1)m

Pmin < ﬁ«j‘;zzﬁ"‘ < 3Pmax 2m ‘

< < and sup [|0]]2 < (F.13)
2m = B3 2m M SuPIOs

min

Proof. We first derive some inequalities from (3.10). Denote Ayji(x1, 25, x%) == |[p1jk(T1, 25, k) —

p1(x1)pj(z;)pk(zk)|. Given any j # k > 2, let uj(x;) = > ot Bjsjs(x;), similar to (F.12), we have

B E[Kn(X1 — Z)‘I’lj‘I’lTk]ﬁk‘ = ‘/// Kn(1 — 2)uj(x)ug(zr)p1jk(T1, 25, 28 )drrdejday,

< m|Bjl2 1| B2 | Ak l2- (F.14)

Therefore, we have

d
BIT.By =) BIE[Ku(X:1 — 2)® ;%] )]8; + Y B E[KA(X1 — 2)¥1,%7,]6
j=1 j#k

d
p - i
<2 N85 + D m 1852l B2l Al < =5 1815,
j=1 J#k

where the first inequality is due to (E.9) and the last inequality is due to the Gershgorin circle

theorem. Similarly, we apply the Gershgorin circle theorem to obtain a lower bound as

d
BIS.Br =) BIEKW(X: —2)01, ()18 + ) BIEKL(X1 — 2) 1, ¥,]6:
=1 i#k
Pmi a Prmi
> PR S 18515 = > m 18y al Bl Al = SRR 1B1B,
i=1 %k
where the first inequality is due to Assumption (A3). O

The following lemma shows the Lipschitz properties of 9,.

Lemma F.4. Under Assumptions (A1) - (A6), we have

0= — 0.rll2 < 2mpp(B/p1(2)) Liwas - 12 — 2,
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where Ck is a constant only depending on the kernel K.
Proof. The idea of proving this lemma is similar to Lemma F.3. Given any j # k > 2, again let
wj(z;) = >0t Bisthjs(x;) and we have
|B]E[(Kn(X1 — 2) — Ky(X1 — 2)¥1;%7,] By
= | /(Kh(xl — 2) = Kp(z1 — 2)uj(2))up(@r)pr (21, 25, o) deydajdug |
<| /K(fﬁl) sup E[uj (X;)ug(X3)| X1 = u](p1(z + x1h) — p1(z" + 21h))dz1 |
u

< b Lz — 2 Im 7 Bjll2 1Bkl 1 Avj ] 2-
Similarly, we also have

|BIE[(Kn(X1 — 2) — Kp(X1 — 2')) ¥, %718,
<| /K(xl) S%pE[uj(Xj)2|X1 = u)(p1(z + 21h) — p1(2’ + x1h))dw1 |

< (B/b)Llz — 2 |m™1B513.

Therefore, for any B, € R1H(d=1m and z 2/,

d
BL(Z. = .8y < (B/b)LIz—2'[-m™ > |1B;l5 + 07" Llz = 2| - > mY1B]l2/|Bkll2l| Avjikll2
j=1 J#k

2(B/b) Lpmax
< 2B o5 2.

Therefore, combining with Lemma F.3, we can apply the matrix inverse perturbation inequality

(see e.g., Demmel (1992)) and have

16 = 8|2 < [SZHZIZ: = Sorll2 < 2mpd (B/b) Lomax - |2 = 2.
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F.4 Proof of Lemma C.4

Applying the fact that éz f?zé\z < 932z03, we have the following inequality

(0. - ez)T S. (6. - 0.) = 079.6.  2675.0. + 07,0,

<207S.0, — 2 <§ZT§;Z - ei) 9, — 27

0.
— 297 (f: - 2z) 9, 2 (é?f:z - ei> 0.

< 2“02”%”22 - EZHmaX + 2H§z9z — €]

|2,00[|6]]1- (F.15)

We now study the rate of 8, in this subsection. We separate X, into four blocks such that

where =) € R, 53 € RE@-Dm anq 32 ¢ RA-Dmx(@=Hm By Lemma F.3, both [S¢Y] 1
and [2,(22’2)]_1 exist for any z € X'. By the inversion formula of a block matrix, we have

6(1,1) 9(2,1)T
2_1 _ z z

z 9

@,(22’1) 622,2)

where the concrete formulations of these four submatrices are

1

9

el — <E(1,1) _ [222,1)]T[22272)}—122271»_

622,1) — _@gl,l) [222,2)]—1222,1)7

@22,2) _ [29,2)]—1 - @22,1)[2(22,1)]T[222,2)]—1.

In order to bound 8, = (@9’1), @f’l)T)T, we first bound the ¢; norm of the second part

d m
IZEVN =" > IEE (X1 — 2)du(X))]]-

=2 k=1

Following a similar analysis as (F.12), we can bound the norm by H 222’1) H L < pm% and H [29’2)]_129’1) Hl <
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(Pmax/Pmin) - m/2. In fact, by Lemma F.3, ol > 0. Combining with st = E[Kp(X1 — 2)] =

p1(z) 4+ o(1), we can have ZQQ’I)T[EQ’Q)]AE?’D < p1(z) +0(1) for any z € X.

Summarizing the inequalities above, we have

sup [[6-]|1 < sup @] + sup [©F],
zeX zeX ex

= sup Egl’l) _ EEQ,I)T[EgQ,Q)}—IEgQ,l)‘71 + sup ”@(21,1)[2(22,2)]—122271)
zeX zeX

1

= sup {(p1(2) + OW) ™ + (11(2) + O() ™" Olpphym™)} < Clbpuin) ™.

zeX

Plugging (3.11), (F.16) and (E.8) into (F.15), we prove the lemma.

F.5 Proof of Lemma C.1

We can expand the difference between two processes as

H.,(2) — Zp(2) = Vo Th 0 Ky (X — 2)1,%%0. + Vnh(el —07S.)(Bs — B4),

Ty (z) T (Z)

where 7, is defined as
d
’f]; :f(Xlia---aXdi) —me](Xﬂ) for any 1 € [n]
j=1
Using Theorem 3.2 and Lemma 3.4, with probability 1 — ¢/n, we have

sup T5(2)] < Vnh|£.0. — eillz0ll B+ — Bs 21
zE

mlog?d log(dmh=1) /s  m3?log(dh~')  h?
< Cvnh : .
=V nh o ( nh * mb/2 * n * vm

Since mh = o(1) and h < n=° for § > 1/5, we have sup,cy |T2(2)| = op(n~/19).

(F.16)

(F.17)

(F.18)

To bound Ti(z), we first apply the triangle inequality and Cauchy-Schwartz inequality to

39



decompose T7(z) into three smaller fragments

:\/h/iniKh(XﬁfZ ‘I/T +\/ h/nZKh zlfz lIlzlez
< Vnh-TH{(2) - T} (2) + Vnh - Tia(2),

where the three processes 171,112 and 113 are defined as follows

n

T (: Zmlyw L0002 Tia() = Y KX - 2)()?

i=1

and T13 ZKh il — Z \I’Z:BZ
From Lemma C.4, we can bound the supreme of 771(z) by

sup [Tia (2)| = sup (9} ~ OZ)T 3. (9} = OZ)

zeX p1 V. nh nh

Let 8,&, and ¢, be as defined in Lemma A.2 and Lemma A.3. From those two lemmas, with

probability 1 — ¢/n, we have

2 2 _
sup |Tia(2)| < sup =[|[WY/28[[3 + sup = [WL/2 (&, + ¢.)||3 < C(sm™ + h?). (F.20)
2€X zex T zex N

Lemma A.2 and Lemma A.3 also give us

1
sup [T13(2)] < sup — | €T W (6 + & + C2)[2,00/16:I1
2€X zex N

(F.21)

-1 3/2 -1 2
SCm(x/E-m‘r’/Q—i— hlog(dh )+m log(dh )+ h )

n n vm

Combining (F.19), (F.20) with (F.21), if the scaling condition of Theorem 3.7 is satisfied, there
exists a constant ¢ such that P(sup,cy [11(2)| > Cn™¢) < C/n. Combining this inequality with the

rate of sup,cy |T1(2)| in (F.18), we have our lemma proved.
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F.6 Proof of Lemma C.3

We first bound the difference between gf E’Zé\z and 7%’ 0, by applying triangle inequality and

Cauchy-Schwartz inequality

<(6.-0.)"2.(6.-6.)+206.—6.,)"%.0.

< hY(B. — 0.)TS.(B. — 6.) + 202\ (B. — 0.)75.(B. — 6.), /075 6..

From Lemma C.4, we have the desired upper bound in the lemma that

222(62 0 )TZ ( < /mlog (dm) [log( l/h )

The following lemma gives us a bound on the term 87X, .

Lemma F.5. Under Assumption (A1), for any z € X,

E[X)] = A 'ANK)[Z. + o(h)],

where A\(K) = [ K*( 2(u)du. Furthermore, with probability at least 1 — ¢/n,
1 1 log(dm)
Y B[] max < )
SEEH 2 BB [hnax = € <nh2 + nh3 * nmh3 >

We defer the proof of the lemma to the end of the section. Using Lemma F.5, we have

0:3.0. > 67E[31)0: — | — E[X]||max/|0: 17

> hIMNEK)073:0: — || — E[E]||max/|0:[IF — o(1)

nh? nh3 nmh3

> h_l)\(K)elTGZC’m2< S S log(dm)) —o(1).

We can also bound from the other direction as

nh? nh3 nmh3

1 1 log(d
0750, < h'A(K)eT 8, + Om? ( + 4/ o8l m)> +o(1).
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Combining (F.22), (F.23), (F.24) and (F.25), if mh = o(1),h = n=% for § > 1/5, there exists a

constant ¢ such that for any z € X,

YRS nTs
0'x'0.>07x'0. - 16736, - 670,

=h"' (A(K)el 0, +o(1)) > ch'el 0,

Similarly, we also have @T Z’Zé\z < Ch~'ef.. The proof will be done once we prove Lemma F.5.

Proof of Lemma F.5. For any j,j" € [d] and k, k" € [m], we have

E[X]jjmn = / Ki(x = 2) ()i (x50))p1 g (21, 35, w50 ) day dasyda
=h! /KQ(U)(wjk(fvj)?Z)j/k/(iﬁj'))pl,j,j/(Z +uh, zj, ;) dudz jdr
= h_l)\(K)/K(U)(%‘k(ﬂfj)%Z)j’k'(xj'))(Pl,j,j'(ZaCUj,90]") + o(h))dudz;dx

= hIA\(K) [Z; + O(h)]jj’kk’ :
The second part of the proof is similar to the proof of Lemma E.1. Consider the random variable

i jjr = SEE(EH — B)[KG (Xi1 — 2)vn(Xij )w (Xijr)]-

Define the following two function classes

Gy = {gz(xl,m,ﬂ?:a) = W2 K*(h Yz — 2))bp(w2)tbw (23) | 2 € X, 21, 20, 23 € X} and

Fp={h?K*(h'(-—2)|z€x}.

Using Lemma H.3, we bound the covering number by

8
8HK||2TVA2>

SlleN (]:h,LQ(Q),e) < < 2

where @ is any measure on R. Therefore the covering number for Gj, satisfies

8
8HKH?WA2> |

N (Gn, L*(P),€) < ( T3¢
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The envelope of G, is U = 4h™2||K ||, and we bound the variance of the process by

ob = E [ (I} (X1 — 2) (be(X)p (X))

= 1B (K2 (W (X0 — ) B [WRO5)08 (X | Xa]] < Om~2h,

Using Lemma H.2, we obtain the upper bound of the expectation

log(Cam)

ElZyjy] < C\| =557

As | Zppjir| < 4h=2 and 0% < Cm~2h~3, Lemma H.4 gives us

P <Zkk,jj, > E[Zipjj1] + t\/Cm*2h*3 + 4h—2E[Zypr 1] + 4t2h_2/3) < exp(—nt?).

By letting t = 34/log(dm)/n, we obtain

o (1 [flog(dm)
sup max [ (j, /') ~ B2 (7. )| = Op <nh2+ nm2h3 ) (F.26)

We also define the empirical process

Z —Sél)}? ZKh Xi1 — 2)Y( zg) E[Kh(Xl—Z)@bk(Xj)]-

As above, we can show that the suprema of the empirical process has the convergence rate as

. 1 log(dm)
ig}}gl?ax 122(4,1) —EX.(j,1)| = Op (nhz + - ) : (F.27)

Finally, we have the following upper bound

1
sup [2(1,1) —EZL(1,1)| < sup |~ > Kjp(Xiy — 2) — E[K} (X1 — 2)]
zeX zex |1

<oy L
B Vnh3  nh?)-

’ n

i=1 (F.28)
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Combining (F.26), (F.27) and (F.28), with probability at least 1 — ¢/n, we have

nh? * nh3 nmh3

1 1 log(dm
sup ||E/Z - E[E;]Hmax S C ( + g( )) ’
zeX

which completes the proof of the Lemma. O

G Proof of Proposition 3.3: Examples for Assumption (A6)

In this section, we give concrete examples under which Assumption (A6) is satisfied. Given some
p € [0,1/2], denote M(p,p) as a p X p 3-banded matrix with [M(p,p)]xx = 1 + p for all k € [d],
[M(p,p)lst =pif 0 <|s—t| <1and [M(p,p)]st =0if |s —t| > 1.

For any j € {2,...,d}, we consider a covariance matrix X) such that X(2) = diag(I, M(p,d —

2)) + (p/d)(erel + ele;) and
»0) = diag(Io,M(p, 5 — 3), 1+ p, M(p,d — j)) + (p/d)(e1e] + ele;) for j > 2,

where e; is the j-th canonical basis in R? and §; € {0,1}. We assume the covariances are sparse in
the sense that J := 2?22 d; = O(1) and 02 = 1. Given some 7 € (0,1/2), we consider the mixture

distribution
1—7

d .
1
plx) = exp | —=
(@) 1—7Td1]22\/27r e < 2

We can easily check that

mT(E(j))1w> : (G.1)

ZCOV X1,X;) > n?p, Cov(Xj, Xp,) > w?p for all |j — k| < 1.

We first show a property for 3-tuple joint density pij;. For simplicity, we denote w = (z1,z;, zj)7

and py j x exp(— 5w’ ST w). Denote Sp = diag(S). We have

1 2

1 1
3(8)% = |lp1jr — piospll3 = [ — + (G.2)
VP VBSI | flst—sps|isp| VEISDl

where the right hand side of the equality is obtained through integrating normal density functions
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and we omit the details.

Given the joint density p(x) in (G.1), we have
S s st
Ip1jk — P1pjpEll2 = 7rd ) ZW 8(S(s,k))> where Sy = | 8 ! sl

s s s)
si) 81 Si

Suppose j < k, and have three cases:

( 010 e
(1+p)I3 + (p/d) (g)gg), if s = j;
000
I+pIs+(p/d)(001), ifs=k;
S(sk) = . 0(00 ! 0) - . | (G.3)
(1+ )13+p<89(1)) if s#j,k, and j >2,k=7j+1;
(14 p)Is, otherwise.
For case (i) in (G.3), applying (G.2) and we have when p € [0,1/2],
1 1 4 1
2 2
P1jk — P1PjPk||2 = — + < (p/d)“.
s =pipipels = emss | T e ra? aa TP Grap  1+e) =YY

Case (ii) in (G.3) is the same. For case (iii) in (G.3), they are just case (i) with d = 1, i.e

Ip1jk — p1pjpxl|3 < p*. For case (iv), ||p1jx — p1pjpxll3 = 0.

Summarizing the results above, since p, 7 € (0,1/2), we have for any k > 0,

> llp1jk — pipprllz = 77(7 ZZW 6(S(s,5,k))

J#k j#k s=2

1—m
=) [ZWP”P”
s=2

< 5,0 < pmin/(QB)a

if p/7T S pmin/(GB)'

For the bivariate density ||pjr — pjpk||2, we can similarly get

Z lej plp]||2 (7)p7r <2p < pmm/(QB)
j>2
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Therefore, if we choose m = 1/3, then if p < pmin/(18B), our example above satisfies
d
ZCOV(Xl,Xj) > p/9 and Cov(Xj, Xi) > p/9 for all |j — k| <1,
j=2
and Assumption (A6) holds.

H Results on Empirical Processes

Lemma H.1 (Lemma H.2, Lu et al. (2015)). Let F; and F2 be two function classes satisfying
N(F1 - ls(q)» are) < Cre™ and N(Fo, |l - [|1o(Q)s a2€) < Coe™™

for some C1,Ca,a1,a2,v1,v2 > 0 and any 0 < € < 1. Define ||Fy|loc = sup{||f|loo, f € F¢} for
¢ =1,2 and U = || Fi|loc V ||F2]lco- For the function classes Fx = {fif2|f1 € Fi, fo € F2} and
Fr=A{f1+ fo| f1 € F1, f2 € Fa}, we have for any € € (0, 1),

20U\ [ 2a5U\
N(}—Xa”'HLz(Q)vf)SCIC2< - ) ( 2 ) ;

€ €

201\ [ 2a9\"?
N(F |- @ €) < Cr1Cy (;) <2> '

€

Lemma H.2 (Corollary 5.1, Chernozhukov et al. (2014b)). Assume that the functions in F defined
on X are uniformly bounded by an envelope function F'(-) such that |f(x)| < F(z) for all z € X
and f € F. Define 0'123 = supfeflE[fg]. Let Q be any measure over X. If for some A > e,V >0

and for all € > 0, the covering entropy satisfies

AllF |20\
sup N(F, L2(Q); ¢) < (””L(Q)> ,
Q 9
then for any i.i.d. subgaussian mean zero random variables €1, .. ., &, there exits a universal constant

C such that
1 & % AlF 2@y VIFl2@y ,  AllFl 2w
E - X)) —Ef(X < — 1 1 .
[?‘éfén ;:1 (f(Xi1) —Ef( ))] < C[\/ L OP\[los ——— + N T
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Lemma H.3 (Lemma 3, Giné and Nickl (2009)). Let K : R — R be a bounded variation function.
Define the function class F, = {K((t —-)/h)|t € R}. There exists A < oo such that for all

probability measures @) on R, we have

2K [y A
€

4
sup N (F, L*(Q), €) < < > , for any € € (0,1).
Q

Lemma H.4 (Bousquet (2002)). Let Xi,...,X, be independent random variables and F is a

function class such that there exist 7, and 72 satisfying

1 n
sup || flloo <M and  sup — Zvar(f<Xi1)) <72
f€]‘— fej_—n =1

Define the random variable Z being the suprema of an empirical process

Z = sup
feFr

L3 () ~ BF ()| (i)
1=1

Then for any z > 0, we have the following concentration inequality on the suprema

P (Z >EZ + 2/2(72 + 24,EZ) + 2z277n/3> < exp(—n2?).

The following lemma gives the deviation inequality when F is not universally bounded.

Lemma H.5 (Theorem 5.1, Chernozhukov et al. (2014b)). Let F(-) be the envelope function of F
such that F' € L?(P) and Z is defined in (H.1), For every ¢ > 1, there exists a universal constant C
such that

P(Z >2BZ+ C(op+||Fllz2w)z + | Fllr2@yz®) < 1/2°
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