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Abstract

This document contains the supplementary material to the paper “Kernel Meets Sieve:

Post-Regularization Confidence Bands for Sparse Additive Model”. All the proofs in the

supplementary material assume that true nonparametric function f(x1, . . . , xd) belongs

to the ATLAS model Ad(s). In Appendix A, we outlines the proof of Theorem 3.2. In

Appendix B, we introduce an accelerated method to derive our estimator. Appendix C

proves the validity of bootstrap confidence bands. In Appendix D, we prove Propositions

3.1.Appendix E collects the technical lemmas on the estimation rate. Appendix F states

some auxiliary results on the bootstrap confidence bands. In Appendix H, we lists

several useful results on empirical processes.

A Proof of the Statistical Rate of Kernel-Sieve Hybrid Estimator

For all the proofs in the following of the paper (including the supplementary material), we consider

the most general case that true nonparametric function f(x1, . . . , xd) belongs to the ATLAS model

Ad(s). Since SpAM is a strictly smaller family of Ad(s), all the proofs apply to Kd(s) as well.

This section outlines the proof of Theorem 3.2 on the statistical estimation rate of the kernel-

sieve hybrid estimator in (2.7). Before presenting the main proof, we list several technical lemmas

whose proofs are deferred to Appendix E in the supplementary material.

The following lemma provides the restricted eigenvalue condition on the empirical Hessian

matrix of the kernel-sieve hybrid loss in (2.6), which is Σ̂z = n−1ΨWzΨ
T .
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Lemma A.1. Under Assumptions (A1)-(A5), suppose β ∈ R(d−1)m and α ∈ R satisfy the cone

restriction ∑
j∈Sc
‖βj‖2 ≤ 3

∑
j∈S
‖βj‖2 + 3

√
m|α|

for some index set S ⊂ [d] with cardinality s. Denote θ = (α,βT )T . If s
√
m3 log(dm)/(nh) +

sm2/(nh) = o(1), there exists a constant ρmin such that with high probability,

inf
z∈X

θT Σ̂zθ ≥
ρmin

2m
‖β‖22 +

ρmin

2
|α|22.

The estimation error for the kernel-sieve hybrid estimator comes from three sources: (1) noise ε,

(2) approximation error by finite B-spline bases, and (3) approximation error by s local additive

functions to the true function. The following lemma provides the rate for the B-spline approximation

error, which further illustrates how the number of B-spline basis functions m influences the rate.

Lemma A.2. Recall that {fjz}dj=1 are defined in Definition 4.1. Let δz = (δ1(z), . . . , δn(z))T

where δi(z) =
∑d

j=2 fjz(Xji) − fmj(Xji) for i = 1, . . . n, where fmj(·) is defined in (2.4). Under

Assumptions (A1)-(A5) there exists a constant C > 0 such that the following three inequalities

hold with probability at least 1− 1/n,

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzδz‖2 ≤ C

√
s ·m−5/2, (A.1)

sup
z∈X

1

n
|ΨT
•1Wzδz| ≤ C

√
s ·m−2, (A.2)

sup
z∈X

1

n
‖W1/2

z δz‖22 ≤ Csm−4. (A.3)

Our next lemma bounds the approximation error of charts under the ATLAS model (4.1). We

can see that both the number of bases m and the bandwidth h play a role in the estimation.

Lemma A.3. Let ξz = (ξ1(z), . . . , ξn(z))T and ζz = (ζ1(z), . . . , ζn(z))T , where ξi(z) = f1(X1i)−

f1(z) and ζi(z) = f(X1i, . . . , Xdi)−
∑d

j=1 fjz(Xji) for i ∈ [n]. Under Assumptions (A1)-(A5) there

exists a constant C > 0 such that the following three inequalities hold with probability at least
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1− 1/n,

sup
z∈X

max
j∈[d]

1

n
‖ΨT
•jWz(ξz + ζz)‖2 ≤ C

(√
h log(dh−1)

n
+
m3/2log(dh−1)

n
+

h2√
m

)
,

sup
z∈X

1

n
|ΨT
•1Wz(ξz + ζz)| ≤ C

(
h2 +

√
h/n

)
,

sup
z∈X

1

n
‖W1/2

z (ξz + ζz)‖22 ≤ Ch2.

The following lemma quantifies the statistical error arising from the noise ε.

Lemma A.4. Let Tn = supz∈X maxj∈[d] n
−1‖ΨT

•jWzε‖2, where ε = (ε1, . . . , εn)T . Under Assump-

tions (A1)-(A5) and if m(nh)−1 = o(1), there exists a constant C > 0 such that with probability

at least 1− 1/n,

Tn ≤ C
√

log(dm2h−2)/(nh).

We are now ready to present the main proof of Theorem 3.2.

Proof of Theorem 3.2. We denote ηz = ε+ δz + ξz + ζz and define the event

E =

{
sup
z∈X

max
j≥2

4

n
‖ΨT
•jWzηz‖2 ≤ λ

}⋃{
sup
z∈X

4

n
|ΨT
•1Wzηz|2 ≤ λ

√
m

}
.

Using Lemma A.2, Lemma A.3 and Lemma A.4, there exist constants c, C such that P(E) ≥ 1− c/n

if the tuning parameter satisfies the following inequality

λ ≥ C
(√

log(dm2h−2)

nh
+
√
s ·m−5/2 +

√
h log(dh−1)

n
+
m3/2log(dh−1)

n
+

h2√
m

)
. (A.4)

In the rest of this proof, we are always conditioning on the event E .

Denote Sz := {j ∈ {2, . . . , d} | fjz 6≡ 0} and ∆ = β̂+ − β+, where ∆1 = α̂z − f1(z) and

∆j = β̂j − βj for j ≥ 2. We start by showing that ∆ falls into the cone

Az :=
{
∆ :

∑
j∈Scz ‖∆j‖2 ≤ 3

∑
j∈Sz ‖∆j‖2 + 3

√
m|∆1|

}
.
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Since β̂+ is a minimizer of the objective function,

1

n
‖W1/2

z (Y −Ψβ̂+)‖22 −
1

n
‖W1/2

z (Y −Ψβ+)‖22 + λ‖β̂‖1,2 − λ‖β‖1,2 + λ
√
m(|α̂z| − |f1(z)|) ≤ 0.

On the event E , we have the following inequality

sup
z∈X

4

n
ηTz WzΨ∆ ≤ sup

z∈X
max
j≥2

4

n
‖ΨT
•jWzηz‖2‖∆2:d‖1,2 + sup

z∈X

4

n
‖ΨT
•1Wzηz‖2|∆1|

≤ λ‖∆2:d‖1,2 + λ
√
m|∆1|.

The first inequality is due to the Hölder’s inequality and the second one is by the definition of E .

Furthermore, we derive the following inequality

1

n
‖W1/2

z Ψ∆‖22 ≤
2

n
ηTz WzΨ∆− λ

d∑
j=2

(‖β̂j‖ − ‖βj‖)− λ
√
m(|α̂z| − |f1(z)|)

≤ λ

2
‖β̂ − β‖1,2 + λ

√
m|α̂z − f1(z)| − λ

d∑
j=2

(‖β̂j‖ − ‖βj‖)

≤ 3λ

2

∑
j∈Sz

‖∆j‖+
3λ

2

√
m|∆1| −

λ

2

∑
j∈Scz

‖∆j‖.

The last inequality shows that ∆ ∈ Az.

Next, we prove the rate of convergence by contradiction. Suppose that for some fixed t, which

will be specified later, we have

∃z ∈ X , 1√
n
‖W1/2

z Ψ∆‖ > t. (A.5)

Equation (A.5) implies that there exists some z ∈ X such that

0 > min
∆∈Az ,‖Σ̂1/2

z ∆‖≥t

1

n
‖W1/2

z (Y −Ψβ̂+)‖22 −
1

n
‖W1/2

z (Y −Ψβ+)‖22 + λ‖β̂+‖1,2 − λ‖β+‖1,2.

Using the fact that Az is a cone, we can replace the constraint ‖Σ̂1/2
z ∆‖ ≥ t by ‖Σ̂1/2

z ∆‖ = t and
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the above inequality still preserves. Combining the event E , we have

0 > min
∆∈Az ,‖Σ̂1/2

z ∆‖=t

1

n
‖W1/2

z (Y −Ψβ̂+)‖22 −
1

n
‖W1/2

z (Y −Ψβ+)‖22 + λR(β̂+)− λR(β+)

≥ min
∆∈Az ,‖Σ̂1/2

z ∆‖=t

1

n
‖W1/2

z Ψ∆‖22 − 2λR(∆) + λR(β̂+)− λR(β+).

(A.6)

From Lemma A.1, we can bound the R.H.S. by

2R(∆)−R(β̂+) +R(β+) ≤ 3
∑
j∈S
‖∆j‖+ 3

√
m|∆1|

≤ 3
√
s ‖∆

S∪Ŝ‖2 + 3
√
m|∆1|

≤ 6
√

2sm/ρmin ‖Σ̂1/2
z ∆‖2.

(A.7)

Combining (A.6) and (A.7), we get a quadratic inequality

0 > t2 − 2λ
√
sm

ρmin
t. (A.8)

Setting t = 2
√
sm/ρmin · λ, we obtain from (A.8) that 0 > t2 −

[
2λ
√
sm/ρmin

]
t = 0, which is a

contradiction. Therefore, supz∈X n
−1/2‖W1/2

z Ψ∆‖2 ≤ 2λ
√
sm/ρmin. Using the rate for λ in (A.4)

and h = o(1), we have

sup
z∈X

1√
n
‖W1/2

z Ψ∆‖2 ≤ C
√
sm

(√
log(dmh−1)

nh
+

√
s

m5/2
+
m3/2log(dh−1)

n
+

h2√
m

)
. (A.9)

Now, using Lemma A.1, since ∆ ∈ Az, we have that

‖∆2:d‖1,2 +
√
m|∆1| ≤

√
s‖∆2:d‖2 +

√
m|∆1| ≤

√
sm/(ρminn)‖W1/2

z Ψ∆‖2

for any z ∈ X , which leads to the following inequality

sup
z∈X

√
m|α̂z − f1(z)|+ ‖β̂ − β‖1,2 ≤ Csm

(√
log(dmh−1)

nh
+

√
s

m5/2
+
m3/2log(dh−1)

n
+

h2√
m

)
,

with probability at least 1− c/n. To obtain the best rate on the right hand side of the equation,
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we choose h � n−1/6 and m � n1/6 to obtain

sup
z∈X

{
√
m|âz − f1(z)|+

d∑
i=2

‖β̂j − βj‖2

}
= OP

(
log(dn)n−1/4

)
.

According to Corollary 15 in Chapter XI of de Boor (2001), given a function g(x) =
∑m

k=1 βkφk(x),

we have

‖g‖22 � m−1
m∑
k=1

β2k. (A.10)

Therefore, we have ‖f̂ − f‖2 ≤ ρ−1mins
√
mλ and, when h � n−1/6 and m � n1/6, the rate becomes

‖f̂ − f‖22 = OP

(
n−2/3 log(dn)

)
.

This completes the proof.

B Accelerated Algorithm

This section presents details of our method to accelerate Algorithm 1. To estimate f1, we need

to compute the estimator α̂z for a number of z values z ∈ {z1, . . . , zM}. A näıve approach is to

run Algorithm 1 M times, once for each value of z’s. We provide a more efficient algorithm which

significantly reduces the computational cost. From Algorithm 1 and (2.15), the most expensive

operation is evaluation of the gradient

∇jLz(β(t)
+ ) = − 1

n
ΨT
•jWz

(
Y −Ψβ

(t)
+

)
. (B.1)

Computing ∇jLz(β(t)
+ ) for a single z requires O(dm2n) flops. If we trivially repeat the computation

for M different z’s, the computational complexity is O(dm2nM) which is challenging when M is

large. However, we can exploit the structure of ∇jLz(β(t)
+ ) to reduce the computational complexity.

According to (B.1) and the fact that ψjk(Xi1) = φk(Xi1)− φ̄jk(z), the k-th coordinate of ∇jLz(β(t)
+ )
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has a formulation

(
∇jLz(β(t)

+ )
)
k

= − 1

n

∑
i∈[n]

Kh(Xi1 − z)φk(Xi1)Yi + φ̄jk(z) ·
1

n

∑
i∈[n]

Kh(Xi1 − z)Yi

+
∑

`∈[d],s∈[m]

β
(t)
`s

{
1

n

n∑
i=1

Kh(Xi1 − z)
[
φk(Xi1)− φ̄jk(z)

][
φs(Xi1)− φ̄`s(z)

]}
.

(B.2)

The computation of ∇jLz(β(t)
+ ) is mostly spent on evaluating the formulation

q(z) =

n∑
i=1

Kh(Xi1 − z)ui (B.3)

for z ∈ {z1, . . . , zM} where u1, . . . , un are fixed quantities (e.g., ui could be Yi, φk(Xi1) or Yiφk(Xi1)

when evaluating (B.2)) independent of z. We introduce a fast method to calculate the general

form q(z) and apply it to the computation of (B.2). Without loss of generality, we assume that

z1 < . . . < zM . The näıve method to evaluate {q(z`)}`∈[M ] separately for different z has the

computational complexity O(nM). However, if the kernel function has some special structure, we

can reduce the complexity to O(n+M). For example, for the uniform kernel K(u) = 1
2 1{|u| ≤ 1},

when we vary the value of z from z` to z`+1, we just need to subtract ui for those i ∈ {v : Xv ∈

[z` − h, z`+1 − h)} and add ui for those i ∈ {v : Xv ∈ (z` + h, z`+1 + h]}. For M � h−1, the

cardinality of {i : Xi1 ∈ (z` − h, z`+1 − h] ∪ (z` + h, z`+1 + h]} does not increase with n or d.

Therefore, the complexity to evaluate {q(z`)}`∈[M ] is reduced to O(n+K). For the Epanechnikov

kernel K(u) = (3/4) · (1 − u2)1{|u| ≤ 1}, suppose q(z`) is known and define I` = {i : Xi1 ∈

(z` − h, z`+1 − h] ∪ (z` + h, z`+1 + h]}. We have q(z`+1) = q(z`) + ∆q(z`), where

∆q(z`) = q(z`+1)− q(z`) =
3

4

∑
i∈I`

(
1− (Xi1/h)2

)
ui +

3z

2h2

∑
i∈I`

Xi1 +
3z2

4

∑
i∈I`

ui.

Similar to the argument for the case of uniform kernel, we also have |I`| = O(1) if K � h−1. The

computational complexity of
∑

i∈Iz(1−X
2
i1)ui and the other two summations above for z = 1, . . . , zK

is O(n+K) and hence the computational complexity of {q(z`)}k∈[K] for Epanechnikov kernel is

also O(n+K). We can also apply a similar trick to many other kernels. Now we turn back to the
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calculation of the gradient ∇jLz(β(t)
+ ). Let p̂1(z) = n−1

∑n
i=1Kh(Xi1 − z),

Y
(1)
k (z) =

1

n

n∑
i=1

Kh(Xi1 − z)Yi, Y
(2)
k (z) =

1

n

n∑
i=1

Kh(Xi1 − z)φk(Xij)Yi,

Y
(3)
k (z) =

1

n

n∑
i=1

Kh(Xi1 − z)φk(Xij) and Rks(z) =
1

n

n∑
i=1

Kh(Xi1 − z)φk(Xij)φs(Xiu).

For different values of z, we denote the components of β+ corresponding to the k-th B-spline

basis for the j-th covariate as βjk;z. According to the expansion in (B.2), we can write the k-th

coordinate of ∇jLz(β(t)
+ ) as

(
∇jLz(β(t)

+ )
)
k

= −Y (1)
k (z) + φ̄jk(z)Y

(2)
k (z) +

1

n

∑
`∈[d],s∈[m]

β`s;z

(
Rkv(z)− φ̄jk(z)Y (2)

v (z)
)

− 1

n

∑
`∈[d],s∈[m]

β`s;z

(
φ̄`s(z)Y

(3)
k (z)− φ̄jk(z)φ̄`s(z)p̂1(z)

)
.

Based on the previous discussion on the calculation of q(z) in (B.3), we note that it takes O(n+

M) operations to evaluate p̂1(z), Y
(1)
k (z), Y

(2)
k (z), Y

(3)
k (z) and Rks(z) for M different values of z.

Therefore, the computational complexity of each iteration in Algorithm 1 can be reduced from

O(dm2nM) to O(dm2(n+M)). Therefore under the case M = O(n), we can estimate f1 using the

introduced procedure with the same computational complexity as (2.10). Since most of existing

algorithms for the group Lasso involve evaluating the gradient (Yuan and Lin, 2007; Friedman et al.,

2010; Farrell, 2013; Qin et al., 2013), the above argument is applicable to other solvers as well.

C Covering Properties of the Bootstrap Confidence Bands

In this section, we prove the theorems on the coverage probabilities for the Gaussian multiplier

bootstrap confidence bands Cbn,α in (2.19). We will first prove Theorem 3.7 and Theorem 3.5 can

be proven by following the same steps.

C.1 Proof of Theorem 3.7

We first prove that Cbn,α in (2.19) is honest. To simplify the notation, we will use X to represent the

interval [−Dn, Dn] when there is no confusion. The strategy to prove the result is to establish a
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sequence of processes from Ĥn(z) that approximate Z̃n(z). We consider the following four stochastic

processes

Ĥn(z) =
1√
nh−1

n∑
i=1

ξi ·
σ̂Kh(Xi1 − z)ΨT

i•θ̂z
σ̂n(z)

; (C.1)

Ĥ(1)
n (z) =

1√
nh−1

n∑
i=1

ξi ·
σKh(Xi1 − z)ΨT

i•θ̂z
σ̂n(z)

, (C.2)

H̃n(z) =
1√
nh−1

n∑
i=1

εi
Kh(Xi1 − z)ΨT

i•θ̂z
σ̂n(z)

, (C.3)

Z̃n(z) =
√
nh · σ̂−1n (z)

(
f̂u1 (z)− f1(z)

)
. (C.4)

Corollary 3.1 of Chernozhukov et al. (2014a) provides sufficient conditions for the confidence

band to be asymptotically honest. Specifically, we need to verify the following high-level conditions:

H1 There exists a Gaussian process Gn(z) and a sequence of random variables W 0
n such that

W 0
n

d
= supz∈X Gn(z). Furthermore, E[supz∈X Gn] ≤ C

√
log n and

P(|WZ
n −W 0

n | > ε1n) < δ1n

for some ε1n and δ1n.

H2 For any ε > 0, the anti-concentration inequality

sup
x∈R

P
(∣∣∣∣sup

z∈X
|Gn(z)| − x

∣∣∣∣ ≤ ε) ≤ Cε√log n.

holds.

H3 Let cn(α) be the (1− α)-quantile of WZ
n and ĉn(α) be the 1− α quantile of Ŵn. There exists

τn, ε2n and δ2n such that

P (ĉn(α) < cn(α+ τn)− ε2n) ≤ δ2n and P (ĉn(α) > cn(α− τn) + ε2n) ≤ δ2n.
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H4 There exists ε3n and δ3n such that

P

(
sup
z∈X

∣∣∣∣∣ σ̂
√
p̂1(z)

σ
√
p1(z)

− 1

∣∣∣∣∣ > ε3n

)
≤ δ3n.

If the high-level conditions H1 - H4 are verified, Corollary 3.1 in Chernozhukov et al. (2014a)

implies that

P(f1 ∈ Cbn,α) ≥ 1− α− (ε1n + ε2n + ε3n + δ1n + δ2n + δ3n).

In the remaining part of the proof, we show that the conditions are satisfied.

The roadmap is to establish that the process in (C.4) is close to the process in (C.1) following

the chain Z̃n → H̃n → Ĥ(1)
n → Ĥn. After that, we can check conditions H1 – H3. Since we do not

use the population σn(z) = E[σ̂n(z)] in the intermediate processes, we do not need to check the

condition H4.

In order to verify the condition H1, we first bound the difference between supz∈X H̃n(z) and

supz∈X Zn(z). We begin by considering two auxiliary processes

H̃′n(z) =
1√
nh−1

n∑
i=1

εiKh(Xi1 − z)ΨT
i•θ̂z and Z̃ ′n(z) =

√
nh
(
f̂u1 (z)− f1(z)

)
.

Notice that the above processes are un-normalized version of (C.2) and (C.4), that is, H̃′n(z) =

σ̂n(z)H̃n(z) and Z̃ ′n(z) = σ̂n(z)Z̃n(z). The following lemma provides a direct bound for the difference

between H̃′n(z) and Z̃ ′n(z).

Lemma C.1. Under the same conditions of Theorem 3.7, there exists a constant c0 > δ/2 such

that with probability 1− c/n,

sup
z∈X

∣∣∣H̃′n(z)− Z̃ ′n(z)
∣∣∣ ≤ Cn−c0 .

We defer the proof of the lemma to Section F.5 and proceed to prove Theorem 3.7. We also

need to study σ̂ and σ̂n(z) in the following lemmas.
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Lemma C.2. Let the estimator for Var(ε) = σ2 be σ̂2 = 1
n

∑n
i=1 ε̂

2
i . Let

rn :=

√
s2 log(dmh−1)

nm−2h
+

s3/2

m3/2
+
slog(dh−1)

nm−5/2
+ s
√
mh2. (C.5)

Under the same conditions of Theorem 3.7,, there exists constants c, C such that P
(
|σ̂2 − σ2| ≥

Cn−c) ≤ 6/n.

Lemma C.3. Let Σ′z = n−1ΨW2
zΨ

T . Under the same conditions of Theorem 3.7, there exist

constants c, C such that for sufficiently large n, with probability 1− c/n, for any z ∈ X ,

ch−1eT1 θz ≤ θ̂Tz Σ′zθ̂z ≤ Ch−1eT1 θz.

We defer the proof of this lemma to Section F.6. Notice that we can no longer choose h � n−1/6,

m � n1/6 used for the estimation rate in Theorem 3.2. This is because we need to under-regularize

our estimator to make the bias terms ignorable.

From Lemmas C.3 and F.3, we have an upper bound of the inverse of σ̂2n(z) = θ̂Tz Σ′zθ̂z as

sup
z∈X

√
h · σ̂−1n (z) ≤ C. (C.6)

With Lemma C.1 and Lemma C.3, we are ready to bound the difference between supz∈X H̃n(z)

and supz∈X Zn(z). Let c0 be the constant in Lemma C.1. We choose h,m satisfying the scaling

condition of Theorem 3.7. We denote c = c0 − δ/2 and observe that c > 0 by Lemma C.1. From

Lemma C.1 and (C.6), we have

P
(

supz∈X

∣∣∣H̃n(z)− Z̃n(z)
∣∣∣ ≥ Cn−c) ≤ P

(
supz∈X

∣∣∣H̃′n(z)− Z̃ ′n(z)
∣∣∣ ≥ Cσ̂n(z)n−c0/

√
h
)

≤ P
(

supz∈X

∣∣∣H̃′n(z)− Z̃ ′n(z)
∣∣∣ ≥ C2n−c0

)
≤ 1/n.

Define V 0
n = supz∈X H̃n(z) and Ṽ Z = supz∈X Z̃n(z). Since supz∈X H̃n(z) is a Gaussian process

conditional on {Xi1}i∈[n], we verify H1 by

P
(
|V 0
n − Ṽ Z | ≥ Cn−c

)
≤ P

(
sup
z∈X
|H̃n(z)− Z̃n(z)| ≥ Cn−c

)
≤ 1

n
. (C.7)
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The condition H2 follows from H1 and the anti-concentration inequality in Corollary 2.1 of

Chernozhukov et al. (2014a).

Next, we check H3 by bounding the difference between (C.1) and (C.2). We first approximate

Ĥn(z) by Ĥ(1)
n (z). By Lemma C.2, if we choose h,m satisfying the scaling condition of Theorem 3.7.,

with probability 1− 6/n, |σ̂ − σ| < C
√
rnm

1/4 = o(n−c), where rn is defined in (C.5).

We denote V̂n = supz∈X Ĥn(z), V̂
(1)
n = supz∈X Ĥ(1)

n (z) and the difference between V̂n − V̂ (1)
n .

Let ∆H(1)(z) = Ĥ(1)
n (z)− Ĥn(z). We have

sup
z∈X

∣∣∆H(1)(z)
∣∣ ≤ |σ̂ − σ| sup

z∈X

√
h · σ̂−1n (z)

(
sup
z∈X

I1(z) + sup
z∈X

I2(z)

)
,

where I1(z) = n−1
∑n

i=1Kh(Xi1 − z)
∣∣ΨT

i•(θ̂z − θz)
∣∣ and I2(z) = n−1

∑n
i=1Kh(Xi1 − z)

∣∣ΨT
i•θz

∣∣.
In order to bound I1(z), we first state a technical lemma that characterizes the estimation error

between θ̂z and θz.

Lemma C.4. Let θ̂z be a minimizer of (2.16). Suppose that Assumptions (A1), (A2), (A4)-(A6)

hold and β̄2,κ in (3.5) is finite. If the parameter γ in the optimization program (2.16) is chosen as

in (3.11), then with probability 1− c/d,

sup
z∈X

(θ̂z − θz)T Σ̂z(θ̂z − θz) ≤ C inf
z∈X

log(Dn/p1(z))

p21(z)
·m
(√

m log(dm)

nh
+
m

nh
+

√
log(1/h)

nh

)
. (C.8)

We defer the proof of this lemma to Section F.4. Using Lemma C.4 we bound I1(z). Applying

Cauchy-Schwarz inequality, we have

sup
z∈X
|I1(z)| ≤ sup

z∈X

(
1

n

n∑
i=1

Kh(Xi1 − z)
(
ΨT
i•(θ̂z − θz)

)2)1/2
(

1

n

n∑
i=1

Kh(Xi1 − z)

)1/2

≤ C inf
z∈X

(
log(Dn/p1(z))

p21(z)

)1/2

·
√
m

(√
m log(dm)

nh
+
m

nh
+

√
log(1/h)

nh

)1/2

,

(C.9)

where the last inequality is due to Proposition 3.1, Lemma C.4 and

sup
z∈X

n−1
n∑
i=1

Kh(Xi1 − z) = sup
z∈X

p1(z) + o(1).

12



For I2(z), we have the following inequality

sup
z∈X
|I2(z)| ≤ sup

z∈X

1

n
‖ΨTWz1‖2,∞‖θz‖1

≤ sup
z∈X

1

n
‖W1/2

z Ψ•jΨ
T
•jW

1/2
z ‖2‖W1/2

z 1‖2‖θz‖1

≤ C

m
· sup
z∈X

√
p(z) ·

√
m = O(1/

√
m).

(C.10)

Therefore, combining (C.9) and (C.10), we have

P
(∣∣∣V̂n − V̂ (1)

n

∣∣∣ > C
√
rnm

1/4
)
≤ n−1.

Under the scaling conditions of Theorem 3.7, there exists a constant c such that
√
rnm

1/4 = O(n−c).

Since σξi
d
= εi, we also have supz∈X Ĥ(1)

n (z)
d
= supz∈X H̃n(z). Combining with (C.7), we have

P
(∣∣∣V̂n − Ṽ Z

n

∣∣∣ > 2Cn−c
)
≤ 2n−1.

Therefore, we can bound the probability

P(Ṽ Z
n ≤ ĉn(α) + 2Cn−c) ≥ P(Ṽ Z

n ≤ ĉn(α))− P(|V̂n − Ṽ Z
n | > 2Cn−c)

≥ 1− α− 2c/nc, (C.11)

which implies that the estimated quantile has the following lower bound

ĉn(α) ≥ cn(α+ 2Cn−c)− 2cn−c. (C.12)

Similarly, we also have ĉn(α) ≤ cn(α− 2Cn−c) + 2cn−c. By setting τn = 2Cn−c, ε2n = 2cn−c and

δ2n = 2cn−c, we have

P
(
ĉn(α) ≥ cn(α+ 2Cn−c)− 2cn−c and ĉn(α) ≤ cn(α− 2Cn−c) + 2cn−c

)
≤ 2c/nc,

which verifies the condition H3.

Now, since we have checked the high-level conditions H1 – H3, since the high-level conditions

13



H1 – H4 are verified, the result follows from Corollary 3.1 in Chernozhukov et al. (2014a) such

that

P
(
f1(z) ∈ Cbn,α(z), ∀z ∈ X

)
≥ 1− α− Cn−c,

which completes the proof of the theorem.

D Proof of Propositions 3.1

Let J be arbitrary subset of [d] and for any (α,β) = (α,βT2 , . . . ,β
T
d )T ∈ C(κ)

β (J), where C(κ)
β (J) is

defined (3.1), we consider the functions h1(x1) ≡ α and hj(xj) =
∑m

k=1 βjkψjk(xj), for j = 2, . . . , d.

From the cone restriction in (3.1), we have

∑
j /∈J,j 6=1

‖βj‖2 ≤ κ
∑

j∈J,j 6=1

‖βj‖2 + κ
√
m|α|.

By the B-spline property de Boor (2001), there exists a constant c1 > 0 such that

√
m

c1

∑
j /∈J

‖hj‖L2(µz) ≤
∑

j /∈J\{1}

‖βj‖2 +

√
m

c1
|α|

≤ κ
∑

j∈J\{1}

‖βj‖2 +
(
κ+ c

−1/2
1

)√
m|α|

≤
(

(
√
c1 + 1)κ+ c

−1/2
1

)√
m · κ

∑
j∈J
‖hj‖L2(µz). (D.1)

Let c be the smallest constant satisfying cκ ≥
(√
c1 + 1

)
κ + c

−1/2
1 . Combining the above with

(D.1), we have (h1, . . . , hd) ∈ C(cκ)
h (J).

We first aim to bound βT+Σzβ+ = E
[
Kh(X1 − z)

(∑d
j=2hj(Xj)

)2]
as

E
[
Kh(X1 − z)

(∑d
j=1hj(Xj)

)2]
=

∫
K(u)

∑
j,khj(xj)hk(xk)p1,j,k(z + uh, xj , xk)dudxjdxk

=

∫ ∑
j,khj(xj)hk(xk)p1,j,k(z, xj , xk)dxjdxk +O(h2)

≥ p1(z)

2
· E
[(∑d

j=2hj(Xj)
)2∣∣∣X1 = z

]
=
p1(z)

2

∥∥∑d
j=1hj

∥∥2
L2(µz)

.
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Therefore, for any z ∈ X , by the definition in (3.4),

βT+Σzβ+ ≥
p1(z)

2

∥∥∑d
j=1hj

∥∥2
L2(µz)

≥ p1(z)

2β22,cκ(J)

∑
j∈J‖hj‖

2
L2(µz)

(D.2)

Applying the cone restriction on (h1, . . . , hd), we further have

(∑
j∈J
‖hj‖L2(µz)

)2

≥ 1

(cκ+ 1)2

( d∑
j=1

‖hj‖L2(µz)

)2

≥ 1

(cκ+ 1)2

d∑
j=1

‖hj‖2L2(µz)
≥ Cm−1

(cκ+ 1)2

(
d∑
j=2

‖βj‖22 +mα2

)
.

Combining the above inequality with (D.2), we obtain that with probability q(δ) for any z ∈ X ,

βT+Σzβ+ ≥ p1(z) ·
Cm−1β̄−22,cκ

s(cκ+ 1)2
(
‖β‖22 +mα2

)
, for any β+ ∈ C(κ)

β (J).

This completes the proof.

E Auxiliary Lemmas for Estimation Rate

In this section, we give detailed proofs of technical lemmas stated in Section A. The principal

technique used in the proofs of this section is the control of the suprema of empirical processes. In

the entire section, we will abuse the notation σ2P as the variance for certain empirical process.

E.1 Restricted eigenvalue condition

We provide a proof of Lemma A.1 in this section. Before stating the main part of the proof, we

begin with a technical lemma.

Lemma E.1 (Resctricted eigenvalue condition). With probability larger than 1− c/(dm), for any

θ = (α,βT )T , with α ∈ R and β ∈ R(d−1)m, and any z ∈ X it holds that

θT Σ̂zθ ≥ θTΣzθ − C
(√

m log(dm)

nh
+
m

nh
+

1√
nh

+ h2
)
‖θ‖21,2,
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where ‖θ‖1,2 = |α|+ ‖β‖1,2. Moreover, for any j ∈ [d] there exists a constant C such that

sup
x∈X

1

n

∥∥Ψ•jWzΨ
T
•j
∥∥2
2
≤ Cm−1.

Proof. The proof strategy is to study suprema of the entries of Σ̂z − Σz. We denote the (u, v)

entry of Σz as Σz(u, v) and similarly for Σ̂z. Let En denote the empirical expectation. We first

study the random variable

Zkk′jj′ = sup
z∈X

(En − E)[Kh(Xi1 − z)ψjk(Xij)ψj′k′(Xij′)].

Notice that Zkk′jj′ = supz∈X [Σ̂z−Σz](1 + (j− 2)m+k, 1 + (j′− 2)m+k′) for j, j′ ≥ 2 and k ∈ [m].

In order to bound Zkk′jj′ , we turn to study the covering number of the space

Gh =
{
gz(x1, x2, x3) = h−1K(h−1(x1 − z))ψjk(x2)ψj′k′(x3)

∣∣ z ∈ X , x1, x2, x3 ∈ X} .
Let Fh =

{
h−1K(h−1(· − z)) | z ∈ X

}
and let ‖K‖TV be the total variation of K(·). From Lemma

H.3, we have

sup
Q
N
(
Fh, L2(Q), ε

)
≤
(

2||K||TVA

hε

)4

, 0 < ε < 1,

where the supremum is taken over all probability measures Q on R. Let F̃h be an ε/L-cover of Fh

with respect to Q, where L ≥ ‖ψjk‖∞ for any k. We construct an ε-cover for Gh with respect to

Pn = n−1
∑n

i=1 δXi1,...,Xid as

G̃h =
{
f1(x1)ψjk(x2)ψj′k′(x3) | f1 ∈ F̃h

}
.

For a function gz = h−1K(h−1(x1 − z))ψjk(x2)ψj′k′(x3) ∈ Gh, let

g̃z = h−1K(h−1(x1 − z̃))ψjk(x2)ψj′k′(x3) ∈ G̃h

be the corresponding element in the cover. Here h−1K(h−1(x1 − z̃)) ∈ F̃h is the corresponding

element in the cover for h−1K(h−1(x1 − z)) ∈ Fh. If we are able to show that ‖gz − g̃z‖2L2(Q) ≤ ε
2,

then G̃h is the ε-cover for Gh. Combining with Lemma 3, Giné and Nickl (2009) (also see Lemma
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H.3), the covering number of Gh can be bounded as

N
(
Gh, L2(Pn), ε

)
≤
(

2||K||TVAL

hε

)4

. (E.1)

Now we show ‖gz − g̃z‖2L2(Q) ≤ ε
2:

‖gz − g̃z‖2L2(Q) = EQ
[
((Kh(X1 − z)−Kh(X1 − z̃))ψjk(Xji)ψj′k(Xj′i)

]2
≤ EQ [((Kh(X1 − z)−Kh(X1 − z̃))]2 ≤ ε2.

Observe that all functions in Gh are bounded by U = 4h−1‖K‖∞ and

σ2P := E
[(
Kh (X1 − z) (ψjk(Xj)ψj′k′(Xj′)

)2]
= h−2E

[
K2
(
h−1(X1 − z)

)
E
[
(ψ2

jk(Xj)ψ
2
j′k′(Xj′) |X1

]]
≤ Bm−2h−2E

[
K2
(
h−1(X1 − z)

)]
= Bm−2h−1

∫
K2 (u) p1(z + uh)du ≤ B2m−2h−1,

where the first and last inequalities are due to Assumption (A1). The bound above does not

depend on the particular choice of z. If m(nh)−1 = o(1), we have nσ2P ≥ CU2 log
(
Uσ−1

)
, and

from Lemma H.2, we have

E[Zkk′jj′ ] ≤ C1

√
log(C2m)

nm2h
, (E.2)

where the constants C1, C2 are independent of k, k′, j, j′. As |Zkk′jj′ | ≤ 4h−1 and σ2P ≤ Cm−2h−2,

we can apply Lemma H.4 to obtain

P
(
Zkk′jj′ ≥ E[Zkk′jj′ ] + t

√
Cm−2h−1 + 4h−1E[Zkk′jj′ ] + 4t2h−1/3

)
≤ exp(−nt2). (E.3)

For t = log d/
√
n, there exists a constant C such that

Zkk′jj′ ≤ C log dm/
√
nm2h+ C/(nh)
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with probability 1− 1/d. Combining (E.2) with (E.3), there exists a constant C such that

P
(

max
j,j′≥2,k,k′∈[m]

|Zkk′jj′ | > 2E[Zkk′jj′ ] + t
√
Cm−2h−1 + 4h−1E[Zkk′jj′ ] + 4t2h−1/3

)
≤ P

(
max

k,k′∈[m],j,j′≥2
|Zkk′jj′ − E[Zkk′jj′ ]| > t

√
Cm−2h−1 + 4h−1E[Zkk′jj′ ] + 4t2h−1/3 + E[Zkk′jj′ ]

)
≤ (dm)2 exp

(
−nt2

)
.

Let t = 3
√

log(dm)/n, njk = 1 + (j − 2)m+ k and nj′k′ = 1 + (j′ − 2)m+ k′) and we obtain that

sup
z∈X

max
j,j′≥2,k,k′∈[m]

∣∣∣[Σ̂z −Σz

](
njk, nj′k′

)∣∣∣ = OP

(
1

nh
+

√
log(dm)

nm2h

)
. (E.4)

Similarly, we define Z̄kj = supz∈X (En−E)[Kh(Xi1−z)ψjk(Xij)]. Following the similar procedure

as above, we apply Lemma H.2 to obtain that for some constant C,

σ2P := E
[
(Kh (X1 − z)ψjk(Xj))

2
]
≤ Cm−1h−1,

and U ≤ h−1, which implies the following inequality

E[Z̄kj ] ≤ C1

√
log(C2m)

nmh
. (E.5)

We now turn to study the remaining entries of Σ̂z −Σz. Using the same arguments as in (E.4)

and (E.5), we can derive an upper bound on the difference

sup
z∈X

max
j≥2

∣∣∣Σ̂z(1 + (j − 2)m+ k, 1)−Σz(1 + (j − 2)m+ k, 1)
∣∣∣ = OP

(
1

nh
+

√
log(dm)

nmh

)
. (E.6)

From Assumption (A1), the density function of X1, p1(x), is smooth. Recall that p̂1(z) =

n−1
∑n

i=1Kh(Xi1 − z). Applying the supreme norm rate for a kernel density estimator established

in Theorem 2.3 of Giné and Guillou (2002), we have ‖p̂1 − E[p̂1]‖∞ = OP
(√

log(1/h)/(nh)
)

and

therefore we can get the rate

sup
z∈X

∣∣∣Σ̂z(1, 1)−Σz(1, 1)
∣∣∣ = sup

z∈X

∣∣p̂1(z)− E[p̂1(z)]
∣∣ = OP

(√
log(1/h)

nh

)
. (E.7)
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Combining (E.4), (E.6) and (E.7), according to Hölder inequality, we have for any z ∈ X

∣∣∣θT (Σ̂z −Σz)θ
∣∣∣ ≤ ‖θ‖21‖Σ̂z −Σz‖max

≤ ‖θ‖21,2
{

sup
z∈X

max
t,t′ 6=1

m
∣∣∣Σ̂z(t, t

′)−Σz(t, t
′)
∣∣∣+ sup

z∈X

∣∣∣Σ̂z(1, 1)−Σz(1, 1)
∣∣∣}

≤ C
(√

m log(dm)

nh
+
m

nh
+

√
log(1/h)

nh

)
‖θ‖21,2, (E.8)

which completes the proof of the first part of the lemma.

An upper bound on supx∈X n
−1‖Ψ•jWzΨ

T
•j‖22 can be obtained in a way similar to the proof of

Lemma 6.2 in Zhou et al. (1998). For any βj = (β1, . . . , βm)T , let u(xj) =
∑m

k=1 βkψjk(xj). Let

the joint density function between X1 and Xj be p1,j(x1, xj). From Assumption (A1), we have for

any z ∈ X ,
1

n
βTj E[Ψ•jWzΨ

T
•j ]βj =

∫
1

h
K

(
x1 − z
h

)
u2(xj)p1,j(x1, xj)dx1dxj

≤ C
∫
K(u)du

∫
u2(xj)dxj ≤ Cm−1

m∑
k=1

β2k.

(E.9)

Furthermore, we also have

sup
x∈X

1

n
βTj E[Ψ•jΨ

T
•j |X1 = x]βj =

∫
u2(xj)

p1,j(x1, xj)

p1(x)
dx1dxj

≤ B
∫
K(u)du

∫
u2(xj)dxj ≤ Cm−1

m∑
k=1

β2k.

(E.10)

Let Pn = n−1
∑n

i=1 δXi1,Xij . We write the integration as

sup
z∈X

∫
Kh(x1 − z)u2(xj)dPn = I1 + I2, where

I1 = sup
z∈X

∫
Kh(x1 − z)u2(xj)dPX1,Xj and I2 = sup

z∈X

∣∣∣∣∫ Kh(x1 − z)u2(xj)d(Pn − PX1,Xj )

∣∣∣∣ .
Due to (E.9), we have I1 = OP (m−1)‖βj‖22 and a similar argument to one in Lemma 6.2 of Zhou

et al. (1998) will derive I2 = o(h)‖βj‖22. This completes the proof.

Based on Lemma E.1, the remaining step is to prove Lemma A.1.

Proof of Lemma A.1. We can derive the restricted eigenvalue condition on the cone from Lemma E.1.
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We apply Lemma E.1 in the last step. If the cone condition

∑
j∈Sc
‖βj‖2 ≤ 3

∑
j∈S
‖βj‖2 + 3

√
m|α|

is satisfied, by Hölder inequality, we have the upper bound

‖β‖1,2 ≤ 4
∑
j∈S
‖βj‖2 + 3

√
m|α| ≤ 4

√
s‖β‖2 + 3

√
m|α|.

With large probability, we have the following inequality

θT Σ̂zθ ≥ θTΣzθ − C

(√
m log(dm)

nh
+
m

nh
+

1√
nh

+ h2

)
‖θ‖21,2

≥ ρmin|α|2 + ρmin‖β‖2/m− C

(√
m log(dm)

nh
+
m

nh
+

1√
nh

+ h2

)(
4m|α|2 + 4s‖β‖22

)
≥ ρmin|α|2/2 + ρminm

−1‖β‖22/2

for any z ∈ X and sufficiently large n if s
√
m3 log(dm)/(nh) + sm2/(nh) = o(1).

E.2 Proof of Lemma A.2

The proof can be separated into two cases: j = 1 and j ≥ 2. For the simplicity of notation, we

write δi(z) as δi in this proof. We first consider the situation when j ≥ 2 and prove (A.1) and (A.3).

From Lemma A.1,

sup
z∈X
‖W1/2

z Ψ•jΨ
T
•jW

1/2
z ‖2/

√
n = sup

z∈X
‖Ψ•jWzΨ

T
•j‖2/

√
n ≤ ρmaxm

−1/2

with high probability. Therefore

sup
z∈X

1

n
‖ΨT
•jWzδ‖2 ≤ sup

z∈X

1

n
‖W1/2

z Ψ•jΨ
T
•jW

1/2
z ‖2‖W1/2

z δ‖2 ≤
C√
m
· sup
z∈X

1√
n
‖W1/2

z δ‖2. (E.11)
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To complete the proof, we need a bound on

sup
z∈X

1

n
‖W1/2

z δ‖22 = sup
z∈X

1

n

n∑
i=1

Kh(Xi1 − z)δ2i . (E.12)

Using Equation (20) in Zhou et al. (1998) on B-spline, we have

δ2i =
( d∑
j=2

fjz(Xji)− fnj;z(Xji)
)2
≤ s2m−4.

Define the following empirical process

Un(z) =
1

n

n∑
i=1

Kh(Xi1 − z)δ2i − E
[
Kh(X11 − z)δ21

]
.

Applying Hoeffding’s inequality (Hoeffding, 1963), we have

P
(

sup
z∈X

Un(z)− E
[

sup
z∈X

Un(z)

]
> t

)
≤ exp

(
−C nh2t2

(sm−4)2

)
. (E.13)

Let

G′′h =
{
gz(x1, x2) = h−1K(h−1(x1 − z))δ2(x2) | z ∈ X , x1 ∈ X , x2 ∈ X d−1

}
,

where δ(x2) =
∑d

j=2 fj(x2j) − fnj(x2j). Similar to the covering number of Gh in (E.1), since

δ2(x2) ≤ sm−4 for any x2, we have for any measure Q,

sup
Q
N
(
G′′h, L2(Q), ε

)
≤
(

2
√
s||K||TVA

m2hε

)4

.

Furthermore, σ2P := E[Kh(Xi1 − z)δ2i ]2 = O((sm−4)2h−1). Since g ≤ U := Ch−1(sm−4) for any

g ∈ G′′h and m4(sn)−1 = o(1), we have nσ2P ≥ C1U
2 log(C2

√
sm−4U/σ). By Lemma H.2, we have

E
[

sup
z∈X

Un(z)

]
≤ C sm

−4
√
nh

√
log(m2/

√
sh). (E.14)

We set t = Cs(m4h)−1
√

log n/n in (E.13) and combine it with (E.14) to obtain that, with probability

at least 1− 1/n ,

sup
z∈X

Un(z) ≤ C sm
−4

√
nh

√
log
(
m2/
√
sh
)

+ C
s
√

log n/n

m4h
. (E.15)
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Finally, we bound the maximal of the expectation by

sup
z∈X

E[Kh(X11 − z)δ21 ] = sup
z∈X

∫
Kh(t− z)dPX1(t)δ2(u)dPX>2|X1=t(u)

≤ Csm−4 sup
z∈X

∫
Kh(t− z)dPX1(t) ≤ Csm−4.

(E.16)

Combining (E.15) and (E.16), with probability at least 1− 1/n, we have

sup
z∈X

1

n
‖W1/2

z δ‖22 = sup
z∈X

1

n

n∑
i=1

Kh(Xi1 − z)δ2i

≤ sup
z∈X

Un(z) + sup
z∈X

E[Kh(X11 − z)δ21 ]

≤ C sm
−4

√
nh

√
log(m2/

√
sh) + C

s
√

log n/n

m4h
+ Csm−4

= O(sm−4), (E.17)

where the last equality is due to 2/
√
nh2 = o(1). Therefore, we prove the upper bound in (A.3).

Combing (E.17) with (E.11), we have we can conclude that

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzδ‖2 ≤

C√
m
· sup
z∈X

1√
n
‖W1/2

z δ‖2 ≤ C
√

s

m5
.

This gives us the rate in (A.1).

The final step is to prove (A.2). Recall that Ψ•1 = (1, . . . , 1)T . For the case j = 1, following

the proof for (A.3). According to (E.12), we have |δi| ≤ sm−2 for any i ∈ [n]. Let

U ′n(z) =
1

n

n∑
i=1

Kh(Xi1 − z)δi − E[Kh(X11 − z)δ1].

We use Hoeffding’s inequality (Hoeffding, 1963) again and obtain

P
(

sup
z∈X

U ′n(z)− E
[

sup
z∈X

U ′n(z)

]
> t

)
≤ exp

(
−Cnh

2t2

sm−4

)
. (E.18)

Applying symmetrization inequality again, we have

E
[

sup
z∈X

U ′n(z)

]
≤ 2E

[
sup
z∈X

1

n

n∑
i=1

ξiKh(Xi1 − z)|δi|
]
,
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where {ξi}ni=1 are i.i.d. Rademacher variables independent of data. Let

G̃′′h =
{
gz(x1, x2) = h−1K(h−1(x1 − z))δ(x2) | z ∈ X , x1 ∈ X , x2 ∈ X d−1

}
,

where δ(x2) =
∣∣∑d

j=2 fj(x2j) − fnj(x2j)
∣∣. Just as the covering number of G′′h, we also have

δ(x2) ≤ sm−2 for any x2, we have for any measure Q,

sup
Q
N
(
G̃′′h, L2(Q), ε

)
≤
(

2s1/2||K||TVA

m2hε

)4

.

The variance of the process σ2P := E[Kh(Xi1−z)δi]
2 = O(sm−4h−1). Since g ≤ U := Ch−1(sm−4)1/2

for any g ∈ G′′h and m4(sn)−1 = o(1), we have nσ2P ≥ C1U
2 log(C2s

1/4m−1U/σ). Applying

Lemma H.2 again, we have

E
[

sup
z∈X

U ′n(z)

]
≤ C
√
sm−2√
nh

√
log(m/

√
sh). (E.19)

We let t = C
√
s(m2h)−1

√
log n/n in (E.18) and use it with (E.19). Therefore, we achieve with

probability at least 1− 1/n ,

sup
z∈X

U ′n(z) ≤ C
√
sm−2√
nh

√
log
(
m2/
√
sh
)

+ C

√
s log n/n

m2h
. (E.20)

We again bound the supreme of the expectation

sup
z∈X

E[Kh(X11 − z)δ1] = sup
z∈X

∫
Kh(t− z)dPX1(t)δ(u)dPX>2|X1=t(u)

≤ C
√
sm−2 sup

z∈X

∫
Kh(t− z)dPX1(t) ≤ C

√
sm−2.

(E.21)

Combining (E.20) and (E.21), with probability at least 1− 1/n, we have

sup
z∈X

1

n
|ΨT
•1Wzδz| ≤ sup

z∈X

1

n

n∑
i=1

Kh(Xi1 − z)|δi|

≤ sup
z∈X

U ′n(z) + sup
z∈X

E[Kh(X11 − z)δ1] = O(
√
sm−2).

Therefore, we prove the upper bound in (A.2) which completes the proof of the lemma.

23



E.3 Proof of Lemma A.3

For j ≥ 2, we bound the two terms supz∈X maxj≥2
1
n‖Ψ

T
•jWzξz‖2 and supz∈X maxj≥2

1
n‖Ψ

T
•jWzζz‖2

separately. To bound the first term, let ∆fz(x) = f1(x)− f1(z) and Ψij be the ith row of Ψ•j . We

can rewrite the suprema as

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzξz‖2 = max

j≥2
sup
z∈X

sup
v∈Bm

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
TΨij . (E.22)

Let Nv = {v1, . . . ,vM} be a 1/2-covering of the sphere Bm = {v ∈ Rm | ‖v‖2 ≤ 1}. Observe that

for any v ∈ Bm, there exists π(v) ∈ Nv such that ‖v − π(v)‖2 ≤ 1/2. Therefore we have

sup
v∈Bm

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
TΨij

≤ sup
k∈[M ]

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
T
k Ψij + sup

v∈ 1
2
Bm

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
TΨij

≤ sup
k∈[M ]

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
T
k Ψij +

1

2
sup

v∈Bm

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
TΨij .

If we move the second term on the right hand side of the last inequality to the left hand side, we

obtain the inequality that

sup
v∈Bm

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
TΨij ≤ 2 sup

k∈[M ]

1

n

n∑
i=1

Kh(Xi1 − z)∆fz(X1i)v
T
k Ψij .

Therefore, in order to bound (E.22), we need to study the following empirical process

Vn(z) = max
j≥2,k∈[M ]

sup
z∈X

{
1

n

n∑
i=1

Kh(X1i − z)∆fz(X1i)v
T
k Ψij − E[Kh(X11 − z)∆fz(X11)v

T
k Ψij ]

}
.

We define the following function class

G′′′h =

{
gz(x1, x2) = h−1K((x1 − z)/h)∆fz(x1)

m∑
t=1

vktψt(xj)
∣∣∣ j ≥ 2, k ∈ [M ], z ∈ X

}
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and, similarly to argument in the covering number of Gh in (E.1), we have

sup
Q
N
(
G′′′h , L2(Q), ε

)
≤ dM

(
2
√
m||K||TVA

hε

)4

.

From (E.10), we bound the maximal of the expectation by

sup
x∈X

E
[
(vTk Ψij)

2 |X1 = x
]
≤ C‖vk‖2m−1.

Furthermore, we can bound the variance by expanding the expectation as the integration and

applying the Taylor expansion as follows

σ2P := E[Kh(X1 − z)∆fz(X1)v
T
k Ψij ]

2

= h−2
∫
K2

(
x− z
h

)
(f1(x)− f1(z))2pX1(x)dx · E

[
(vTk Ψij)

2 |X1 = x
]

≤ C(mh)−1
∫
K2(u)(f1(z + hu)− f1(z))2pX1(z + hu)du

= C(mh)−1
∫
K2(u)(f ′1(z)uh+ o(uh))2(pX1(z) + p′X1

(z)uh+ o(uh))du

= Cm−1[f ′(z)]2pX1(z)

∫
u2K2(u)du · h+ o(m−1h) = Chm−1.

The uniform upper bound of Kh(x− z)∆fz(x) can be studied under two cases: (1) x is out of the

support and (2) x is in the support. In particular, we have

• if x /∈ [z − h, z + h], then Kh(x− z)∆f2z (x) = 0;

• if x ∈ [z − h, z + h], then, by mean value theorem,

Kh(x−z)∆fz(x) ≤ h−1K(h−1(x− z))|f(x)−f(z)| ≤ h−1‖K‖∞‖f ′‖2∞ ·(2h) = 4‖f ′1‖2∞‖K‖∞.

Combining with the fact that |vTk Ψij | ≤
√
m for any i, j, k, we conclude that g ≤ U :=

4‖f ′1‖2∞‖K‖∞
√
m for any g ∈ G′′′h . Therefore by Lemma H.2 and M = 6m, we have

EVn(z) ≤ C
√
h log(dMh−1)

mn
+ C

√
m · log(dMh−1)

n

= C

√
h log(dh−1)

n
+ C

m3/2log(dh−1)

n
. (E.23)
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Similar to the analysis of σ2P , we also expand the expectation of the process as the integration and

use the Taylor expansion to bound it as follows

E
[
Kh(X1 − z)∆fz(X1)v

T
k Ψij

]
= h−1

∫
K

(
x− z
h

)
(f1(x)− f1(z))pX1(x)dx · E

[
vTk Ψ1j |X1 = x

]
dx

=

∫
K(u)

[
f ′1(z)uh+ f ′′1 (z)(uh)2/2 + o(uh)2

][
pX1(z) + p′X1

(z)uh+ o(uh)
]

·
(
E
[
vTk Ψ1j |X1 = z

]
+ uh

d

dz
E
[
vTk Ψ1j |X1 = z

]
+ o(uh)

)
du ≤ Ch2/

√
m.

(E.24)

The last inequality is due to the fact that K(·) is an even function, ‖ψjk‖∞ ≤ 1 and from (E.10).

Moreover, the constant is independent to j, k and z. Using Lemma H.4, we have

P
(
Vn(z)− EVn(z) > t

√
2(σ2P + 2UEVn(z)) +

2Ut2

3

)
≤ exp

(
−nt2

)
. (E.25)

Combining (E.23) and (E.24) with (E.25) for t =
√

log n/n, with probability at least 1− 1/n, we

have

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzξz‖2 ≤ 2 max

j≥2,k∈[M ]
sup
z∈X

1

n

n∑
i=1

Kh(X1i − z)∆fz(X1i)v
T
k Ψij

≤ Vn(z) + max
j,k

sup
z∈X

E[Kh(X1 − z)∆fz(X1)v
T
k Ψij ]

≤ C
√
h log(dh−1)

n
+ C

m3/2log(dh−1)

n
+ C

h2√
m
,

(E.26)

where the last equality is because of n−1h = o(1).

Now we bound supz∈X maxj≥2
1
n‖Ψ

T
•jWzζz‖2. The procedure is similar to the first part of the

proof. We again apply the 1/2-covering of Bd so that

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzζz‖2 ≤ 2 max

j≥2,k∈[M ]
sup
z∈X

1

n

n∑
i=1

Kh(Xi1 − z)ζi(z)vTk Ψij .

Motived by the above argument, we now turn to study the following empirical process

V ′n(z) = max
j≥2,k∈[M ]

sup
z∈X

{
1

n

n∑
i=1

Kh(X1i − z)ζi(z)vTk Ψij − E[Kh(X11 − z)ζi(z)vTk Ψij ]

}
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and the function class inspired from the above empirical process

G′′′′h =

{
gz(x1, x2) = h−1K((x1 − z)/h)ζi(z)

m∑
t=1

vktψt(xj)

∣∣∣∣ j ≥ 2, k ∈ [M ], z, x1, xj ∈ X
}
.

Our method of bound the supreme of the process is same as the proof of previous lemmas. We need

to study the covering number of the function space. Assembling the concentration inequality of the

suprema with the upper bound of the expectation of suprema and suprema of the expectation, we

will arrive at the final bound. Therefore, we first bound the covering number

sup
Q
N
(
G′′′′h , L2(Q), ε

)
≤ dM

(
2
√
m||K||TVA

hε

)4

.

Using Definition 4.1, there exists L1(z, x\1) such that the approximation error is bounded by

|ζi(z)| =
∣∣∣∣f(Xi1, . . . .Xid)−

d∑
j=1

fjz(Xij)

∣∣∣∣ ≤ |L1(z, x\1)| · |Xi1 − z|+ |Uj(z)|(Xi1 − z)2.

Therefore, the variance of the process V ′n can be bounded by computing the expectation

σ2P := E[Kh(X1 − z)ζi(z)vTk Ψij ]
2 ≤ Chm−1 (E.27)

and g ≤ U := 4‖L1(z, x\1)‖2∞‖K‖∞
√
m for all g ∈ G′′′′h . Lemma H.2 gives us

EV ′n(z) ≤ C
√
h log(dh−1)

n
+ C

m3/2log(dh−1)

n
. (E.28)

Denote κ(x) = E[L1(z,X\1) |X1 = x]. Using Definition 4.1,

E[Kh(X1 − z)ζi(z)vTk Ψij ]

= h−1
∫
K

(
x− z
h

)
(E[L1(z,X\1) |X1 = x](x1 − z) + Uj(z)(x− z)2)

· E
[
vTk Ψ1j |X1 = x

]
pX1(x)dx

=

∫
K(u)(κ(z)uh+ (κ′′(z) + ‖Uj‖∞)(uh)2/2 + o(uh)2)(pX1(z) + p′X1

(z)uh+ o(uh))

·
(
E
[
vTk Ψ1j |X1 = z

]
+ uh

d

dz
E
[
vTk Ψ1j |X1 = z

]
+ o(uh)

)
du ≤ Ch2/

√
m. (E.29)
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The last inequality is due to Assumption (A1). Since X is compact, E
[
vTk Ψ1j |X1 = z

]
and κ(z)

are uniformly bounded on z ∈ X . According to Lemma H.2 and Lemma H.4, similar to the first

part of the proof, (E.27), (E.28) and (E.29) can yield that for some constant C, with probability at

least 1− 1/d, we can bound the suprema

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzζz‖2 ≤ C

√
h log(dh−1)

n
+ C

m3/2log(dh−1)

n
+ C

h2√
m
. (E.30)

Combining (E.26) and (E.30), we have the rate of supz∈X maxj≥2
1
n‖Ψ

T
•jWz(ξz + ζz)‖2.

For the case when j = 1, Ψ•1 = (1, . . . , 1)T ∈ Rn and we can follow similar procedure to derive

sup
z∈X

1

n

∥∥ΨT
•1Wz(ξz + ζz)

∥∥
2

= sup
z∈X

1

n

n∑
i=1

Kh(z −Xi1)
(
ξi(z) + ζi(z)

)
= OP

(
h2 +

√
h/n

)
.

The final step is to bound supz∈X
1
n‖W

1/2
z ξ2z‖22 and supz∈X

1
n‖W

1/2
z ζ2z‖22. We just repeat the

procedure again and consider V ′′′n (z) = supz∈X n
−1∑n

i=1Kh(X1i − z)ξi(z)− E[Kh(X11 − z)ξi(z)].

First, we find that

EV ′′′n (z) ≤ C
√
h3 log(h−1/2)

n
+ C

hlog(h−1)

n
. (E.31)

Next, we have the upper bound of the supreme of the expectation

sup
z∈X

E[Kh(X1 − z)ξ2i (z)] = h−1
∫
K

(
x− z
h

)
(f1(x)− f1(z))2pX1(x)dx

=

∫
K(u)(f ′1(z)uh+ o(uh))2(pX1(z) + p′X1

(z)uh+ o(uh))du

= [f ′(z)]2pX1(z)

∫
u2K(u)du · h2 + o(h2) ≤ Ch2. (E.32)

Combining (E.31) and (E.32) with Lemma H.4 with t = log n/
√
n, with probability at least 1−1/n,

sup
z∈X

1

n

n∑
i=1

Kh(Xi1 − z)ξ2i (z) ≤ Vn(z) + sup
z∈X

E[Kh(X11 − z)ξ2i (z)]

≤ C
√
h3 log(nh−1)

n
+ C

h5/4 log(nh−1)

n3/4
+ C

h log2 n

n
+ Ch2 = O

(
h2
)
.

Similarly, we also have supz∈X n
−1∑n

i=1Kh(Xi1 − z)ζ2i (z) = oP (h2).
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E.4 Proof of Lemma A.4

For j = 2, . . . , n, we define the process

Gn(z, k, j) =
1√
n

n∑
i=1

1

h
K

(
Xi1 − z

h

)
ψjk(Xji)εi.

Since εi are subgaussian random variables, we have P(maxi |εi| > C
√

log n) ≤ 1/n. Conditioning

on the event A = {maxi |εi| < C
√

log n}, we can apply the Mc’Diarmid’s inequality to obtain

P
(

max
j,k

sup
z∈X

Gn(z, k, j)− E
[
max
j,k

sup
z∈X

Gn(z, k, j) | A
]
> t | A

)
≤ exp

(
−C nh

2t2

log2 n

)
. (E.33)

Next, we bound E
[

maxj,k supz∈X Gn(z, k, j) | A
]
. Using Dudley’s entropy integral (see Corollary

2.2.5 in van der Vaart and Wellner (1996)), conditioning on {Xij}i∈[n],j∈[d], we have with probability

1− 1/n, there exists a constant C such that

E
[

max
1≤j≤d

max
1≤k≤m

sup
z∈X

Gn(z, k, j) | A
]
≤ E

[∫ σn

0

√
logN(G′h, L2(P̂n), ε)dε | A

]
,

where P̂n = n−1
∑n

i=1 δXi1,...,Xid , σn = max1≤j≤d max1≤k≤m supz∈X P̂n[Kh(· − z)ψjk(·)]2 and

G′h =
{
gz(x1, x2) = h−1K(h−1(x1 − z))ψjk(x2) | 1 ≤ k ≤ m, z ∈ X , x1, x2 ∈ X

}
.

From Lemma H.3 and similar to the previous computation on the covering number, for any measure

Q, we have the uniform upper bound of covering number as

sup
Q
N
(
G′h, L2(Q), ε

)
≤ dm

(
2||K||TVA

hε

)4

.

Following a similar argument as in the proof of Lemma A.1, we bound the variance of process by

Cauchy-Schwarz inequality as

σ2P := E
[(
Kh (X1 − z)ψjk(Xj)

∣∣∣A)2]
≤ h−2E

[
K2
(
h−1(X1 − z)

)
E
[
ψ2
jk(Xj) |X1

]
| A
]
≤ b‖K‖2∞(mh)−1,
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and g ≤ ‖K‖∞h−1 for any g ∈ G′h. Sincem(nh)−1 = o(1), we have nσ2P ≥ h−2 log(dm(2||K||TVA/(hσ))).

Therefore, by Lemma H.2, we derive that

E
[∫ σn

0

√
logN(G′h, L2(P̂n), ε)dε

∣∣∣A] ≤ CσP√log(dm(hσP )−4) ≤ C
√

log(dm3h−2)

mh

and E
[

max
j,k

sup
z∈X

Gn(z, k, j)
∣∣∣A] ≤ C√log(dm3h−2)/(mh).

Choosing t = C log2 n/(
√
nh) in (E.33), we have

P

(
max
j,k

sup
z∈X

Gn(z, k, j) > C

√
log(dm3h−2)

mh
+

log2 n√
nh

)

≤ P

(
max
j,k

sup
z∈X

Gn(z, k, j) > C

√
log(dm3h−2)

mh
+

log2 n√
nh

∣∣∣A)+ P(Ac) ≤ 2/n.

Therefore, when m(nh)−1 = o(1), with probability 1− 2/n,

sup
z∈X

max
j≥2

1

n
‖ΨT
•jWzε‖2 ≤

√
m

n
max
1≤j≤d

max
1≤k≤m

sup
z∈X

Gn(z, k, j) ≤ 2C

√
log(dmh−1)

nh
.

When j = 1, recalling that Ψ•1 = (1, . . . , 1)T ∈ Rn, we have

sup
z∈X

1

n
‖ΨT
•1Wzε‖2 = sup

z∈X

∣∣∣∣ 1n
n∑
i=1

Kh(z −Xi1)εi

∣∣∣∣,
and, similar to the case when j ≥ 2, we can show that supz∈X n

−1‖ΨT
•1Wzε‖2 ≤ C

√
log(h−1)/(nh)

with probability 1− 2/n. This completes the proof.

F Auxiliary Lemmas for Bootstrap Confidence Bands

In this section, we describe the proof of these technical lemmas used in Section C. Section F.2 to

Section F.6 provide the proofs of lemmas in Section C.1 supporting the proof of Theorem 3.7.

30



F.1 Proof of Lemma C.2

Recall the rate rn of the estimated function shown in Theorem 3.2 is

rn :=

√
s2 log(dmh−1)

nm−2h
+

√
s3

m3
+
slog(dh−1)

nm−5/2
+ s
√
mh2.

We first establish a lemma on the estimation error of ε̂i.

Lemma F.1. Let ε̂i = Yi − f̂(Xi1, . . . , Xid) for i = 1, . . . , n. Under Assumption (A4), we have

P
(

max
i∈[n]
|ε̂i − εi| < 2Crn

√
m

)
≥ 1− 1

n
.

If h � n−δ, m � nδ for δ > 1/5, we have rn
√
m = o(n−1/5).

We defer the proof of the lemma to the end of this subsection. With the rate of maxi∈[n] |ε̂i− εi|,

we can first bound the rate of σ̂2 − σ2. Using the triangle inequality, we have

|σ̂2 − σ2| ≤ 1

n

n∑
i=1

(ε̂i − εi)2︸ ︷︷ ︸
I

+
2

n

n∑
i=1

|(ε̂i − εi)εi|︸ ︷︷ ︸
II

+
∣∣∣ 1
n

n∑
i=1

ε2i − σ2
∣∣∣︸ ︷︷ ︸

III

. (F.1)

From Lemma F.1, we have the convergence rate of the noise estimator

P(I > 4cr2nm) ≤ P
(

max
i∈[n]
|ε̂i − εi|2 > 4cr2nm

)
≤ 1/n. (F.2)

Under Assumption (A4), εi are subgaussian random variables with variance-proxy σ2ε . Using

Berstein’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

ε2i − σ2
∣∣∣∣∣ > C1

√
σ2ε log n

n

)
≤ 2

n
and P

(∣∣∣∣∣ 1n
n∑
i=1

|εi| − E|ε|

∣∣∣∣∣ > c

√
σ2ε log n

n

)
≤ 2

n
.

(F.3)

Suppose n is large enough, so that E|ε| ≤
√
σ2ε log n/n. We now can bound the second term by

P(II > 2c(c+ 1)E|ε|rn
√
m)

≤ P
(

max
i∈[n]
|ε̂i − εi| > 2crn

√
m

)
+ P

(
1

n

n∑
i=1

|εi| > E|ε|+ c

√
σ2ε log n

n

)
≤ 3

n
.
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Applying the fact that E|εi| ≤ σ2, we have the upper bound of the third term as

P
(
III > 2c(c+ 1)σ2rn

√
m
)
≤ 3/n. (F.4)

Combining (F.2), (F.3), (F.4) with (F.1), we have the estimation rate of the variance of noise as

P
(
|σ̂2 − σ2| ≥ C1rn

√
m
)
≤ 6/n. (F.5)

Now we come back to prove Lemma F.1.

Proof of Lemma F.1. Recall that the estimator of the true function is

f̂(x1, . . . , xd) = f̂1(x1) +
d∑
j=2

m∑
k=1

β̂jkψjk(xj).

Similar to Lemma A.2, let δi =
∑d

j=2 fj(Xji)− fmj(Xji) and the B-spline theory (see Lemma 1,

Huang et al. (2010)) that δ2i ≤ sm−2γ . Define the event

E =

{
sup
z∈X

{√
m|âz − f1(z)|+

d∑
i=2

‖β̂j − βj‖2
}
≤ Crn

}
.

From Theorem 3.2, we have P(E) ≥ 1− 1/n. Conditioning the event E , we have

max
i∈[n]
|ε̂i − εi| = max

i∈[n]

∣∣∣f(Xi1, . . . , Xid)− f̂(Xi1, . . . , Xid)
∣∣∣

≤ max
i∈[n]

∣∣f̂1(Xi1)− f1(Xi1)
∣∣+ max

i∈[n]

∣∣∣∣ d∑
j=2

m∑
k=1

(β̂jk − βjk)ψjk(Xij)

∣∣∣∣+ max
i∈[n]
|δi|

≤ sup
z∈X

∣∣f̂1(z)− f1(z)∣∣+
√
m

d∑
i=2

‖β̂j − βj‖2 +
√
sm−γ ≤ 2C

√
mrn,

where the second inequality is because of Hölder inequality as well as the fact that ψjk ≤ 1 for all

j, k and the last inequality is since we are conditioning on E .
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F.2 Proof of Lemma 3.4

The high level idea of proving Lemma 3.4 is similar to the proof of Lemma E.1. We aim to bound

the rate of supz ‖Σ̂zθz −Σzθz‖∞. Therefore, we consider the random variable

Z̃kj = sup
z∈X
‖Σ̂zθz −Σzθz‖∞ = sup

z∈X
(En − E)

[
Kh(Xi1 − z)ψjk(Xij)

d∑
j′=1

m∑
k′=1

ψj′k′(Xij′)(θz)j′k′

]
.

Recall that when j or k equals to 1, ψjk ≡ 1. Similar to the proof of Lemma E.1, we have three

cases: (1) j = k = 1, (2) only one of j or k equals to 1 and (3) neither of j, k equals to 1. We only

analyze the hardest case (3) in this proof and we can deal with the first two cases through a similar

procedure. For the minor differences among the analysis of these three cases, we refer to the proof

of Lemma E.1.

We first study the covering number of the space

Gh =

{
h−1K(h−1(x1 − z))ψjk(xj)

d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θz)j′k′
∣∣ z ∈ X , j, k ∈ [d]

}
.

Since Gh can be decomposed into a production of a few functions, we aim to apply Lemma H.1 to

bound its covering number. Lemma H.3 gives us the covering number of
{
h−1K(h−1(· − z)) | z ∈ X

}
,

it remains to bound the covering number of

G(1)h =

{
gz(x) :=

d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θz)j′k′
∣∣ z ∈ X}.

Given any z ∈ X , we can find a z̃ such that |z − z̃| ≤ ε. We then have given any measure Q,

‖gz − gz̃‖2L2(Q) = EQ
[ d∑
j′=1

m∑
k′=1

ψj′k′(Xij′)[(θz)j′k′ − (θz̃)j′k′ ]

]2
≤ L2‖θz − θz̃‖21 ≤ L2d‖θz − θz̃‖22 ≤ 2L2dmρ−2min(B/b)Lρmax · ε2,

where the last inequality is due to Lemma F.4. Therefore,

sup
Q

(
G(1)h , L2(Q), ε

)
≤
√

2L2dmρ−2min(B/b)L|X |2ρmax/ε. (F.6)
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According to Corollary 8 in Chapter XI of de Boor (2001), we have

sup
z,x

∣∣∣ d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θz)j′k′
∣∣∣ ≤ L d∑

j=1

sup
z
‖(θz)j•‖∞ = L

√
d sup

z
‖θz‖2 ≤ 4Lρ−1minm

√
d, (F.7)

where the last inequality is due to Lemma F.3. By Lemma H.1, combining (F.6), (F.7) and Lemma

H.3, we have

sup
Q
N
(
Gh, L2(Q), ε

)
≤ d2

(
C|X |md
ρ2minbhε

)5

. (F.8)

We then consider the envelop function of Gh as

F (x) = 4h−1‖K‖∞ sup
z

∣∣∣∣ d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θz)j′k′

∣∣∣∣.
In order to study F (x), we define Σ = E[Ψ1•Ψ

T
1•] and θ = Σ

−1
e1. We decompose F (x) into

F
(1)

(x) = 4h−1‖K‖∞
∣∣∣∣ d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θ)j′k′

∣∣∣∣ and

F
(2)

(x) = 4h−1‖K‖∞ sup
z

∣∣∣∣ d∑
j′=1

m∑
k′=1

ψj′k′(xj′)(θz − θ)j′k′

∣∣∣∣.
According to Lemma F.2, we have

‖F (1)‖2L2(P) ≤ 4mh−1‖K‖∞‖θ‖22 ≤ 4h−1‖K‖∞ρmin.

Similarly, we also have

‖F (2)‖2L2(P) ≤ 4mh−1‖K‖∞ sup
z
‖θz − θ‖22 ≤ 8h−1‖K‖∞ρmin.

Therefore, we have σ2P ≤ ‖F‖2L2(P) ≤ 32h−1‖K‖∞ρmin. By Lemma H.2 we have

E
[

max
k,j

Z̃kj

]
≤ C1

√
(log2 d) log(|X |/ρmin)

nh
. (F.9)
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We can also apply Lemma H.5 to obtain

P
(√

nmax
k,j

Z̃kj ≥ 2
√
nE[max

k,j
Z̃kj ] + Ch−1/2

√
t+ Ch−1/2t

)
≤ t−1. (F.10)

Combining (F.9) with (F.10), we have

max
k,j

Z̃kj = OP

(√
(log2 d) log(|X |/ρmin)/nh

)
.

Finally, we finish the proof of the lemma by

∥∥Σ̂zθz − e1
∥∥
2,∞ ≤

√
m
∥∥Σ̂zθz − e1

∥∥
∞ = OP

(√
m(log2 d) log(|X |/ρmin)/nh

)
.

F.3 Auxiliary Lemmas for Constraint Rate

In this section, we prove some auxiliary lemmas needed in the proof of Lemma 3.4.

Lemma F.2. Under Assumptions (A1), (A2) and (A6), there exists a constant ρmax <∞ such

that for any β+ ∈ R1+(d−1)m,

βT+E[Ψ1•Ψ
T
1•]β+

‖β+‖22
≤ 3ρmax

2m
. (F.11)

Proof. We first derive some inequalities from (3.10). Given any j 6= k ≥ 2, let uj(xj) =∑m
s=1 βjsψjs(xj), ∆jk(xj , xk) := |pj,k(xj , xk)− pj(xj)pj(xk)|, and we have

∣∣βT+E[Ψ1jΨ
T
1k]β+

∣∣ =
∣∣ ∫∫ uj(xj)uk(xk)pjk(xj , xk)dxjdxk

∣∣
≤
∣∣ ∫ uj(xj)pj(xj)dxj

∫
uk(xk)pk(xk)dxk

∣∣+

∫∫ ∣∣uj(xj)uk(xk)∣∣∆jk(xj , xk)dxjdxk

≤ m−1‖βj‖2‖βk‖2 · ‖∆jk‖2, (F.12)

where the last inequality is due to E[ψjk(Xj)] = 0 and (A.10). Therefore, we have

βT+E[Ψ1•Ψ
T
1•]β+ =

d∑
j=1

βTj E[Ψ1jΨ
T
1j ]βj +

∑
j 6=k

βTj E[Ψ1jΨ
T
1k]βk

≤ ρmax

m

d∑
j=1

‖βj‖22 +
∑
j 6=k

m−1‖βj‖2‖βk‖2 · ‖∆jk‖2 ≤
3ρmax

2m
‖β‖22,
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where the last inequality is due to Assumption (A6) and the Gershgorin circle theorem.

Lemma F.3. Under Assumptions (A1), (A2), (A3) and (A6), there exists a constant ρmax <∞

such that for any z ∈ X and any β+ ∈ R1+(d−1)m,

ρmin

2m
≤
βT+Σzβ+

‖β+‖22
≤ 3ρmax

2m
and sup

z
‖θz‖2 ≤

2m

ρmin
. (F.13)

Proof. We first derive some inequalities from (3.10). Denote ∆1jk(x1, xj , xk) := |p1,j,k(x1, xj , xk)−

p1(x1)pj(xj)pk(xk)|. Given any j 6= k ≥ 2, let uj(xj) =
∑m

s=1 βjsψjs(xj), similar to (F.12), we have

∣∣∣βTj E[Kh(X1 − z)Ψ1jΨ
T
1k]βk

∣∣∣ =
∣∣∣ ∫∫∫ Kh(x1 − z)uj(xj)uk(xk)p1,j,k(x1, xj , xk)dx1dxjdxk

∣∣∣
≤ m−1‖βj‖2‖βk‖2‖∆1jk‖2. (F.14)

Therefore, we have

βT+Σzβ+ =
d∑
j=1

βTj E[Kh(X1 − z)Ψ1jΨ
T
1j ]βj +

∑
j 6=k

βTj E[Kh(X1 − z)Ψ1jΨ
T
1k]βk

≤ ρmax

m

d∑
j=1

‖βj‖22 +
∑
j 6=k

m−1‖βj‖2‖βk‖2‖∆1jk‖2 ≤
3ρmax

2m
‖β‖22,

where the first inequality is due to (E.9) and the last inequality is due to the Gershgorin circle

theorem. Similarly, we apply the Gershgorin circle theorem to obtain a lower bound as

βT+Σzβ+ =

d∑
j=1

βTj E[Kh(X1 − z)Ψ1jΨ
T
1j ]βj +

∑
j 6=k

βTj E[Kh(X1 − z)Ψ1jΨ
T
1k]βk

≥ ρmin

m

d∑
j=1

‖βj‖22 −
∑
j 6=k

m−1‖βj‖2‖βk‖2‖∆1jk‖2 ≥
ρmin

2m
‖β‖22,

where the first inequality is due to Assumption (A3).

The following lemma shows the Lipschitz properties of θz.

Lemma F.4. Under Assumptions (A1) - (A6), we have

‖θz − θz′‖2 ≤ 2mρ−2min(B/p1(z))Lρmax · |z − z′|,
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where CK is a constant only depending on the kernel K.

Proof. The idea of proving this lemma is similar to Lemma F.3. Given any j 6= k ≥ 2, again let

uj(xj) =
∑m

s=1 βjsψjs(xj) and we have

∣∣βTj E[(Kh(X1 − z)−Kh(X1 − z′))Ψ1jΨ
T
1k]βk

∣∣
=
∣∣ ∫ (Kh(x1 − z)−Kh(x1 − z′))uj(xj)uk(xk)p1,j,k(x1, xj , xk)dx1dxjdxk

∣∣
≤
∣∣ ∫ K(x1) sup

u
E[uj(Xj)uk(Xk)|X1 = u](p1(z + x1h)− p1(z′ + x1h))dx1

∣∣
≤ b−1L|z − z′|m−1‖βj‖2‖βk‖2‖∆1jk‖2.

Similarly, we also have

∣∣βTj E[(Kh(X1 − z)−Kh(X1 − z′))Ψ1jΨ
T
1j ]βj

∣∣
≤
∣∣ ∫ K(x1) sup

u
E[uj(Xj)

2|X1 = u](p1(z + x1h)− p1(z′ + x1h))dx1
∣∣

≤ (B/b)L|z − z′|m−1‖βj‖22.

Therefore, for any β+ ∈ R1+(d−1)m and z, z′,

βT+(Σz −Σz′)β+ ≤ (B/b)L|z − z′| ·m−1
d∑
j=1

‖βj‖22 + b−1L|z − z′| ·
∑
j 6=k

m−1‖βj‖2‖βk‖2‖∆1jk‖2

≤ 2(B/b)Lρmax

m
‖β+‖22 · |z − z′|.

Therefore, combining with Lemma F.3, we can apply the matrix inverse perturbation inequality

(see e.g., Demmel (1992)) and have

‖θz − θz′‖2 ≤ ‖Σ−1z ‖22‖Σz −Σz′‖2 ≤ 2mρ−2min(B/b)Lρmax · |z − z′|.
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F.4 Proof of Lemma C.4

Applying the fact that θ̂Tz Σ̂zθ̂z ≤ θTz Σ̂zθz, we have the following inequality

(
θ̂z − θz

)T
Σ̂z

(
θ̂z − θz

)
= θ̂Tz Σ̂zθ̂z − 2θ̂Tz Σ̂zθz + θTz Σ̂zθz

≤ 2θTz Σ̂zθz − 2
(
θ̂Tz Σ̂z − ei

)
θz − 2eTi θz

= 2θTz

(
Σ̂z −Σz

)
θz − 2

(
θ̂Tz Σ̂z − ei

)
θz

≤ 2‖θz‖21‖Σ̂z −Σz‖max + 2‖Σ̂zθ̂z − e1‖2,∞‖θz‖1. (F.15)

We now study the rate of θz in this subsection. We separate Σz into four blocks such that

Σz =

 Σ
(1,1)
z Σ

(2,1)T
z

Σ
(2,1)
z Σ

(2,2)
z

 ,

where Σ
(1,1)
z ∈ R, Σ

(2,1)
z ∈ R(d−1)m and Σ

(2,2)
z ∈ R(d−1)m×(d−1)m. By Lemma F.3, both [Σ

(1,1)
z ]−1

and [Σ
(2,2)
z ]−1 exist for any z ∈ X . By the inversion formula of a block matrix, we have

Σ−1z =

 Θ
(1,1)
z Θ

(2,1)T
z

Θ
(2,1)
z Θ

(2,2)
z

 ,

where the concrete formulations of these four submatrices are

Θ(1,1)
z =

(
Σ(1,1)
z − [Σ(2,1)

z ]T [Σ(2,2)
z ]−1Σ(2,1)

z

)−1
,

Θ(2,1)
z = −Θ(1,1)

z [Σ(2,2)
z ]−1Σ(2,1)

z ,

Θ(2,2)
z = [Σ(2,2)

z ]−1 −Θ(2,1)
z [Σ(2,1)

z ]T [Σ(2,2)
z ]−1.

In order to bound θz = (Θ
(1,1)
z ,Θ

(2,1)T
z )T , we first bound the `1 norm of the second part

‖Σ(2,1)
z ‖1 =

d∑
j=2

m∑
k=1

|E[Kh(X1 − z)ψjk(Xj)]| .

Following a similar analysis as (F.12), we can bound the norm by
∥∥Σ(2,1)

z

∥∥
1
≤ ρmax

2 and
∥∥[Σ

(2,2)
z ]−1Σ

(2,1)
z

∥∥
1
≤
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(ρmax/ρmin) ·m/2. In fact, by Lemma F.3, Θ
(1,1)
z > 0. Combining with Σ

(1,1)
z = E[Kh(X1 − z)] =

p1(z) + o(1), we can have Σ
(2,1)T
z [Σ

(2,2)
z ]−1Σ

(2,1)
z ≤ p1(z) + o(1) for any z ∈ X .

Summarizing the inequalities above, we have

sup
z∈X
‖θz‖1 ≤ sup

z∈X
|Θ(1,1)

z |+ sup
z∈X
‖Θ(2,1)

z ‖1

= sup
z∈X

∣∣∣Σ(1,1)
z −Σ(2,1)T

z [Σ(2,2)
z ]−1Σ(2,1)

z

∣∣∣−1 + sup
z∈X

∣∣∣∣∣∣∣∣Θ(1,1)
z [Σ(2,2)

z ]−1Σ(2,1)
z

∣∣∣∣∣∣∣∣
1

= sup
z∈X

{
(p1(z) +O(1))−1 + (p1(z) +O(1))−1 ·O(ρ−1minm

3/2)
}
≤ C(bρmin)−1m. (F.16)

Plugging (3.11), (F.16) and (E.8) into (F.15), we prove the lemma.

F.5 Proof of Lemma C.1

We can expand the difference between two processes as

H̃′n(z)− Z̃ ′n(z) =
√
n−1h

∑n
i=1Kh(Xi1 − z)η′iΨT

i•θ̂z︸ ︷︷ ︸
T1(z)

+
√
nh(eT1 − θ̂Tz Σ̂z)(β̂+ − β+)︸ ︷︷ ︸

T2(z)

,

where η′i is defined as

η′i = f(X1i, . . . , Xdi)−
d∑
j=1

fmj(Xji) for any i ∈ [n]. (F.17)

Using Theorem 3.2 and Lemma 3.4, with probability 1− c/n, we have

sup
z∈X
|T2(z)| ≤

√
nh‖Σ̂zθz − e1‖2,∞‖β̂+ − β+‖2,1

≤ C
√
nh

√m log2 d

nh

 · sm(√ log(dmh−1)

nh
+

√
s

m5/2
+
m3/2log(dh−1)

n
+

h2√
m

)
. (F.18)

Since mh = o(1) and h � n−δ for δ > 1/5, we have supz∈X |T2(z)| = oP (n−1/10).

To bound T1(z), we first apply the triangle inequality and Cauchy-Schwartz inequality to
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decompose T1(z) into three smaller fragments

T1(z) =
√
h/n

n∑
i=1

Kh(Xi1 − z)η′iΨT
i•(θ̂z − θz) +

√
h/n

n∑
i=1

Kh(Xi1 − z)η′iΨT
i•θz

≤
√
nh · T 1/2

11 (z) · T 1/2
12 (z) +

√
nh · T13(z),

where the three processes T11, T12 and T13 are defined as follows

T11(z) =
1

n

n∑
i=1

Kh(Xi1 − z)(ΨT
i•(θ̂z − θz))2, T12(z) =

1

n

n∑
i=1

Kh(Xi1 − z)(η′i)2

and T13(z) =
1

n

n∑
i=1

Kh(Xi1 − z)η′iΨT
i•θz.

From Lemma C.4, we can bound the supreme of T11(z) by

sup
z∈X
|T11(z)| = sup

z∈X

(
θ̂z − θz

)T
Σ̂z

(
θ̂z − θz

)
≤ C inf

z∈X

log(Dn/p1(z))

p21(z)
·m
(√

m log(dm)

nh
+
m

nh
+

√
log(1/h)

nh

)
. (F.19)

Let δ, ξz and ζz be as defined in Lemma A.2 and Lemma A.3. From those two lemmas, with

probability 1− c/n, we have

sup
z∈X
|T12(z)| ≤ sup

z∈X

2

n
‖W1/2

z δ‖22 + sup
z∈X

2

n
‖W1/2

z (ξz + ζz)‖22 ≤ C(sm−4 + h2). (F.20)

Lemma A.2 and Lemma A.3 also give us

sup
z∈X
|T13(z)| ≤ sup

z∈X

1

n
‖ΨTWz(δ + ξz + ζz)‖2,∞‖θz‖1

≤ Cm
(√

s ·m−5/2 +

√
h log(dh−1)

n
+
m3/2log(dh−1)

n
+

h2√
m

)
.

(F.21)

Combining (F.19), (F.20) with (F.21), if the scaling condition of Theorem 3.7 is satisfied, there

exists a constant c such that P(supz∈X |T1(z)| > Cn−c) < C/n. Combining this inequality with the

rate of supz∈X |T1(z)| in (F.18), we have our lemma proved.
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F.6 Proof of Lemma C.3

We first bound the difference between θ̂Tz Σ′zθ̂z and θTz Σ′zθz by applying triangle inequality and

Cauchy-Schwartz inequality

∣∣∣θ̂Tz Σ′zθ̂z − θTz Σ′zθz

∣∣∣
≤ (θ̂z − θz)TΣ′z(θ̂z − θz) + 2(θ̂z − θz)TΣ′zθz

≤ h−1(θ̂z − θz)T Σ̂z(θ̂z − θz) + 2h−1/2
√

(θ̂z − θz)T Σ̂z(θ̂z − θz)
√
θTz Σ′zθz.

(F.22)

From Lemma C.4, we have the desired upper bound in the lemma that

sup
z∈X

(θ̂z − θz)T Σ̂z(θ̂z − θz) ≤ m
(√

m log(dm)

nh
+
m

nh
+

√
log(1/h)

nh

)
. (F.23)

The following lemma gives us a bound on the term θTz Σ′zθz.

Lemma F.5. Under Assumption (A1), for any z ∈ X ,

E[Σ′z] = h−1λ(K)
[
Σz + o(h)

]
,

where λ(K) =
∫
K2(u)du. Furthermore, with probability at least 1− c/n,

sup
z∈X
||Σ′z − E[Σ′z]||max ≤ C

(
1

nh2
+

1√
nh3

+

√
log(dm)

nmh3

)
.

We defer the proof of the lemma to the end of the section. Using Lemma F.5, we have

θTz Σ′zθz ≥ θTz E[Σ′z]θz − ‖Σ′z − E[Σ′z]‖max‖θz‖21

≥ h−1λ(K)θTz Σzθz − ‖Σ′z − E[Σ′z]‖max‖θz‖21 − o(1)

≥ h−1λ(K)eT1 θz − Cm2

(
1

nh2
+

1√
nh3

+

√
log(dm)

nmh3

)
− o(1).

(F.24)

We can also bound from the other direction as

θTz Σ′zθz ≤ h−1λ(K)eT1 θz + Cm2

(
1

nh2
+

1√
nh3

+

√
log(dm)

nmh3

)
+ o(1). (F.25)
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Combining (F.22), (F.23), (F.24) and (F.25), if mh = o(1), h = n−δ for δ > 1/5, there exists a

constant c such that for any z ∈ X ,

θ̂Tz Σ′zθ̂z ≥ θTz Σ′zθz −
∣∣∣θ̂Tz Σ′zθ̂z − θTz Σ′zθz

∣∣∣
= h−1

(
λ(K)eT1 θz + o(1)

)
≥ ch−1eT1 θz

Similarly, we also have θ̂Tz Σ′zθ̂z ≤ Ch−1eT1 θz. The proof will be done once we prove Lemma F.5.

Proof of Lemma F.5. For any j, j′ ∈ [d] and k, k′ ∈ [m], we have

E[Σ′z]jj′kk′ =

∫
K2
h(x− z)(ψjk(xj)ψj′k′(xj′))p1,j,j′(x1, xj , xj′)dx1dxjdxj′

= h−1
∫
K2(u)(ψjk(xj)ψj′k′(xj′))p1,j,j′(z + uh, xj , xj′)dudxjdxj′

= h−1λ(K)

∫
K(u)(ψjk(xj)ψj′k′(xj′))(p1,j,j′(z, xj , xj′) + o(h))dudxjdxj′

= h−1λ(K) [Σz + o(h)]jj′kk′ .

The second part of the proof is similar to the proof of Lemma E.1. Consider the random variable

Zkk′jj′ = sup
z∈X

(En − E)[K2
h(Xi1 − z)ψk(Xij)ψk′(Xij′)].

Define the following two function classes

Gh =
{
gz(x1, x2, x3) = h−2K2(h−1(x1 − z))ψk(x2)ψk′(x3)

∣∣∣ z ∈ X , x1, x2, x3 ∈ X} and

F2
h =

{
h−2K2(h−1(· − z))

∣∣ z ∈ X} .
Using Lemma H.3, we bound the covering number by

sup
Q
N
(
Fh, L2(Q), ε

)
≤
(

8||K||2TVA
2

h2ε

)8

,

where Q is any measure on R. Therefore the covering number for Gh satisfies

N
(
Gh, L2(P), ε

)
≤
(

8||K||2TVA
2

h2ε

)8

.
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The envelope of Gh is U = 4h−2‖K‖∞ and we bound the variance of the process by

σ2P := E
[(
K2
h (X1 − z) (ψk(Xj)ψk′(Xj′)

)2]
= h−3E

[
K2
(
h−1(X1 − z)

)
E
[
(ψ2

k(Xj)ψ
2
k′(Xj′) |X1

]]
≤ Cm−2h−3.

Using Lemma H.2, we obtain the upper bound of the expectation

E[Zkk′jj′ ] ≤ C1

√
log(C2m)

nm2h3
.

As |Zkk′jj′ | ≤ 4h−2 and σ2 ≤ Cm−2h−3, Lemma H.4 gives us

P
(
Zkk′jj′ ≥ E[Zkk′jj′ ] + t

√
Cm−2h−3 + 4h−2E[Zkk′jj′ ] + 4t2h−2/3

)
≤ exp(−nt2).

By letting t = 3
√

log(dm)/n, we obtain

sup
z∈X

max
j,j′≥2

∣∣Σ′z(j, j′)− EΣ′z(j, j
′)
∣∣ = OP

(
1

nh2
+

√
log(dm)

nm2h3

)
. (F.26)

We also define the empirical process

Z̄kj = sup
z∈X

1

n

n∑
i=1

Kh(Xi1 − z)ψk(Xij)− E [Kh(X1 − z)ψk(Xj)] .

As above, we can show that the suprema of the empirical process has the convergence rate as

sup
z∈X

max
j≥2

∣∣Σ′z(j, 1)− EΣ′z(j, 1)
∣∣ = OP

(
1

nh2
+

√
log(dm)

nmh3

)
. (F.27)

Finally, we have the following upper bound

sup
z∈X

∣∣Σ′z(1, 1)− EΣ′z(1, 1)
∣∣ ≤ sup

z∈X

∣∣∣∣ 1n
n∑
i=1

K2
h(Xi1 − z)− E[K2

h(X1 − z)]
∣∣∣∣

≤ C
(

1√
nh3

+
1

nh2

)
.

(F.28)

43



Combining (F.26), (F.27) and (F.28), with probability at least 1− c/n, we have

sup
z∈X
‖Σ′z − E[Σ′z]‖max ≤ C

(
1

nh2
+

1√
nh3

+

√
log(dm)

nmh3

)
,

which completes the proof of the Lemma.

G Proof of Proposition 3.3: Examples for Assumption (A6)

In this section, we give concrete examples under which Assumption (A6) is satisfied. Given some

ρ ∈ [0, 1/2], denote M(ρ, p) as a p × p 3-banded matrix with [M(ρ, p)]kk = 1 + ρ for all k ∈ [d],

[M(ρ, p)]st = ρ if 0 < |s− t| ≤ 1 and [M(ρ, p)]st = 0 if |s− t| > 1.

For any j ∈ {2, . . . , d}, we consider a covariance matrix Σ(j) such that Σ(2) = diag(I2,M(ρ, d−

2)) + (ρ/d)(e1e
T
2 + eT2 e1) and

Σ(j) = diag(I2,M(ρ, j − 3), 1 + ρ,M(ρ, d− j)) + (ρ/d)(e1e
T
j + eTj e1) for j > 2,

where ej is the j-th canonical basis in Rd and δj ∈ {0, 1}. We assume the covariances are sparse in

the sense that J :=
∑d

j=2 δj = O(1) and δ2 = 1. Given some π ∈ (0, 1/2), we consider the mixture

distribution

p(x) =
1− π

π2(1− πd−1)

d∑
j=2

πj√
(2π)d|Σ(j)|

exp

(
−1

2
xT (Σ(j))−1x

)
. (G.1)

We can easily check that

d∑
j=2

Cov(X1, Xj) ≥ π2ρ,Cov(Xj , Xk) ≥ π2ρ for all |j − k| ≤ 1.

We first show a property for 3-tuple joint density p1jk. For simplicity, we denote w = (x1, xj , xk)
T

and p1,j,k ∝ exp(−1
2w

TS−1w). Denote SD = diag(S). We have

δ(S)2 := ‖p1jk − p1pjpk‖22 =
1√

(2π)3

[
1√
8|S|

− 2√
|S−1 − S−1D ||S||SD|

+
1√

8|SD|

]
, (G.2)

where the right hand side of the equality is obtained through integrating normal density functions
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and we omit the details.

Given the joint density p(x) in (G.1), we have

‖p1jk − p1pjpk‖2 =
1− π

π2(1− πd−1)

d∑
s=2

πsδ(S(s,j,k)), where S(s,j,k) =

 S
(s)
11 S

(s)
1j S

(s)
1k

S
(s)
j1 S

(s)
jj S

(s)
jk

S
(s)
k1 S

(s)
kj S

(s)
kk

 .

Suppose j < k, and have three cases:

S(s,j,k) =



(1 + ρ)I3 + (ρ/d)
(

0 1 0
1 0 0
0 0 0

)
, if s = j;

(1 + ρ)I3 + (ρ/d)
(

0 0 0
0 0 1
0 1 0

)
, if s = k;

(1 + ρ)I3 + ρ
(

0 0 0
0 0 1
0 1 0

)
, if s 6= j, k, and j > 2, k = j + 1;

(1 + ρ)I3, otherwise.

(G.3)

For case (i) in (G.3), applying (G.2) and we have when ρ ∈ [0, 1/2],

‖p1jk − p1pjpk‖22 =
1√

8(2π)2

[
1√

(1 + ρ)2 − (ρ/d)2
− 4√

4(1 + ρ)2 − (ρ/d)2
+

1

1 + ρ

]
≤ (ρ/d)2.

Case (ii) in (G.3) is the same. For case (iii) in (G.3), they are just case (i) with d = 1, i.e.,

‖p1jk − p1pjpk‖22 ≤ ρ2. For case (iv), ‖p1jk − p1pjpk‖22 = 0.

Summarizing the results above, since ρ, π ∈ (0, 1/2), we have for any k > 0,

∑
j 6=k
‖p1jk − p1pjpk‖2 =

1− π
π2(1− πd−1)

∑
j 6=k

d∑
s=2

πsδ(S(s,j,k))

≤ 1− π
π2(1− πd−1)

[
d∑
s=2

πsρ+ 2ρπ2

]
≤ 5ρ ≤ ρmin/(2B),

if ρ/π ≤ ρmin/(6B).

For the bivariate density ‖pjk − pjpk‖2, we can similarly get

∑
j≥2
‖p1j − p1pj‖2 ≤

1− π
π2(1− πd−1)

ρπ2 ≤ 2ρ ≤ ρmin/(2B).
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Therefore, if we choose π = 1/3, then if ρ ≤ ρmin/(18B), our example above satisfies

d∑
j=2

Cov(X1, Xj) ≥ ρ/9 and Cov(Xj , Xk) ≥ ρ/9 for all |j − k| ≤ 1,

and Assumption (A6) holds.

H Results on Empirical Processes

Lemma H.1 (Lemma H.2, Lu et al. (2015)). Let F1 and F2 be two function classes satisfying

N(F1, ‖ · ‖L2(Q), a1ε) ≤ C1ε
−v1 and N(F2, ‖ · ‖L2(Q), a2ε) ≤ C2ε

−v2

for some C1, C2, a1, a2, v1, v2 > 0 and any 0 < ε < 1. Define ‖F`‖∞ = sup{‖f‖∞, f ∈ F`} for

` = 1, 2 and U = ‖F1‖∞ ∨ ‖F2‖∞. For the function classes F× = {f1f2 | f1 ∈ F1, f2 ∈ F2} and

F+ = {f1 + f2 | f1 ∈ F1, f2 ∈ F2}, we have for any ε ∈ (0, 1),

N(F×, ‖ · ‖L2(Q), ε) ≤ C1C2

(
2a1U

ε

)v1 (2a2U

ε

)v2
;

N(F+, ‖ · ‖L2(Q), ε) ≤ C1C2

(
2a1
ε

)v1 (2a2
ε

)v2
.

Lemma H.2 (Corollary 5.1, Chernozhukov et al. (2014b)). Assume that the functions in F defined

on X are uniformly bounded by an envelope function F (·) such that |f(x)| ≤ F (x) for all x ∈ X

and f ∈ F . Define σ2P = supf∈F E[f2]. Let Q be any measure over X . If for some A ≥ e, V ≥ 0

and for all ε > 0, the covering entropy satisfies

sup
Q
N(F , L2(Q); ε) ≤

(
A‖F‖L2(Q)

ε

)V
,

then for any i.i.d. subgaussian mean zero random variables ε1, . . . , εn there exits a universal constant

C such that

E
[

sup
f∈F

1

n

n∑
i=1

(f(Xi1)− Ef(X))

]
≤ C

[√
V

n
σP

√
log

A‖F‖L2(P)

σP
+
V ‖F‖L2(P)√

n
log

A‖F‖L2(P)

σP

]
.
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Lemma H.3 (Lemma 3, Giné and Nickl (2009)). Let K : R 7→ R be a bounded variation function.

Define the function class Fh = {K((t− ·)/h) | t ∈ R}. There exists A < ∞ such that for all

probability measures Q on R, we have

sup
Q
N(Fh, L2(Q), ε) ≤

(
2‖K‖TVA

ε

)4

, for any ε ∈ (0, 1).

Lemma H.4 (Bousquet (2002)). Let X1, . . . , Xn be independent random variables and F is a

function class such that there exist ηn and τ2n satisfying

sup
f∈F
‖f‖∞ ≤ ηn and sup

f∈F

1

n

n∑
i=1

Var(f(Xi1)) ≤ τ2n.

Define the random variable Z being the suprema of an empirical process

Z = sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(f(Xi1)− Ef(Xi1))

∣∣∣∣. (H.1)

Then for any z > 0, we have the following concentration inequality on the suprema

P
(
Z ≥ EZ + z

√
2(τ2n + 2ηnEZ) + 2z2ηn/3

)
≤ exp(−nz2).

The following lemma gives the deviation inequality when F is not universally bounded.

Lemma H.5 (Theorem 5.1, Chernozhukov et al. (2014b)). Let F (·) be the envelope function of F

such that F ∈ L2(P) and Z is defined in (H.1), For every t ≥ 1, there exists a universal constant C

such that

P
(
Z ≥ 2EZ + C(σP + ‖F‖L2(P))z + ‖F‖L2(P)z

2
)
≤ 1/z2.
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