1. Proof of Lemma 4.3

For $k \geq 0$, $(T1^k(T_u), T2^k(T_u), T3^k(T_u))$ is the triad obtained from optimal feasible solution $X^k(T_u)$ of problem $(TMP3)^k(T_u)$.

By construction of $(TMP3)^k(T_u)$, it is clear that $T1^k(T_u) < T_u, \forall k \ge 1$.

In order to prove relation (4), note that for a triad $(T1^k(T_u), T2^k(T_u), T3^k(T_u))$, $k \ge 0$, the next triad $(T1^{k+1}(T_u), T2^{k+1}(T_u), T3^{k+1}(T_u))$ is obtained from an optimal feasible solution $X^{k+1}(T_u)$ of TMTP $(TMP3)^{k+1}(T_u)$ or $(TMP3)^{k(\delta^*)}(T_u)$ for some value of $\delta = \delta^*$. If $T2^k(T_u) = t_2^{\beta_k}, \ 1 \le \beta_k \le \beta$, then the problem $(TMP3)^{k+1}(T_u)$ is

$$(TMP3)^{k+1}(T_u) \qquad \min_{X \in \hat{S}} \max_{I_o \times I_T} (t'_{ij} : x_{ij} > 0)$$
where
$$t'_{ij} = \begin{cases} 0 & \text{if } t_{ij} \leq T_u \\ M & \text{if } t_{ij} \geq T_u \\ 0 & \text{if } t_{ij} \leq t_2^{\beta_k - \delta^*} \\ M & \text{if } t_{ij} > t_2^{\beta_k - \delta^*} \\ M & \text{if } t_{ij} > t_2^{\beta_k - \delta^*} \\ M & \text{if } t_{ij} \geq T2^k(T_u) + T3^k(T_u) - t_2^{\beta_k - \delta^*} \\ M & \text{if } t_{ij} \geq T2^k(T_u) + T3^k(T_u) - t_2^{\beta_k - \delta^*} \\ \end{cases} \text{ for } (i, j) \in P_3$$

and \hat{S} is same as defined in (2). Clearly, $T2^{k+1}(T_u) \leq t_2^{\beta_k - \delta^*} < t_2^{\beta_k} = T2^k(T_u), \forall k \geq 1.$

$$\Rightarrow T2^{k+1}(T_u) < T2^k(T_u) \ \forall \ k \ge 0$$

which proves the relation (4).

Next, for proving the relation (5), suppose $T3^{k+1}(T_u) < T3^k(T_u)$ for some $k = \bar{k} \in \{0, 1, 2, ..., s - 1\}$, i.e., $T3(\bar{k} + 1) < T3(\bar{k})$ where $\bar{k} \in \{1, 2, ..., s - 1\}$.

Then $X(\bar{k}+1)$ yields the triad $(T1(\bar{k}+1), T2(\bar{k}+1), T3(\bar{k}+1))$ having $T1(\bar{k}+1) < T_u$, $T2(\bar{k}+1) < T2(\bar{k})$ and $T3(\bar{k}+1) < T3(\bar{k})$.

Therefore, by construction of $(TMP3)^{\bar{k}}(T_u)$, it follows that $X(\bar{k}+1)$ is a restricted feasible solution of the problem $(TMP3)^{\bar{k}}(T_u)$ yielding Phase-3 time as $T3(\bar{k}+1) < 1$ $T3(\bar{k})$, a contradiction to the optimality of $X(\bar{k})$ (yielding Phase-3 time as $T3(\bar{k})$) for the problem $(TMP3)^k(T_u)$. Hence, $T3^{k+1}(T_u) \ge T3^k(T_u) \forall k \ge 1$ and the relation (5) follows.

Next, for any $k \in \{1, 2, ..., s - 1\}$,

$$T2^{k+1}(T_u) \le t_2^{\beta_k - \delta^*}$$

and $T3^{k+1}(T_u) < T2^k(T_u) + T3^k(T_u) - t_2^{\beta_k - \delta^*}$
$$\Rightarrow T2^{k+1}(T_u) + T3^{k+1}(T_u) < T2^k(T_u) + T3^k(T_u) \ \forall \ k \ge 1$$

and hence, the relation (6) also follows.

2. Proof of Theorem 4.4

Suppose there exist a feasible solution X^* of 3-PhTP with corresponding triad $(T1^*, T2^*, T3^*)$ such that $T2^* + T3^* < T2^s(T_u) + T3^s(T_u)$ and $T1^* < T_u$.

In view of relation (4) of lemma 4.3,

$$T2(0) > T2(1) > T2(2) > \dots > T2^{s}(T_{u})$$

Three cases arise.

Case 1. $T2^* > T2(0)$.

Since, $T2^* + T3^* < T2^s(T_u) + T3^s(T_u) < T2(0) + T3(0)$ (using Lemma 4.3), it follows that $T3^* < T3(0)$.

Also $T1^* < T_u$.

 X^* is a restricted feasible solution of the problem $(TMP3)^0(T_u)$ yielding optimal value as $T3^* < T3(0)$. But X(0) is an optimal feasible solution of TMTP $(TMP3)^0(T_u)$, a contradiction.

Case 2. $T2^* < T2^s(T_u)$. If $T2^s(T_u) = T2^{min}$, then $T2^* < T2^s(T_u)$ is not possible, as $T2^{min}$ is the minimum time of Phase-2.

Therefore
$$T2^{s}(T_{u}) > T2^{min}$$
.

Since $T1^* < T_u$, $T2^* < T2^s(T_u)$ and $T2^* + T3^* < T2^s(T_u) + T3^s(T_u)$, it follows that X^* must be a restricted feasible solution of one of the problems of the collection $(TMP3)^{s(\delta)}(T_u), \delta = 1, 2, ...,$

But this is a contradiction as $(T1^s(T_u), T2^s(T_u), T3^s(T_u))$ is the last triad of the sequence and none of the problems of the collection $(TMP3)^{s(\delta)}(T_u)$ is restricted feasible.

Case 3. $T2^{s}(T_{u}) \leq T2^{*} \leq T2(0)$.

In this case, two possibilities arise.

$$\begin{array}{ll} Possibility \ (a). & T2^{*} = T2(\bar{k}) \ \text{for some} \ \bar{k} \in \{0, 1, 2, ..., s\}\\ & \text{Since,} \quad T2^{*} + T3^{*} < T2^{s}(T_{u}) + T3^{s}(T_{u}) < T2(\bar{k}) + T3(\bar{k})\\ & \Rightarrow \quad T3^{*} < T3(\bar{k}) < T2(\bar{k}-1) + T3(\bar{k}-1) - t_{2}^{\beta_{\bar{k}-1}-\delta^{*}}\\ & \text{Also,} \ T2^{*} = T2(\bar{k}) \leq t_{2}^{\beta_{\bar{k}-1}-\delta^{*}} \ \text{and} \ T1^{*} < T_{u} \end{array}$$

 $\Rightarrow X^*$ is a restricted feasible solution of TMTP $(TMP3)^{\bar{k}}(T_u)$ providing objective function value as $T3^* < T3(\bar{k})$, a contradiction to the fact that $X(\bar{k})$ is an optimal feasible solution for the TMTP $(TMP3)^{\bar{k}}(T_u)$.

Now $(T1(\bar{k}+1), T2(\bar{k}+1), T3(\bar{k}+1))$ is a triad of Phase-1, Phase-2 and Phase-3 shipment times yielded from an optimal solution $X(\bar{k}+1)$ of TMTP $(TMP3)^{\bar{k}+1}(T_u)$ which is the first restricted feasible problem $(TMP3)^{\bar{k}(\delta^*)}(T_u)$ in the collection $(TMP3)^{\bar{k}(\delta)}(T_u)$ of problems solved successively by taking values of $\delta = 1, 2, ...$ and so on.

Further $T2(\bar{k}+1) < T2^* < T2(\bar{k}),$

 $T2^* + T3^* < T2(\bar{k}) + T3(\bar{k}),$

 $T1^* < T_u$

 $\Rightarrow X^*$ must be a restricted feasible solution of one of the problems $(TMP3)^{\bar{k}(\delta)}(T_u)$ for $\delta = 1, 2, ..., \delta^*$, i.e., X^* must be a restricted feasible solution of one of the problems $(TMP3)^{\bar{k}(1)}(T_u)$ to $(TMP3)^{\bar{k}(\delta^*)}(T_u)$.

 X^* cannot be a restricted feasible solution of any of the problems $(TMP3)^{\bar{k}(1)}(T_u)$ to $(TMP3)^{\bar{k}(\delta^*-1)}(T_u)$, as $(TMP3)^{\bar{k}(\delta^*)}(T_u)$ is the first restricted feasible problem among the problems $(TMP)^{\bar{k}(\delta)}_3(T_u)$.

Therefore, X^* must be a restricted feasible solution of the problem $(TMP3)^{\bar{k}(\delta^*)}(T_u)$ yielding triad $(T1^*, T2^*, T3^*)$ with $T3^* < T3(\bar{k}+1)$, which is a contradiction to the optimality of $X(\bar{k}+1)$ for the problem $(TMP3)^{\bar{k}(\delta^*)}(T_u)$.

3. Proof of Lemma 4.5

Since $(T1^{prof}(l+1), T2^{prof}(l+1), T3^{prof}(l+1))$ is a proficient triad with respect to Phase-1 under the restriction that Phase-1 time is strictly less than $T1^{prof}(l)$, $\forall l = 1, 2, ..., v$, therefore

$$T1^{prof}(l) > T1^{prof}(l+1) \ \forall \ l \ge 0$$

and hence the relations (7) follow.

In order to prove relation (8), let, if possible, there exist $\bar{l} \in \{0, 1, 2, ..., v\}$ such that

$$\begin{split} T2^{prof}(\bar{l}+1) + T3^{prof}(\bar{l}+1) < T2^{prof}(\bar{l}) + T3^{prof}(\bar{l}) \\ \text{Note that} \qquad T1^{prof}(\bar{l}+1) < T1^{prof}(\bar{l}) < T1^{prof}(\bar{l}-1) \end{split}$$

This contradicts the fact that $T2^{prof}(\bar{l}) + T3^{prof}(\bar{l})$ is the minimum sum of Phase-2 and Phase-3 shipment times under the restriction that Phase-1 time is strictly less than $T1^{prof}(\bar{l}-1)$ (Ref. Theorem 4.4).

4. Proof of Theorem 4.6

Let, if possible, there exist a feasible solution X^* of 3-PhTP yielding the triad $(T1^*, T2^*, T3^*)$ with $T1^* + T2^* + T3^* < \min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l)\right]$. Then, depending on the value of $T1^*$, following three cases arise:

Case 1. $T1^* > T1^{prof}(0)$

$$\begin{split} T1^* + T2^* + T3^* &< \min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right] \\ \Rightarrow T1^* + T2^* + T3^* &< T1^{prof}(0) + T2^{prof}(0) + T3^{prof}(0) \\ \text{Since } T1^* > T1^{prof}(0) \Rightarrow T2^* + T3^* < T2^{prof}(0) + T3^{prof}(0) \end{split}$$

This implies that X^* is a feasible solution of 3-PhTP yielding sum of Phase-2 and Phase-3 shipment times strictly less than $T2^{prof}(0) + T3^{prof}(0)$, which is a contradiction, as $T2^{prof}(0) + T3^{prof}(0)$ is the minimum sum of shipment times of Phase-2 and Phase-3 (Ref. Theorem 4.4 and Remark 3).

Case 2. $T1^* < T1^{prof}(v)$

From Algorithm, it is clear that $T1^{prof}(v) = T1^{min}$. Therefore, $T1^* < T1^{prof}(v)$ is not possible.

Case 3. $T1^{prof}(v) \le T1^* \le T1^{prof}(0)$ Two sub cases arise:

Sub case (i) $T1^* = T1^{prof}(\bar{l})$ for some $\bar{l} \in \{0, 1, 2, ..., v\}$.

Since
$$T1^* + T2^* + T3^* < \min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right]$$

 $\Rightarrow T1^* + T2^* + T3^* < T1^{prof}(\bar{l}) + T2^{prof}(\bar{l}) + T3^{prof}(\bar{l})$
 $\Rightarrow T2^* + T3^* < T2^{prof}(\bar{l}) + T3^{prof}(\bar{l})$

This implies that X^* is a feasible solution of 3-PhTP yielding sum of shipment times of Phase-2 and Phase-3 strictly less than $T2^{prof}(\bar{l}) + T3^{prof}(\bar{l})$ corresponding to Phase-1 time $T1^* = T1^{prof}(\bar{l})$, which is a contradiction to the fact that $T2^{prof}(\bar{l}) + T3^{prof}(\bar{l})$ is the minimum sum of shipment times of Phase-2 and Phase-3 corresponding to Phase-1 time $T1^{prof}(\bar{l})$ because of $(T1^{prof}(\bar{l}), T2^{prof}(\bar{l}), T3^{prof}(\bar{l})$ being a proficient triad with respect to Phase-1.

Sub case (ii) $T1^{prof}(\bar{l}+1) < T1^* < T1^{prof}(\bar{l})$ for some $\bar{l} \in \{1, 2, ..., v-1\}$.

Since
$$T1^* + T2^* + T3^* < \min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right]$$

 $\Rightarrow T1^* + T2^* + T3^* < T1^{prof}(\bar{l}+1) + T2^{prof}(\bar{l}+1) + T3^{prof}(\bar{l}+1)$
 $\Rightarrow T2^* + T3^* < T2^{prof}(\bar{l}+1) + T3^{prof}(\bar{l}+1) \text{ (as } T1^* > T1^{prof}(\bar{l}+1))$

Also $T1^* < T1^{prof}(\bar{l})$.

But $T2^{prof}(\bar{l}+1) + T3^{prof}(\bar{l}+1)$ is the minimum sum of shipment times of Phase-2 and Phase-3 under the restriction that Phase-1 time is strictly less than $T1^{prof}(\bar{l})$, which is a contradiction.

5. Numerical Illustration

Example 1. Consider a balanced 3-PhTP (namely 3-PhTP(ex1) as in Table 1) with number of origins as m = 6 and number of terminals as n = 8 in the form of time matrix specifying the time of transportation of a homogeneous commodity via each origin-terminal link. The cells with underlined entries denote Phase-1 links, cells with shaded entries denote Phase-2 links and remaining cells correspond to Phase-3 links.

Solution. From Table 1, the parameters P_1 , P_2 and P_3 are noted as follows

$$P_{1} = \left\{ \begin{array}{c} (1,1), (1,4), (2,2), (2,5), (2,6), (2,8), (3,7), (4,1), (4,3), \\ (4,4), (4,6), (5,5), (5,8), (6,2), (6,5), (6,7) \end{array} \right\}$$

$$P_{2} = \left\{ \begin{array}{c} (1,2), (1,3), (1,5), (2,7), (3,1), (3,3), (3,4), (3,6), (4,5), \\ (4,8), (5,2), (5,3), (5,7), (6,6), (6,8) \end{array} \right\}$$

$$P_{3} = \left\{ \begin{array}{c} (1,6), (1,7), (1,8), (2,1), (2,3), (2,4), (3,2), (3,5), (3,8), \\ (4,2), (4,7), (5,1), (5,4), (5,6), (6,1), (6,3), (6,4) \end{array} \right\}$$

The distinct time entries in three phases can be arranged in increasing order as follows.

Phase-1: $t_1^1(=04) < t_1^2(=06) < t_1^3(=08) < t_1^4(=09) < t_1^5(=13) < t_1^6(=15) < t_1^7(=17) < t_1^8(=21) < t_1^9(=23) < t_1^{10}(=27) < t_1^{11}(=35) = t_1^{\alpha}; \ \alpha = 11$

Phase-2: $t_2^1(=02) < t_2^2(=03) < t_2^3(=07) < t_2^4(=09) < t_2^5(=11) < t_2^6(=12) < t_2^7(=15) < t_2^8(=17) < t_2^9(=27) < t_2^{10}(=32) = t_2^{\beta}; \ \beta = 10$

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-1:

Step 1. On solving the standard TMTPs $(TMP1)^0$ and $(TMP2)^0$ (Table 2 and 3), the minimum shipment times of Phase-1 and Phase-2 are obtained as follows.

Step 2. $T1^{prof}(0) = \infty > T1^{min} = 0$, therefore go to Step 3.

Step 3. Set $T1^{prof}(0) = \infty = T_u$. Solving the TMTP $(TMP3)^0(T_u = \infty)$ (which is same as $(TMP3)^0$), obtain an optimal feasible solution $X^0(T_u = \infty)$ of problem $(TMP3)^0(T_u = \infty)$ (Table 4) and corresponding optimal time as $T3^0(T_u = \infty) = 0$. Obtain the corresponding Phase-1 and Phase-2 times as $T1^0(T_u = \infty) = 35$ and $T2^0(T_u = \infty) = 32$ respectively so that the first triad is $(T1^0(T_u = \infty), T2^0(T_u = \infty), T3^0(T_u = \infty)) = (35, 32, 00)$. Therefore, go to Step 4 for k = 0.

Step 4. $T2^{0}(T_{u}) = 32 > T2^{min}$. Find $\beta_{0}, 1 \leq \beta_{0} \leq \beta$ such that $T2^{0}(T_{u}) = 32 = t_{2}^{10}$. This implies that $\beta_{0} = 10$. Next, go to Step 5 for $\delta = 1$.

Step 5. On solving the problem $(TMP3)^{0(1)}(T_u = \infty)$ (Table 5), it comes out to be restricted feasible, therefore, proceed to Step 6.

Step 6. Here $\delta = 1 = \delta^*$ and the problem $(TMP3)^{0(1)}(T_u = \infty)$ is $(TMP3)^1(T_u = \infty)$ whose optimal feasible solution yields the next triad $(T1^1(T_u), T2^1(T_u), T3^1(T_u)) = (35, 27, 00)$. Next repeating Step 3 to Step 6 for $(T1^1(T_u), T2^1(T_u), T3^1(T_u)) = (35, 27, 00)$, the next triad $(T1^2(T_u), T2^2(T_u), T3^3(T_u)) = (35, 17, 00)$ is obtained from problem $(TMP3)^{1(1)}(T_u)$ (or $(TMP3)^2(T_u)$ renamed, Table 6). Further, on solving problems of collection $(TMP3)^{2(\delta)}(T_u)$, $\delta = 1, 2, ...$ successively, the first restricted feasible problem comes out to be $(TMP3)^{2(7)}(T_u)$ (or $(TMP3)^3(T_u)$ renamed, Table 7) which yields the next triad $(T1^3(T_u), T2^3(T_u), T3^3(T_u)) = (35, 2, 14)$. Next, for the triad $(T1^3(T_u), T2^3(T_u), T3^3(T_u)) = (35, 2, 14)$, where $T2^3(T_u) = t_2^{\alpha_3} = 2 = t_2^1$, the corresponding problem $(TMP3)^{3(1)}(T_u)$ (Table 8) is not restricted feasible. Also $t_2^{\alpha_3-1} = t_2^0 = 0 = T2^{min}$, therefore Step 7 follows which concludes that the current triad $(T1^3(T_u), T2^3(T_u), T3^3(T_u)) = (35, 2, 14)$ is the last triad of the above sequence of triads and can be used as an initial proficient triad with respect to Phase-1 i.e., $(T1^{prof}(1), T2^{prof}(1), T3^{prof}(1)) = (35, 2, 14)$.

Next, for finding a proficient triad with respect to Phase-1 under the restriction that Phase-1 time is strictly less than $T1^{prof}(1) = 35$, proceed to Step 2 for l = 1 and obtain a sequence of triads, the last of which will be the required proficient triad.

Step 3. Set $T1^{prof}(1) = 35 = T_u$. For finding the minimum shipment time for Phase-3 with respect to Phase-1 under the restriction that Phase-1 time is strictly less than T_u , solve the problem $(TMP3)^0(T_u = 35)$ (Table 9) with time entries as

ĺ	M	if $t_{ij} \ge 35$ for $(i, j) \in P_1$)
$t'_{ij} = \left\{ \right.$	t_{ij}	$(i,j) \in P_3$	ł
l	0	otherwise	J

From an optimal feasible solution of $(TMP3)^0(T_u = 35)$, the first triad of this sequence is obtained as $(T1^0(T_u), T2^0(T_u), T3^0(T_u)) = (17, 32, 00)$.

Proceeding on the lines of algorithm from Step 3 to Step 7 repeatedly for every generated triad

Value of l	Triad recorded	$T1^{prof}(1) + T2^{prof}(1) + T3^{prof}(1)$
1	(35,02,14)	51
2	(27, 02, 14)	43
3	(17, 32, 00)	49
4	(09, 32, 00)	41
5	(08, 32, 00)	40
6	(06, 32, 00)	38
7	(04, 27, 14)	45
8 = v (last)	(00,27,14)	41

Table 10. All proficient triads with respect to Phase-1

 $(T1^k(T_u), T2^k(T_u), T3^k(T_u))$, a sequence of triads is obtained as follows.

$$\begin{split} (T1^0(T_u), T2^0(T_u), T3^0(T_u)) &= (17, 32, 00) \\ (T1^1(T_u), T2^1(T_u), T3^1(T_u)) &= (27, 17, 11) \\ (T1^2(T_u), T2^2(T_u), T3^2(T_u)) &= (27, 15, 11) \\ (T1^3(T_u), T2^3(T_u), T3^3(T_u)) &= (27, 3, 14) \\ (T1^4(T_u), T2^4(T_u), T3^4(T_u)) &= (27, 02, 14) = (T1^{prof}(2), T2^{prof}(2), T3^{prof}(2)) \\ &= \text{proficient triad with respect to Phase} - 1 \end{split}$$

Repeating Step 2 to Step 7 for l = 2, the next proficient triad with respect to Phase-1 under the restriction that Phase-1 time is strictly less than $T1^{prof}(2) = 27$ is obtained as $(17, 32, 00) = (T1^{prof}(3), T2^{prof}(3), T3^{prof}(3))$.

Continuing so on, the recorded proficient triads with respect to Phase-1 are as given in Table 10.

Step 13. The optimal value of 3-PhTP(ex1) is

$$\min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right] = 38$$

The corresponding triad $(T1^{prof}(6), T2^{prof}(6), T3^{prof}(6)) = (06, 32, 00)$ is an optimal triad for 3-PhTP(ex1).

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-2:

In order to find proficient triads with respect to Phase-2, start with the triad corresponding to Phase-3 minimum time, i.e (35,32,00) as in above case, but search for the triads having minimum sum of Phase-1 and Phase-3 times corresponding to Phase-2 time.

For obtaining first proficient triad with respect to Phase-2 from the triad (35,32,00), a sequence of intermediate triads is obtained such that Phase-1 time decreases and corresponding minimum time of Phase-3 increases in such a way that the sum of Phase-1 and Phase-3 times decreases strictly. The last triad of such a sequence is the required first proficient triad with respect to Phase-2.

Proceeding on these lines, the first proficient triad with respect to Phase-2 is obtained as (06,32,00). The sequence of intermediate triads generated in obtaining first proficient triad (06,32,00) is as follows.

 $(35,32,00); (17,32,00); (09,32,00); (08,32,00); (06,32,00) = (T1^{prof}(1), T2^{prof}(1), T3^{prof}(1))$

Next, to find proficient triad with respect to Phase-2 under the restriction that Phase-2 time

Value of <i>l</i>	sequence of inter- mediate triads	$ \begin{matrix} l\text{-th} & \text{proficient} \\ (T1^{prof}(l), T2^{prof}(l), T3^{prof}(l)) \end{matrix} $	$ \begin{array}{rcl} T1^{prof}(1) & + \\ T2^{prof}(1) & + \\ T3^{prof}(1) \end{array} $
1	$(35,32,00); \\(17,32,00); \\(09,32,00); \\(08,32,00); \\(06,32,00)$	(06,32,00)	38
2	(35,27,00); (27,27,05); (17,27,11); (09,27,14); (06,27,14); (06,27,14); (04,27,14); (00,	(00,27,14)	41
3	(35,17,00)	(35,17,00)	52
4	(35,15,11);(27,15,11)	(27,15,11)	53
5	(35,12,14);(27,12,14)	(27,12,14)	53
6	(27,03,14)	(27,03,14)	44
7	(35,02,14);(27,02,14)	(27,02,14)	43
8 = v (last)	(35,00,29);(27,00,29);(13,00,42);(00,00,42)	(00,00,42)	42

Table 11. All intermediate and proficient triads with respect to Phase-2 for 3-PhTP(ex1)

is strictly less than $T2^{prof}(1) = 32$. Table 11 records all proficient triads with respect to Phase-2 and intermediate triads generated while obtaining proficient triads.

Clearly, the optimal value of 3-PhTP(ex1) is

$$\min_{\{l=1,2,\ldots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right] = 38$$

and the corresponding triad $(T1^{prof}(1), T2^{prof}(1), T3^{prof}(1)) = (06, 32, 00)$ is an optimal triad for 3-PhTP(ex1), which is same as obtained in earlier case where proficient triads with respect to Phase-1 are generated.

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-3:

In order to find proficient triads with respect to Phase-3, start with the triad corresponding to Phase-1 or Phase-2 minimum time and search for the triads having minimum sum of Phase-1 and Phase-2 times corresponding to Phase-3 time.

Value of <i>l</i>	sequence of inter- mediate triads		$ \begin{array}{rcl} T1^{prof}(1) & + \\ T2^{prof}(1) & + \\ T3^{prof}(1) & \end{array} $
1	(35,00,42); (13,00,42); (04,00,42); (00,00,42); (00,00,42)	(00,00,42)	42
2	(35,00,32); (27,00,32)	(27,00,32)	59
3	(35,00,29); (27,00,29)	(27,00,29)	56
4	(35,00,24);(27,02,21);(00,27,24)	(00,27,24)	51
5	(35,02,21);(27,02,21);(00,27,14)	(00,27,14)	41
6	$\begin{array}{c} (35,15,11);\\ (27,15,11);\\ (09,32,11);\\ (08,32,11);\\ (06,32,11)\end{array}$	(06,32,11)	49
7	$(35,17,05); \\(17,32,08); \\(15,32,08); \\(13,32,08); \\(09,32,08); \\(08,32,08); \\(06,32,08)$	(06,32,08)	46
8	$\begin{array}{c} (35,17,05);\\ (17,32,05);\\ (15,32,05);\\ (13,32,05);\\ (09,32,05);\\ (08,32,05);\\ (06,32,05);\\ \end{array}$	(06,32,05)	43
9	$\begin{array}{c} (35,17,00);\\ (17,32,03);\\ (15,32,03);\\ (13,32,03);\\ (09,32,03);\\ (08,32,00);\\ (06,32,03) \end{array}$	(06,32,03)	41
10=v (last)	(35,17,00); (17,32,00); (13,32,00); (08,32,00); (06,32,00); (06,32,00); (06,32,00); (06,32,00))	(06,32,00)	38

Table 12. All intermediate and proficient triads with respect to Phase-3 for 3-PhTP(ex1)

For 3-PhTP(ex1), start with the triad (35, 00, 42) corresponding to Phase-2 minimum time obtained by solving TMTP $(TMP2)^0$ and obtain first proficient triad with respect to Phase-3. A sequence of intermediate triads is obtained, starting from (35, 00, 42) such that Phase-1 time decreases and corresponding minimum time of Phase-2 increases in such a way that the sum of Phase-1 and Phase-2 times also decreases strictly. The last triad of such a sequence is the required first proficient triad with respect to Phase-3.

Proceeding on these lines, the first proficient triad with respect to Phase-3 is obtained as $(00, 00, 42) = (T1^{prof}(1), T2^{prof}(1), T3^{prof}(1)).$

Next, to find proficient triad with respect to Phase-3 under the restriction that Phase-3 time is strictly less than $T3^{prof}(1) = 42$. Table 12 records all proficient triads with respect to Phase-3 and all intermediate triads generated while obtaining proficient triads.

Clearly, the optimal value of 3-PhTP(ex1) is

$$\min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right] = 38$$

and the corresponding triad $(T1^{prof}(10), T2^{prof}(10), T3^{prof}(10)) = (06, 32, 00)$ is an optimal triad for 3-PhTP(ex1), which is same as obtained in two cases before.

Example 2. Consider a larger 3-PhTP (namely 3-PhTP(ex2) as in Table 13) with number of origins as m = 10 and number of terminals as n = 10. Here, cells with underlined entries denote Phase-1 links, cells with encircled entries denote Phase-2 links and remaining cells correspond to Phase-3 links.

	Table 15. 3 - $\Gamma \Pi \Gamma (ex2)$										
	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	a_i
S_1	21	<u>10</u>	<u>48</u>	19	(31)	<u>58</u>	43	(39)	60	<u>29</u>	05
S_2	<u>29</u>	43	(21)	09	<u>35</u>	(12)	<u>58</u>	28	<u>10</u>	(45)	12
S_3	60	(45)	<u>17</u>	(12)	<u>58</u>	19	43	<u>17</u>	(45)	<u>10</u>	20
S_4	35	(12)	60	<u>29</u>	28	(31)	<u>10</u>	09	(39)	<u>48</u>	14
S_5	(45)	<u>35</u>	09	61	19	<u>29</u>	(31)	<u>58</u>	<u>17</u>	21	18
S_6	10	(39)	<u>29</u>	(39)	43	61	28	60	(12)	19	21
S_7	09	<u>48</u>	(31)	(12)	<u>10</u>	28	(45)	<u>58</u>	43	<u>35</u>	07
S_8	(12)	28	<u>58</u>	<u>35</u>	(21)	09	60	19	<u>29</u>	61	25
S_9	19	<u>48</u>	28	(21)	43	<u>10</u>	09	(45)	43	<u>17</u>	15
S_{10}	31	<u>17</u>	<u>35</u>	<u>48</u>	(12)	60	<u>29</u>	21	09	$\bigcirc 39 \bigcirc$	06
b_j	18	07	14	06	21	12	20	12	06	27	

Table 13. 3-PhTP(ex2)

The distinct time entries in three phases arranged in increasing order are as follows. **Phase-1:** $t_1^1(=10) < t_1^2(=17) < t_1^3(=29) < t_1^4(=35) < t_1^5(=48) < t_1^6(=58) = t_1^{\alpha}$; $\alpha = 06$ **Phase-2:** $t_2^1(=12) < t_2^2(=21) < t_2^3(=31) < t_2^4(=39) < t_2^5(=45) < t_2^6(=61) = t_2^{\beta}$; $\beta = 06$ **Phase-3:** $t_3^1(=09) < t_3^2(=19) < t_3^3(=28) < t_3^4(=43) < t_3^5(=60)$; $\gamma = 05$

On solving the standard TMTPs $(TMP1)^0$, $(TMP2)^0$ and $(TMP3)^0$, the minimum shipment times of Phase-1. Phase-2 and Phase-3 are obtained as follows.

$$T1^{min} = 0, T2^{min} = 0 \text{ and } T3^{min} = 0$$

Proceeding on the lines of algorithm as in Example 1, all intermediate and proficient triads with respect to Phase-1 are recorded in Table 14.

The optimal value of 3-PhTP(ex2) is

$$\min_{\{l=1,2,\dots,v\}} \left[T1^{prof}(l) + T2^{prof}(l) + T3^{prof}(l) \right] = 40$$

and the corresponding triad $(T1^{prof}(6), T2^{prof}(6), T3^{prof}(6)) = (10, 21, 09)$ is an optimal triad for 3-PhTP(ex2).

Value of <i>l</i>	sequence of inter- mediate triads		$\begin{array}{ccc} T1^{prof}(1) & + \\ T2^{prof}(1) & + \\ T3^{prof}(1) & \end{array}$
1	(58,61,00);(58,45,00);(58,39,00);(58,31,00);(58,21,00);(58,00,09)	(58,00,09)	67
2	(35,61,00);(35,45,00);(48,39,00);(48,21,00);(48,00,19)	(48,00,19)	67
3	$\begin{array}{c} (35,61,00);\\ (35,45,00);\\ (29,39,00);\\ (35,31,00);\\ (35,21,00);\\ (35,00,19) \end{array}$	(35,00,19)	54
4	$\begin{array}{c}(29,61,00);\\(29,45,00);\\(29,39,00);\\(29,31,00);\\(29,21,09);\\(29,00,28);\\(29,00,19)\end{array}$	(29,00,19)	48
5	(17,61,00);(17,45,00);(17,39,00);(17,21,09)	(17,21,09)	47
6	(10,61,00);(10,45,00);(10,31,09);(10,21,09)	(10,21,09)	40
7=v (last)	(00,61,19);(00,45,19)	(00,45,19)	64

Table 14. All intermediate and proficient triads with respect to Phase-1 for 3-PhTP(ex2)