1. Proof of Lemma 4.3

For $k \geq 0,\left(T 1^{k}\left(T_{u}\right), T 2^{k}\left(T_{u}\right), T 3^{k}\left(T_{u}\right)\right)$ is the triad obtained from optimal feasible solution $X^{k}\left(T_{u}\right)$ of problem $(T M P 3)^{k}\left(T_{u}\right)$.
By construction of $(T M P 3)^{k}\left(T_{u}\right)$, it is clear that $T 1^{k}\left(T_{u}\right)<T_{u}, \forall k \geq 1$.

In order to prove relation (4), note that for a $\operatorname{triad}\left(T 1^{k}\left(T_{u}\right), T 2^{k}\left(T_{u}\right), T 3^{k}\left(T_{u}\right)\right)$, $k \geq 0$, the next triad $\left(T 1^{k+1}\left(T_{u}\right), T 2^{k+1}\left(T_{u}\right), T 3^{k+1}\left(T_{u}\right)\right)$ is obtained from an optimal feasible solution $X^{k+1}\left(T_{u}\right)$ of TMTP $(T M P 3)^{k+1}\left(T_{u}\right)$ or $(T M P 3)^{k\left(\delta^{*}\right)}\left(T_{u}\right)$ for some value of $\delta=\delta^{*}$.
If $T 2^{k}\left(T_{u}\right)=t_{2}^{\beta_{k}}, 1 \leq \beta_{k} \leq \beta$, then the problem $(T M P 3)^{k+1}\left(T_{u}\right)$ is
$(T M P 3)^{k+1}\left(T_{u}\right)$
$\min _{X \in \hat{S}} \max _{I_{O} \times I_{T}}\left(t_{i j}^{\prime}: x_{i j}>0\right)$

$$
t_{i j}^{\prime}=\left\{\begin{array}{cl}
0 & \text { if } t_{i j} \leq T_{u} \\
M & \text { if } t_{i j} \geq T_{u}
\end{array}\right\} \text { for }(i, j) \in P_{1}
$$

and \hat{S} is same as defined in (2).
Clearly, $T 2^{k+1}\left(T_{u}\right) \leq t_{2}^{\beta_{k}-\delta^{*}}<t_{2}^{\beta_{k}}=T 2^{k}\left(T_{u}\right), \forall k \geq 1$.

$$
\Rightarrow T 2^{k+1}\left(T_{u}\right)<T 2^{k}\left(T_{u}\right) \forall k \geq 0
$$

which proves the relation (4).
Next, for proving the relation (5), suppose $T 3^{k+1}\left(T_{u}\right)<T 3^{k}\left(T_{u}\right)$ for some $k=\bar{k} \in\{0,1,2, \ldots, s-1\}$, i.e., $T 3(\bar{k}+1)<T 3(\bar{k})$ where $\bar{k} \in\{1,2, \ldots, s-1\}$.

Then $X(\bar{k}+1)$ yields the triad $(T 1(\bar{k}+1), T 2(\bar{k}+1), T 3(\bar{k}+1))$ having $T 1(\bar{k}+1)<T_{u}$, $T 2(\bar{k}+1)<T 2(\bar{k})$ and $T 3(\bar{k}+1)<T 3(\bar{k})$.

Therefore, by construction of $(T M P 3)^{\bar{k}}\left(T_{u}\right)$, it follows that $X(\bar{k}+1)$ is a restricted feasible solution of the problem $(T M P 3)^{\bar{k}}\left(T_{u}\right)$ yielding Phase-3 time as $T 3(\bar{k}+1)<$ $T 3(\bar{k})$, a contradiction to the optimality of $X(\bar{k})$ (yielding Phase-3 time as $T 3(\bar{k})$) for the problem $(T M P 3)^{\bar{k}}\left(T_{u}\right)$.
Hence, $T 3^{k+1}\left(T_{u}\right) \geq T 3^{k}\left(T_{u}\right) \forall k \geq 1$ and the relation (5) follows.
Next, for any $k \in\{1,2, \ldots, s-1\}$,

$$
\begin{aligned}
T 2^{k+1}\left(T_{u}\right) & \leq t_{2}^{\beta_{k}-\delta^{*}} \\
\text { and } T 3^{k+1}\left(T_{u}\right) & <T 2^{k}\left(T_{u}\right)+T 3^{k}\left(T_{u}\right)-t_{2}^{\beta_{k}-\delta^{*}} \\
\Rightarrow T 2^{k+1}\left(T_{u}\right)+T 3^{k+1}\left(T_{u}\right) & <T 2^{k}\left(T_{u}\right)+T 3^{k}\left(T_{u}\right) \forall k \geq 1
\end{aligned}
$$

and hence, the relation (6) also follows.

2. Proof of Theorem 4.4

Suppose there exist a feasible solution X^{*} of 3-PhTP with corresponding triad $\left(T 1^{*}, T 2^{*}, T 3^{*}\right)$ such that $T 2^{*}+T 3^{*}<T 2^{s}\left(T_{u}\right)+T 3^{s}\left(T_{u}\right)$ and $T 1^{*}<T_{u}$.

In view of relation (4) of lemma 4.3,

$$
T 2(0)>T 2(1)>T 2(2)>\cdots>T 2^{s}\left(T_{u}\right)
$$

Three cases arise.
Case 1. T2* $>$ T2(0).
Since, $T 2^{*}+T 3^{*}<T 2^{s}\left(T_{u}\right)+T 3^{s}\left(T_{u}\right)<T 2(0)+T 3(0)$ (using Lemma 4.3), it follows that $T 3^{*}<T 3(0)$.
Also $T 1^{*}<T_{u}$.
X^{*} is a restricted feasible solution of the problem $(T M P 3)^{0}\left(T_{u}\right)$ yielding optimal value as $T 3^{*}<T 3(0)$. But $X(0)$ is an optimal feasible solution of TMTP $(T M P 3)^{0}\left(T_{u}\right)$, a contradiction.

Case 2. $T 2^{*}<T 2^{s}\left(T_{u}\right)$.
If $T 2^{s}\left(T_{u}\right)=T 2^{\text {min }}$, then $T 2^{*}<T 2^{s}\left(T_{u}\right)$ is not possible, as $T 2^{\text {min }}$ is the minimum time of Phase-2.
Therefore $T 2^{s}\left(T_{u}\right)>T 2^{\text {min }}$.
Since $T 1^{*}<T_{u}, T 2^{*}<T 2^{s}\left(T_{u}\right)$ and $T 2^{*}+T 3^{*}<T 2^{s}\left(T_{u}\right)+T 3^{s}\left(T_{u}\right)$, it follows that X^{*} must be a restricted feasible solution of one of the problems of the collection $(T M P 3)^{s(\delta)}\left(T_{u}\right), \delta=1,2, \ldots$,
But this is a contradiction as $\left(T 1^{s}\left(T_{u}\right), T 2^{s}\left(T_{u}\right), T 3^{s}\left(T_{u}\right)\right)$ is the last triad of the sequence and none of the problems of the collection $(T M P 3)^{s(\delta)}\left(T_{u}\right)$ is restricted feasible.

Case 3. $T 2^{s}\left(T_{u}\right) \leq T 2^{*} \leq T 2(0)$.
In this case, two possibilities arise.
Possibility (a). $\quad T 2^{*}=T 2(\bar{k})$ for some $\bar{k} \in\{0,1,2, \ldots, s\}$
Since, $T 2^{*}+T 3^{*}<T 2^{s}\left(T_{u}\right)+T 3^{s}\left(T_{u}\right)<T 2(\bar{k})+T 3(\bar{k})$ $\Rightarrow T 3^{*}<T 3(\bar{k})<T 2(\bar{k}-1)+T 3(\bar{k}-1)-t_{2}^{\beta_{\bar{k}-1}-\delta^{*}}$
Also, $T 2^{*}=T 2(\bar{k}) \leq t_{2}^{\beta_{\bar{k}-1}-\delta^{*}}$ and $T 1^{*}<T_{u}$
$\Rightarrow X^{*}$ is a restricted feasible solution of TMTP $(T M P 3)^{\bar{k}}\left(T_{u}\right)$ providing objective function value as $T 3^{*}<T 3(\bar{k})$, a contradiction to the fact that $X(\bar{k})$ is an optimal feasible solution for the TMTP $(T M P 3)^{\bar{k}}\left(T_{u}\right)$.

$$
\text { Possibility (b). } \begin{aligned}
& T 2(\bar{k}+1)<T 2^{*}<T 2(\bar{k}) \text { for some } \bar{k} \in\{0,1,2, \ldots, s-1\} \\
& \text { Since } T 2^{*}+T 3^{*}<T 2^{s}\left(T_{u}\right)+T 3^{s}\left(T_{u}\right) \leq T 2(\bar{k}+1)+T 3(\bar{k}+1) \\
& \Rightarrow T 3^{*}<T 3(\bar{k}+1)\left(\text { as } T 2^{*}>T 2(\bar{k}+1)\right)
\end{aligned}
$$

Now $(T 1(\bar{k}+1), T 2(\bar{k}+1), T 3(\bar{k}+1))$ is a triad of Phase-1, Phase-2 and Phase-3 shipment times yielded from an optimal solution $X(\bar{k}+1)$ of TMTP $(T M P 3)^{\bar{k}+1}\left(T_{u}\right)$
which is the first restricted feasible problem $(T M P 3)^{\bar{k}}\left(\delta^{*}\right)\left(T_{u}\right)$ in the collection $(T M P 3)^{\bar{k}(\delta)}\left(T_{u}\right)$ of problems solved successively by taking values of $\delta=1,2, .$. and so on.
Further $T 2(\bar{k}+1)<T 2^{*}<T 2(\bar{k})$,
$T 2^{*}+T 3^{*}<T 2(\bar{k})+T 3(\bar{k})$,
$T 1^{*}<T_{u}$
$\Rightarrow X^{*}$ must be a restricted feasible solution of one of the problems $(T M P 3)^{\bar{k}(\delta)}\left(T_{u}\right)$ for $\delta=1,2, \ldots, \delta^{*}$, i,e., X^{*} must be a restricted feasible solution of one of the problems $(T M P 3)^{\bar{k}(1)}\left(T_{u}\right)$ to $(T M P 3)^{\bar{k}\left(\delta^{*}\right)}\left(T_{u}\right)$.
X^{*} cannot be a restricted feasible solution of any of the problems $(T M P 3)^{\bar{k}(1)}\left(T_{u}\right)$ to $(T M P 3)^{\bar{k}\left(\delta^{*}-1\right)}\left(T_{u}\right)$, as $(T M P 3)^{\bar{k}\left(\delta^{*}\right)}\left(T_{u}\right)$ is the first restricted feasible problem among the problems $(T M P)_{3}^{\bar{k}(\delta)}\left(T_{u}\right)$.
Therefore, X^{*} must be a restricted feasible solution of the problem $(T M P 3)^{\bar{k}\left(\delta^{*}\right)}\left(T_{u}\right)$ yielding $\operatorname{triad}\left(T 1^{*}, T 2^{*}, T 3^{*}\right)$ with $T 3^{*}<T 3(\bar{k}+1)$, which is a contradiction to the optimality of $X(\bar{k}+1)$ for the problem $(T M P 3)^{\bar{k}\left(\delta^{*}\right)}\left(T_{u}\right)$.

3. Proof of Lemma 4.5

Since $\left(T 1^{p r o f}(l+1), T 2^{\text {prof }}(l+1), T 3^{\text {prof }}(l+1)\right)$ is a proficient triad with respect to Phase-1 under the restriction that Phase-1 time is strictly less than $T 1^{\text {prof }}(l)$, $\forall l=1,2, \ldots, v$, therefore

$$
T 1^{\text {prof }}(l)>T 1^{\text {prof }}(l+1) \forall l \geq 0
$$

and hence the relations (7) follow.
In order to prove relation (8), let, if possible, there exist $\bar{l} \in\{0,1,2, \ldots, v\}$ such that

$$
T 2^{\text {prof }}(\bar{l}+1)+T 3^{\text {prof }}(\bar{l}+1)<T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l})
$$

$$
\text { Note that } \quad T 1^{\text {prof }}(\bar{l}+1)<T 1^{\text {prof }}(\bar{l})<T 1^{\text {prof }}(\bar{l}-1)
$$

This contradicts the fact that $T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l})$ is the minimum sum of Phase- 2 and Phase-3 shipment times under the restriction that Phase- 1 time is strictly less than $T 1^{\text {prof }}(\bar{l}-1)$ (Ref. Theorem 4.4).

4. Proof of Theorem 4.6

Let, if possible, there exist a feasible solution X^{*} of 3-PhTP yielding the triad $\left(T 1^{*}, T 2^{*}, T 3^{*}\right)$ with $T 1^{*}+T 2^{*}+T 3^{*}<\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right]$. Then, depending on the value of $T 1^{*}$, following three cases arise:

Case 1. $T 1^{*}>T 1^{\text {prof }}(0)$

$$
\begin{gathered}
T 1^{*}+T 2^{*}+T 3^{*}<\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right] \\
\Rightarrow T 1^{*}+T 2^{*}+T 3^{*}<T 1^{\text {prof }}(0)+T 2^{\text {prof }}(0)+T 3^{\text {prof }}(0) \\
\text { Since } T 1^{*}>T 1^{\text {prof }}(0) \Rightarrow T 2^{*}+T 3^{*}<T 2^{\text {prof }}(0)+T 3^{\text {prof }}(0)
\end{gathered}
$$

This implies that X^{*} is a feasible solution of 3-PhTP yielding sum of Phase-2 and Phase-3 shipment times strictly less than $T 2^{\text {prof }}(0)+T 3^{\text {prof }}(0)$, which is a contradiction, as $T 2^{\text {prof }}(0)+T 3^{\text {prof }}(0)$ is the minimum sum of shipment times of Phase-2 and Phase-3 (Ref. Theorem 4.4 and Remark 3).

Case 2. $T 1^{*}<T 1^{p r o f}(v)$
From Algorithm, it is clear that $T 1^{p r o f}(v)=T 1^{\text {min }}$.
Therefore, $T 1^{*}<T 1^{\text {prof }}(v)$ is not possible.
Case 3. $T 1^{\text {prof }}(v) \leq T 1^{*} \leq T 1^{\text {prof }}(0)$
Two sub cases arise:

Sub case (i) $T 1^{*}=T 1^{\text {prof }}(\bar{l})$ for some $\bar{l} \in\{0,1,2, \ldots, v\}$.

$$
\begin{aligned}
& \text { Since } T 1^{*}+T 2^{*}+T 3^{*}<\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right] \\
& \Rightarrow T 1^{*}+T 2^{*}+T 3^{*}<T 1^{\text {prof }}(\bar{l})+T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l}) \\
& \Rightarrow T 2^{*}+T 3^{*}<T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l})
\end{aligned}
$$

This implies that X^{*} is a feasible solution of 3-PhTP yielding sum of shipment times of Phase- 2 and Phase- 3 strictly less than $T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l})$ corresponding to Phase- 1 time $T 1^{*}=T 1^{\text {prof }}(\bar{l})$, which is a contradiction to the fact that $T 2^{\text {prof }}(\bar{l})+T 3^{\text {prof }}(\bar{l})$ is the minimum sum of shipment times of Phase- 2 and Phase- 3 corresponding to Phase-1 time $T 1^{\text {prof }}(\bar{l})$ because of $\left(T 1^{\text {prof }}(\bar{l}), T 2^{\text {prof }}(\bar{l}), T 3^{\text {prof }}(\bar{l})\right.$ being a proficient triad with respect to Phase-1.

Sub case (ii) $T 1^{\operatorname{prof}}(\bar{l}+1)<T 1^{*}<T 1^{\operatorname{prof}}(\bar{l})$ for some $\bar{l} \in\{1,2, \ldots, v-1\}$.

$$
\begin{aligned}
& \text { Since } T 1^{*}+T 2^{*}+T 3^{*}<\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right] \\
& \Rightarrow T 1^{*}+T 2^{*}+T 3^{*}<T 1^{\text {prof }}(\bar{l}+1)+T 2^{\text {prof }}(\bar{l}+1)+T 3^{\text {prof }}(\bar{l}+1) \\
& \Rightarrow T 2^{*}+T 3^{*}<T 2^{\text {prof }}(\bar{l}+1)+T 3^{\text {prof }}(\bar{l}+1)\left(\text { as } T 1^{*}>T 1^{\text {prof }}(\bar{l}+1)\right)
\end{aligned}
$$

Also $T 1^{*}<T 1^{\text {prof }}(\bar{l})$.
But $T 2^{\text {prof }}(\bar{l}+1)+T 3^{\text {prof }}(\bar{l}+1)$ is the minimum sum of shipment times of Phase- 2 and Phase-3 under the restriction that Phase-1 time is strictly less than $T 1^{\text {prof }}(\bar{l})$, which is a contradiction.

5. Numerical Illustration

Example 1. Consider a balanced 3-PhTP (namely 3-PhTP(ex1) as in Table 1) with number of origins as $m=6$ and number of terminals as $n=8$ in the form of time matrix specifying the time of transportation of a homogeneous commodity via each origin-terminal link. The cells with underlined entries denote Phase-1 links, cells with shaded entries denote Phase-2 links and remaining cells correspond to Phase-3 links.

Table 1. 3-PhTP(ex1)

Solution. From Table 1, the parameters P_{1}, P_{2} and P_{3} are noted as follows

$$
\begin{aligned}
& P_{1}=\left\{\begin{array}{c}
(1,1),(1,4),(2,2),(2,5),(2,6),(2,8),(3,7),(4,1),(4,3), \\
(4,4),(4,6),(5,5),(5,8),(6,2),(6,5),(6,7)
\end{array}\right\} \\
& P_{2}=\left\{\begin{array}{c}
(1,2),(1,3),(1,5),(2,7),(3,1),(3,3),(3,4),(3,6),(4,5), \\
(4,8),(5,2),(5,3),(5,7),(6,6),(6,8)
\end{array}\right\} \\
& P_{3}=\left\{\begin{array}{c}
(1,6),(1,7),(1,8),(2,1),(2,3),(2,4),(3,2),(3,5),(3,8), \\
(4,2),(4,7),(5,1),(5,4),(5,6),(6,1),(6,3),(6,4)
\end{array}\right.
\end{aligned}
$$

The distinct time entries in three phases can be arranged in increasing order as follows.
Phase-1: $t_{1}^{1}(=04)<t_{1}^{2}(=06)<t_{1}^{3}(=08)<t_{1}^{4}(=09)<t_{1}^{5}(=13)<t_{1}^{6}(=15)<t_{1}^{7}(=17)<$ $t_{1}^{8}(=21)<t_{1}^{9}(=23)<t_{1}^{10}(=27)<t_{1}^{11}(=35)=t_{1}^{\alpha} ; \alpha=11$

Phase-2: $t_{2}^{1}(=02)<t_{2}^{2}(=03)<t_{2}^{3}(=07)<t_{2}^{4}(=09)<t_{2}^{5}(=11)<t_{2}^{6}(=12)$ $<t_{2}^{7}(=15)<t_{2}^{8}(=17)<t_{2}^{9}(=27)<t_{2}^{10}(=32)=t_{2}^{\beta} ; \beta=10$

Phase-3: $t_{3}^{1}(=03)<t_{3}^{2}(=05)<t_{3}^{3}(=08)<t_{3}^{4}(=11)<t_{3}^{5}(=14)<t_{3}^{6}(=19)$ $<t_{3}^{7}(=21)<t_{3}^{8}(=24)<t_{3}^{9}(=29)<t_{3}^{10}(=32)<t_{3}^{11}(=37)<t_{3}^{12}(=40)<t_{3}^{13}(=42) ; \gamma=13$

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-1:

Step 1. On solving the standard TMTPs $(T M P 1)^{0}$ and $(T M P 2)^{0}$ (Table 2 and 3), the minimum shipment times of Phase-1 and Phase-2 are obtained as follows.

$$
T 1^{\text {min }}=0 \text { and } T 2^{\text {min }}=0
$$

Table 2.TMTP $(T M P 1)^{0}$

Step 2. $T 1^{\text {prof }}(0)=\infty>T 1^{\text {min }}=0$, therefore go to Step 3 .
Step 3. Set $T 1^{\text {prof }}(0)=\infty=T_{u}$. Solving the TMTP $(T M P 3)^{0}\left(T_{u}=\infty\right)$ (which is same as $\left.(T M P 3)^{0}\right)$, obtain an optimal feasible solution $X^{0}\left(T_{u}=\infty\right)$ of problem $(T M P 3)^{0}\left(T_{u}=\infty\right)$ (Table 4) and corresponding optimal time as $T 3^{0}\left(T_{u}=\infty\right)=0$. Obtain the corresponding Phase- 1 and Phase- 2 times as $T 1^{0}\left(T_{u}=\infty\right)=35$ and $T 2^{0}\left(T_{u}=\infty\right)=32$ respectively so that the first triad is $\left(T 1^{0}\left(T_{u}=\infty\right), T 2^{0}\left(T_{u}=\infty\right), T 3^{0}\left(T_{u}=\infty\right)\right)=(35,32,00)$.
Therefore, go to Step 4 for $k=0$.
Step 4. $T 2^{0}\left(T_{u}\right)=32>T 2^{\text {min }}$. Find $\beta_{0}, 1 \leq \beta_{0} \leq \beta$ such that $T 2^{0}\left(T_{u}\right)=32=t_{2}^{10}$. This implies that $\beta_{0}=10$. Next, go to Step 5 for $\delta=1$.

Step 5. On solving the problem $(T M P 3)^{0(1)}\left(T_{u}=\infty\right)$ (Table 5), it comes out to be restricted feasible, therefore, proceed to Step 6.

Table 3.TMTP $(T M P 2)^{0}$

Step 6. Here $\delta=1=\delta^{*}$ and the problem $(T M P 3)^{0(1)}\left(T_{u}=\infty\right)$ is $(T M P 3)^{1}\left(T_{u}=\infty\right)$ whose optimal feasible solution yields the next triad $\left(T 1^{1}\left(T_{u}\right), T 2^{1}\left(T_{u}\right), T 3^{1}\left(T_{u}\right)\right)=(35,27,00)$. Next repeating Step 3 to Step 6 for $\left(T 1^{1}\left(T_{u}\right), T 2^{1}\left(T_{u}\right), T 3^{1}\left(T_{u}\right)\right)=(35,27,00)$, the next triad $\left(T 1^{2}\left(T_{u}\right), T 2^{2}\left(T_{u}\right), T 3^{3}\left(T_{u}\right)\right)=(35,17,00)$ is obtained from problem $(T M P 3)^{1(1)}\left(T_{u}\right) \quad$ or $(T M P 3)^{2}\left(T_{u}\right)$ renamed, Table 6). Further, on solving problems of collection $(T M P 3)^{2(\delta)}\left(T_{u}\right), \delta=1,2, \ldots$ successively, the first restricted feasible problem comes out to be $(T M P 3)^{2(7)}\left(T_{u}\right)$ (or $(T M P 3)^{3}\left(T_{u}\right)$ renamed, Table 7) which yields the next triad $\left(T 1^{3}\left(T_{u}\right), T 2^{3}\left(T_{u}\right), T 3^{3}\left(T_{u}\right)\right)=(35,2,14)$. Next, for the triad $\left(T 1^{3}\left(T_{u}\right), T 2^{3}\left(T_{u}\right), T 3^{3}\left(T_{u}\right)\right)=(35,2,14)$, where $T 2^{3}\left(T_{u}\right)=t_{2}^{\alpha_{3}}=2=t_{2}^{1}$, the corresponding problem $(T M P 3)^{3(1)}\left(T_{u}\right)$ (Table 8) is not restricted feasible. Also $t_{2}^{\alpha_{3}-1}=t_{2}^{0}=0=T 2^{\text {min }}$, therefore Step 7 follows which concludes that the current triad $\left(T 1^{3}\left(T_{u}\right), T 2^{3}\left(T_{u}\right), T 3^{3}\left(T_{u}\right)\right)=(35,2,14)$ is the last triad of the above sequence of triads and can be used as an initial proficient triad with respect to Phase-1 i.e., $\left(T 1^{\text {prof }}(1), T 2^{\text {prof }}(1), T 3^{\text {prof }}(1)\right)=(35,2,14)$.

Next, for finding a proficient triad with respect to Phase-1 under the restriction that Phase- 1 time is strictly less than $T 1^{\text {prof }}(1)=35$, proceed to Step 2 for $l=1$ and obtain a sequence of triads, the last of which will be the required proficient triad.

Table 4.TMTP $(T M P 3)^{0}\left(T_{u}=\infty\right)$ or $(T M P 3)^{0}$

Table 5.TMTP $(T M P 3)^{0(1)}\left(T_{u}=\infty\right)$

Table 6.TMTP $(T M P 3)^{1(1)}$

Table 8. TMTP $(T M P 3)^{3(1)}\left(T_{u}=\infty\right)$

| D_{1} | | D_{2} | D_{3} | D_{4} | D_{5} | D_{6} | | | D_{7} | D_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |a_{i}

Step 2. $T 1^{\text {prof }}(1)=35>T 1^{\text {min }}$, therefore go to Step 3 .
Step 3. Set $T 1^{\text {prof }}(1)=35=T_{u}$. For finding the minimum shipment time for Phase- 3 with respect to Phase-1 under the restriction that Phase-1 time is strictly less than T_{u}, solve the problem $(T M P 3)^{0}\left(T_{u}=35\right)$ (Table 9) with time entries as

$$
t_{i j}^{\prime}=\left\{\begin{array}{ll}
M & \text { if } t_{i j} \geq 35 \text { for }(i, j) \in P_{1} \\
t_{i j} & (i, j) \in P_{3} \\
0 & \text { otherwise }
\end{array}\right\}
$$

Table 9. TMTP $(T M P 3)^{0}\left(T_{u}=35\right)$

From an optimal feasible solution of $(T M P 3)^{0}\left(T_{u}=35\right)$, the first triad of this sequence is obtained as $\left(T 1^{0}\left(T_{u}\right), T 2^{0}\left(T_{u}\right), T 3^{0}\left(T_{u}\right)\right)=(17,32,00)$.
Proceeding on the lines of algorithm from Step 3 to Step 7 repeatedly for every generated triad

Table 10. All proficient triads with respect to Phase-1

Value of l	Triad recorded	$T 1^{\text {prof }}(1)+T 2^{\text {prof }}(1)+T 3^{\text {prof }}(1)$
1	$(35,02,14)$	51
2	$(27,02,14)$	43
3	$(17,32,00)$	49
4	$(09,32,00)$	41
5	$(08,32,00)$	40
6	$(06,32,00)$	38
7	$(04,27,14)$	45
$8=v$ (last)	$(00,27,14)$	41

$\left(T 1^{k}\left(T_{u}\right), T 2^{k}\left(T_{u}\right), T 3^{k}\left(T_{u}\right)\right)$, a sequence of triads is obtained as follows.

$$
\begin{aligned}
& \left(T 1^{0}\left(T_{u}\right), T 2^{0}\left(T_{u}\right), T 3^{0}\left(T_{u}\right)\right)=(17,32,00) \\
& \left(T 1^{1}\left(T_{u}\right), T 2^{1}\left(T_{u}\right), T 3^{1}\left(T_{u}\right)\right)=(27,17,11) \\
& \left(T 1^{2}\left(T_{u}\right), T 2^{2}\left(T_{u}\right), T 3^{2}\left(T_{u}\right)\right)=(27,15,11) \\
& \left(T 1^{3}\left(T_{u}\right), T 2^{3}\left(T_{u}\right), T 3^{3}\left(T_{u}\right)\right)=(27,3,14) \\
& \left(T 1^{4}\left(T_{u}\right), T 2^{4}\left(T_{u}\right), T 3^{4}\left(T_{u}\right)\right)=(27,02,14)=\left(T 1^{\text {prof }}(2), T 2^{\text {prof }}(2), T 3^{\text {prof }}(2)\right) \\
& =\text { proficient triad with respect to Phase }-1
\end{aligned}
$$

Repeating Step 2 to Step 7 for $l=2$, the next proficient triad with respect to Phase- 1 under the restriction that Phase-1 time is strictly less than $T 1^{\text {prof }}(2)=27$ is obtained as $(17,32,00)=$ ($\left.T 1^{\text {prof }}(3), T 2^{\text {prof }}(3), T 3^{\text {prof }}(3)\right)$.
Continuing so on, the recorded proficient triads with respect to Phase-1 are as given in Table 10.

Step 13. The optimal value of $3-\operatorname{PhTP}(\mathrm{ex} 1)$ is

$$
\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right]=38
$$

The corresponding triad $\left(T 1^{\text {prof }}(6), T 2^{\text {prof }}(6), T 3^{\text {prof }}(6)\right)=(06,32,00)$ is an optimal triad for $3-\mathrm{PhTP}(\mathrm{ex} 1)$.

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-2:

In order to find proficient triads with respect to Phase-2, start with the triad corresponding to Phase-3 minimum time, i.e $(35,32,00)$ as in above case, but search for the triads having minimum sum of Phase-1 and Phase-3 times corresponding to Phase-2 time.
For obtaining first proficient triad with respect to Phase-2 from the triad $(35,32,00)$, a sequence of intermediate triads is obtained such that Phase- 1 time decreases and corresponding minimum time of Phase-3 increases in such a way that the sum of Phase-1 and Phase-3 times decreases strictly. The last triad of such a sequence is the required first proficient triad with respect to Phase-2.
Proceeding on these lines, the first proficient triad with respect to Phase-2 is obtained as $(06,32,00)$. The sequence of intermediate triads generated in obtaining first proficient triad $(06,32,00)$ is as follows.
$(35,32,00) ;(17,32,00) ;(09,32,00) ;(08,32,00) ;(06,32,00)=\left(T 1^{\text {prof }}(1), T 2^{\text {prof }}(1), T 3^{\text {prof }}(1)\right)$
Next, to find proficient triad with respect to Phase-2 under the restriction that Phase-2 time

Table 11. All intermediate and proficient triads with respect to Phase-2 for 3-PhTP(ex1)

Value of l	sequence of intermediate triads	l-th $\left(T 1^{p r o f}(l), T 2^{\text {prof }}(l), T 3^{\text {prof }}(l)\right)$	$\begin{aligned} & T 1^{\text {prof }}(1) \\ & T 2^{\text {prof }}(1) \\ & T 3^{\text {prof }}(1) \end{aligned}$	+ +
1	$\begin{aligned} & (35,32,00) ; \\ & (17,32,00) ; \\ & (09,32,00) ; \\ & (08,32,00) ; \\ & (06,32,00) \end{aligned}$	(06,32,00)	38	
2	$\begin{aligned} & (35,27,00) ; \\ & (27,27,05) ; \\ & (17,27,11) ; \\ & (09,27,14) ; \\ & (08,27,14) ; \\ & (06,27,14) ; \\ & (04,27,14) ; \\ & (00,27,14) \\ & \hline \end{aligned}$	(00,27,14)	41	
3	$(35,17,00)$	$(35,17,00)$	52	
4	$\begin{aligned} & (35,15,11) ; \\ & (27,15,11) \end{aligned}$	$(27,15,11)$	53	
5	$\begin{aligned} & (35,12,14) ; \\ & (27,12,14) \end{aligned}$	(27,12,14)	53	
6	$(27,03,14)$	$(27,03,14)$	44	
7	$\begin{aligned} & (35,02,14) ; \\ & (27,02,14) \end{aligned}$	(27,02,14)	43	
$8=v$ (last)	$\begin{aligned} & (35,00,29) ; \\ & (27,00,29) ; \\ & (13,00,42) ; \\ & (00,00,42) \end{aligned}$	(00,00,42)	42	

is strictly less than $T 2^{\text {prof }}(1)=32$. Table 11 records all proficient triads with respect to Phase-2 and intermediate triads generated while obtaining proficient triads.

Clearly, the optimal value of $3-\operatorname{PhTP}(\mathrm{ex} 1)$ is

$$
\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right]=38
$$

and the corresponding triad $\left(T 1^{\text {prof }}(1), T 2^{\text {prof }}(1), T 3^{\text {prof }}(1)\right)=(06,32,00)$ is an optimal triad for 3-PhTP(ex1), which is same as obtained in earlier case where proficient triads with respect to Phase-1 are generated.

Solving 3-PhTP(ex1) by generating all proficient triads with respect to Phase-3:

In order to find proficient triads with respect to Phase-3, start with the triad corresponding to Phase-1 or Phase-2 minimum time and search for the triads having minimum sum of Phase-1 and Phase-2 times corresponding to Phase-3 time.

Table 12. All intermediate and proficient triads with respect to Phase-3 for 3 -PhTP(ex1)

Value of l	sequence of intermediate triads	l-th proficient triad $\left(T 1^{\text {prof }}(l), T 2^{\text {prof }}(l), T 3^{\text {prof }}(l)\right)$	$\begin{aligned} & T 1^{\text {prof }}(1) \\ & T 2^{\text {prof }}(1) \\ & T 3^{\text {prof }}(1) \end{aligned}$	$+$
1	$(35,00,42) ;$ $(13,00,42) ;$ $(04,00,42) ;$ $(00,00,42)$	(00,00,42)	42	
2	$\begin{aligned} & (35,00,32) ; \\ & (27,00,32) \end{aligned}$	(27,00,32)	59	
3	$\begin{aligned} & (35,00,29) ; \\ & (27,00,29) \end{aligned}$	$(27,00,29)$	56	
4	$\begin{aligned} & (35,00,24) ; \\ & (27,02,21) ; \\ & (00,27,24) \end{aligned}$	(00,27,24)	51	
5	$\begin{aligned} & (35,02,21) ; \\ & (27,02,21) ; \\ & (00,27,14) \end{aligned}$	(00,27,14)	41	
6	$(35,15,11) ;$ $(27,15,11) ;$ $(09,32,11) ;$ $(08,32,11) ;$ $(06,32,11)$	$(06,32,11)$	49	
7	$(35,17,05) ;$ $(17,32,08) ;$ $(15,32,08) ;$ $(13,32,08) ;$ $(09,32,08) ;$ $(08,32,08) ;$ $(06,32,08)$	$(06,32,08)$	46	
8	$(35,17,05) ;$ $(17,32,05) ;$ $(15,32,05) ;$ $(13,32,05) ;$ $(09,32,05) ;$ $(08,32,05) ;$ $(06,32,05)$	(06,32,05)	43	
9	$(35,17,00) ;$ $(17,32,03) ;$ $(15,32,03) ;$ $(13,32,03) ;$ $(09,32,03) ;$ $(08,32,00) ;$ $(06,32,03)$	$(06,32,03)$	41	
$10=v$ (last)	$\begin{aligned} & (35,17,00) ; \\ & (17,32,00) ; \\ & (13,32,00) ; \\ & (08,32,00) ; \\ & (06,32,00) \end{aligned}$	(06,32,00)	38	

For $3-\mathrm{PhTP}(\mathrm{ex} 1)$, start with the triad $(35,00,42)$ corresponding to Phase-2 minimum time obtained by solving TMTP (TMP2) ${ }^{0}$ and obtain first proficient triad with respect to Phase-3. A sequence of intermediate triads is obtained, starting from $(35,00,42)$ such that Phase-1 time decreases and corresponding minimum time of Phase-2 increases in such a way that the sum of Phase-1 and Phase-2 times also decreases strictly. The last triad of such a sequence is the required first proficient triad with respect to Phase-3.
Proceeding on these lines, the first proficient triad with respect to Phase-3 is obtained as $(00,00,42)=\left(T 1^{\text {prof }}(1), T 2^{\text {prof }}(1), T 3^{\text {prof }}(1)\right)$.
Next, to find proficient triad with respect to Phase-3 under the restriction that Phase-3 time is strictly less than $T 3^{\text {prof }}(1)=42$. Table 12 records all proficient triads with respect to Phase-3 and all intermediate triads generated while obtaining proficient triads.

Clearly, the optimal value of $3-\mathrm{PhTP}(\mathrm{ex} 1)$ is

$$
\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right]=38
$$

and the corresponding triad $\left(T 1^{\text {prof }}(10), T 2^{\text {prof }}(10), T 3^{\text {prof }}(10)\right)=(06,32,00)$ is an optimal triad for $3-\mathrm{PhTP}(\mathrm{ex} 1)$, which is same as obtained in two cases before.

Example 2. Consider a larger 3-PhTP (namely 3-PhTP(ex2) as in Table 13) with number of origins as $m=10$ and number of terminals as $n=10$. Here, cells with underlined entries denote Phase-1 links, cells with encircled entries denote Phase-2 links and remaining cells correspond to Phase-3 links.

Table 13. 3-PhTP (ex2)

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	a_{i}
S_{1}	21	$\underline{10}$	$\underline{48}$	19	31	$\underline{58}$	43	39	60	$\underline{29}$	05
S_{2}	$\underline{29}$	43	21	09	$\underline{35}$	$\underline{12}$	$\underline{58}$	28	$\underline{10}$	$(45$	12
S_{3}	60	45	$\underline{17}$	12	$\underline{58}$	19	43	$\underline{17}$	45	$\underline{10}$	20
S_{4}	$\underline{35}$	12	60	$\underline{29}$	28	31	$\underline{10}$	09	39	$\underline{48}$	14
S_{5}	45	$\underline{35}$	09	61	19	$\underline{29}$	31	$\underline{58}$	$\underline{17}$	21	18
S_{6}	$\underline{10}$	39	$\underline{29}$	39	43	61	28	60	12	19	21
S_{7}	09	$\underline{48}$	31	12	$\underline{10}$	28	45	$\underline{58}$	43	$\underline{35}$	07
S_{8}	12	28	$\underline{58}$	$\underline{35}$	21	09	60	19	$\underline{29}$	61	25
S_{9}	19	$\underline{48}$	28	21	43	$\underline{10}$	09	45	43	$\underline{17}$	15
S_{10}	31	$\underline{17}$	$\underline{35}$	$\underline{48}$	12	60	$\underline{29}$	21	09	39	06
b_{j}	18	07	14	06	21	12	20	12	06	27	

The distinct time entries in three phases arranged in increasing order are as follows.
Phase-1: $t_{1}^{1}(=10)<t_{1}^{2}(=17)<t_{1}^{3}(=29)<t_{1}^{4}(=35)<t_{1}^{5}(=48)<t_{1}^{6}(=58)=t_{1}^{\alpha} ; \alpha=06$
Phase-2: $t_{2}^{1}(=12)<t_{2}^{2}(=21)<t_{2}^{3}(=31)<t_{2}^{4}(=39)<t_{2}^{5}(=45)<t_{2}^{6}(=61)=t_{2}^{\beta} ; \beta=06$
Phase-3: $t_{3}^{1}(=09)<t_{3}^{2}(=19)<t_{3}^{3}(=28)<t_{3}^{4}(=43)<t_{3}^{5}(=60) ; \gamma=05$
On solving the standard TMTPs $(T M P 1)^{0},(T M P 2)^{0}$ and $(T M P 3)^{0}$, the minimum shipment times of Phase-1. Phase-2 and Phase-3 are obtained as follows.

$$
T 1^{\min }=0, T 2^{\min }=0 \text { and } T 3^{\min }=0
$$

Proceeding on the lines of algorithm as in Example 1, all intermediate and proficient triads with respect to Phase-1 are recorded in Table 14.

The optimal value of $3-\operatorname{PhTP}(\mathrm{ex} 2)$ is

$$
\min _{\{l=1,2, \ldots, v\}}\left[T 1^{\text {prof }}(l)+T 2^{\text {prof }}(l)+T 3^{\text {prof }}(l)\right]=40
$$

and the corresponding triad $\left(T 1^{\text {prof }}(6), T 2^{\text {prof }}(6), T 3^{\text {prof }}(6)\right)=(10,21,09)$ is an optimal triad for $3-\mathrm{PhTP}(\mathrm{ex} 2)$.

Table 14. All intermediate and proficient triads with respect to Phase-1 for 3-PhTP (ex2)

Value of l	sequence of intermediate triads	$\left\lvert\,$$l$-th \quad proficient$\underset{\text { triad }}{ }\left(T 1^{\text {prof }}(l), T 2^{\text {prof }}(l), T 3^{\text {prof }}(l)\right)\right.$.	$\begin{aligned} & T 1^{\text {prof }}(1) \\ & T 2^{\text {prof }}(1) \\ & T 3^{\text {prof }}(1) \end{aligned}$	$+$
1	$(58,61,00) ;$ $(58,45,00) ;$ $(58,39,00) ;$ $(58,31,00) ;$ $(58,21,00) ;$ $(58,00,09)$	(58,00,09)	67	
2	$(35,61,00) ;$ $(35,45,00) ;$ $(48,39,00) ;$ $(48,21,00) ;$ $(48,00,19)$	$(48,00,19)$	67	
3	$(35,61,00) ;$ $(35,45,00) ;$ $(29,39,00) ;$ $(35,31,00) ;$ $(35,21,00) ;$ $(35,00,19)$	(35,00,19)	54	
4	$(29,61,00) ;$ $(29,45,00) ;$ $(29,39,00) ;$ $(29,31,00) ;$ $(29,21,09) ;$ $(29,00,28) ;$ $(29,00,19)$	(29,00,19)	48	
5	$(17,61,00) ;$ $(17,45,00) ;$ $(17,39,00) ;$ $(17,21,09)$	(17,21,09)	47	
6	$(10,61,00) ;$ $(10,45,00) ;$ $(10,31,09) ;$ $(10,21,09)$	$(10,21,09)$	40	
$7=v$ (last)	$\begin{aligned} & (00,61,19) ; \\ & (00,45,19) \end{aligned}$	(00,45,19)	64	

