

Figure 1: Histogram of nuclei orientation across all wells and spots.

Histogram of Nuclei_CP_Intensity_IntegratedIntensity_Dapi

Figure 2: Histogram of total nuclei DAPI intensity across all wells and spots.

Figure 3: (A) The percentage of cumulative variance captured by first k principal components for both un-transformed data and log-transformed data. (B) The mean squared canonical correlations between the grouping factor and the first k principal components.

For clarity, we reproduce the explanation of (B) from main text.

We assess the transformations by measuring the percentage of the batch (group difference) captured by the first k singular vectors of the transformed feature matrix. Let $U = [u_1, \ldots, u_N] \in \mathbb{R}^{M \times N}$ be the (complete) left singular vectors of a feature matrix and $B \in \mathbb{R}^{M \times D}$ be the batch indicator matrix so that $B_{ij} = 1$ if well i is in batch j for $j = 1, \ldots, D$. Here we have D = 2 for the two groups. For $k = 1, \ldots, N$ and $t = 1 \ldots \min(k, D)$ define $C_k^{(t)}$ to be the t^{th} canonical correlation between the first k left singular vectors $U_k = [u_1, \ldots, u_k]$ and the batch B. Then let

$$C_k^2 = \frac{1}{D}\sum_{t=1}^{\min(k,D)} \left(C_k^{(t)}\right)^2$$

to be the average of these squared canonical correlations. We can interpret C_k^2 as the percentage of the batch B that is captured by these first k singular vectors.

Figure 4: MEMA layout design of ECMps for each well. ECMp layout is identical across all wells.

Cells_CP_AreaShape_Area Cells_CP_AreaShape_Compactness Cells_CP_AreaShape_Eccentricity Cells_CP_AreaShape_Extent Cells_CP_AreaShape_FormFactor Cells_CP_AreaShape_MajorAxisLength Cells_CP_AreaShape_MaxFeretDiameter Cells_CP_AreaShape_MaximumRadius Cells_CP_AreaShape_MeanRadius Cells_CP_AreaShape_MedianRadius Cells_CP_AreaShape_MinFeretDiameter Cells_CP_AreaShape_MinorAxisLength Cells_CP_AreaShape_Perimeter Cells_CP_AreaShape_Solidity Cytoplasm_CP_AreaShape_Area Cvtoplasm_CP_AreaShape_Compactness Cytoplasm_CP_AreaShape_Eccentricity Cytoplasm_CP_AreaShape_Extent Cytoplasm_CP_AreaShape_FormFactor Cytoplasm_CP_AreaShape_MajorAxisLength Cvtoplasm_CP_AreaShape_MaxFeretDiameter Cytoplasm_CP_AreaShape_MaximumRadius Cvtoplasm_CP_AreaShape_MeanRadius Cytoplasm_CP_AreaShape_MedianRadius Cytoplasm_CP_AreaShape_MinFeretDiameter Cytoplasm_CP_AreaShape_MinorAxisLength Cytoplasm_CP_AreaShape_Perimeter Cytoplasm_CP_AreaShape_Solidity Nuclei_CP_AreaShape_Area Nuclei_CP_AreaShape_Compactness Nuclei_CP_AreaShape_Eccentricity Nuclei_CP_AreaShape_Extent Nuclei_CP_AreaShape_FormFactor Nuclei_CP_AreaShape_MajorAxisLength Nuclei_CP_AreaShape_MaxFeretDiameter Nuclei_CP_AreaShape_MaximumRadius Nuclei_CP_AreaShape_MeanRadius Nuclei_CP_AreaShape_MedianRadius Nuclei_CP_AreaShape_MinFeretDiameter Nuclei_CP_AreaShape_MinorAxisLength Nuclei_CP_AreaShape_Orientation Nuclei_CP_AreaShape_Perimeter Nuclei_CP_AreaShape_Solidity Cells_CP_Intensity_IntegratedIntensity_CellMask Cells_CP_Intensity_IntegratedIntensity_KRT19 Cells_CP_Intensity_IntegratedIntensity_KRT5 Cells_CP_Intensity_MedianIntensity_CellMask Cells_CP_Intensity_MedianIntensity_KRT19 Cells_CP_Intensity_MedianIntensity_KRT5

Cytoplasm_CP_Intensity_IntegratedIntensity_CellMask Cytoplasm_CP_Intensity_IntegratedIntensity_Dapi Cytoplasm_CP_Intensity_IntegratedIntensity_KRT19 Cytoplasm_CP_Intensity_IntegratedIntensity_KRT5 Cytoplasm_CP_Intensity_MedianIntensity_CellMask Cytoplasm_CP_Intensity_MedianIntensity_Dapi Cytoplasm_CP_Intensity_MedianIntensity_KRT19 Cytoplasm_CP_Intensity_MedianIntensity_KRT5 Nuclei_CP_Intensity_IntegratedIntensity_Dapi Nuclei_CP_Intensity_IntegratedIntensity_KRT19 Nuclei_CP_Intensity_IntegratedIntensity_KRT5 Nuclei_CP_Intensity_MedianIntensity_Dapi Nuclei_CP_Intensity_MedianIntensity_KRT19 Nuclei_CP_Intensity_MedianIntensity_KRT5 Cytoplasm_PA_Intensity_LineageRatio Spot_PA_SpotCellCount Cells_CP_Intensity_IntegratedIntensity_Actin Cells_CP_Intensity_IntegratedIntensity_MitoTracker Cells_CP_Intensity_MedianIntensity_Actin Cells_CP_Intensity_MedianIntensity_MitoTracker Cytoplasm_CP_Intensity_IntegratedIntensity_Actin Cytoplasm_CP_Intensity_IntegratedIntensity_MitoTracker Cytoplasm_CP_Intensity_MedianIntensity_Actin Cytoplasm_CP_Intensity_MedianIntensity_MitoTracker Nuclei_CP_Texture_AngularSecondMoment_Fibrillarin_3_0 Nuclei_CP_Texture_AngularSecondMoment_Fibrillarin_3_90 Nuclei_CP_Texture_Contrast_Fibrillarin_3_0 Nuclei_CP_Texture_Contrast_Fibrillarin_3_90 Nuclei_CP_Texture_Correlation_Fibrillarin_3_0 Nuclei_CP_Texture_Correlation_Fibrillarin_3_90 Nuclei_CP_Texture_DifferenceEntropy_Fibrillarin_3_0 Nuclei_CP_Texture_DifferenceEntropy_Fibrillarin_3_90 Nuclei_CP_Texture_DifferenceVariance_Fibrillarin_3_0 Nuclei_CP_Texture_DifferenceVariance_Fibrillarin_3_90 Nuclei_CP_Texture_Entropy_Fibrillarin_3_0 Nuclei_CP_Texture_Entropy_Fibrillarin_3_90 Nuclei_CP_Texture_InfoMeas1_Fibrillarin_3_0 Nuclei_CP_Texture_InfoMeas1_Fibrillarin_3_90 Nuclei_CP_Texture_InfoMeas2_Fibrillarin_3_0 Nuclei_CP_Texture_InfoMeas2_Fibrillarin_3_90 Nuclei_CP_Texture_InverseDifferenceMoment_Fibrillarin_3_0 Nuclei_CP_Texture_InverseDifferenceMoment_Fibrillarin_3_90 Nuclei_CP_Texture_SumAverage_Fibrillarin_3_0 Nuclei_CP_Texture_SumAverage_Fibrillarin_3_90 Nuclei_CP_Texture_SumEntropy_Fibrillarin_3_0 Nuclei_CP_Texture_SumEntropy_Fibrillarin_3_90 Nuclei_CP_Texture_SumVariance_Fibrillarin_3_0 Nuclei_CP_Texture_SumVariance_Fibrillarin_3_90 Nuclei_CP_Texture_Variance_Fibrillarin_3_0 Nuclei_CP_Texture_Variance_Fibrillarin_3_90 $Nuclei_CP_Intensity_IntegratedIntensity_EdU$ Nuclei_CP_Intensity_IntegratedIntensity_Fibrillarin Nuclei_CP_Intensity_MedianIntensity_EdU Nuclei_CP_Intensity_MedianIntensity_Fibrillarin

Table 1: List of all features extracted from at least one MEMA plate.

Figure 5: MEMA layout of ligands across plates and wells. Each row is a plate consisting of eight wells (columns). Color indicates ligand added to buffer solution of the well.

Figure 6: Density of elements of feature matrices. Black density is all elements combined. Colored densities are the densities denote staining batch. Subplots are for five processing transformations of this matrix: (NT) no transformation, (G) Gaussianization, (Z) z-score, (O) outlier removal, (RR) the three-step (G), (Z), and (O), robust re-scaling.

Cells_CP_AreaShape_Area

Figure 7: Similar to Figure 6 except colors indicate well.

Figure 8: Similar to Figure 6 except colors indicate plate.

Figure 9: Similar to Figure 6 except colors indicate ligand.

Cells_CP_AreaShape_Area

								43840 22078.2 298.5		

	2	Z		
				value 45.80513 22.17788 -1.44918

Figure 10: The next series of plots are heat-maps of MEMA plates across the five transformations (NT), (G), (Z), (O), (RR). Rows of each plot are the staining three batches. Colors are more blue if they are close to the minimum, red if they are close to the maximum, and white if they are close to half-way between. Green spots are missing. Dark grey spots are omitted according to the MEMA design.

Figure 11: Heat map of a single well across the five transformations (NT), (G), (Z), (O), (RR). This is a sub-plot of Supplementary Figure 10. Color scaled is determined globally over all spots, wells, and plates in the dataset to reflect the fact that the transformation is similarly calculated over this data. Thus we see no blue in this (NT) sub-plot as we see almost no blue in Supplementary Figure 10. This plot is a representative microcosm of the larger plot. Orange circles highlight the ELN and NID1 spots.

Cells_CP_AreaShape_Compactness

Figure 12: Similar to Figure 10 but for compactness.

Figure 13: Similar to Figure 10 but for cell count.

Cytoplasm_CP_Intensity_IntegratedIntensity_Dapi

Figure 14: Similar to Figure 10 for for DAPI intensity.

Figure 15: Mean of the squared canonical correlations between the first k principal components and the plate batch indicator variables.

Figure 16: Grand mean of the squared canonical correlations across number of components (k). Canonical correlation is calculated between the first k principal components and the plate indicator variables.

Figure 17: Similar to Figure 15 except correlation with well batch indicators.

Figure 18: Similar to Figure 16 except correlation with well batch indicators.

Figure 19: Similar to Figure 15 except correlation with ligand batch indicators.

Figure 20: Similar to Figure 16 except correlation with well batch indicators.

Figure 21: Mean of the squared canonical correlations between the first k principal components and the plate indicator variables. Principal components come from integration of the 21 features that are measured across all MEMAs.

Figure 22: Similar to Figure 21 but calculating correlation with well indicators.

Figure 23: Similar to Figure 21 but calculating correlation with ligand indicators.

Figure 24: Heat map of elements of top 3 right singular vectors for the cell area feature.

Figure 25: Similar to Figure 24 but for cell compactness feature.

Figure 26: Similar to Figure 24 but for cell count feature.

Figure 27: Scatter plot of elements of top two right singular vectors against each other for the cell area feature. Shape and color indicate ECMp of the spot corresponding to the elements of the singular vector.

Figure 28: Similar to Figure 27 but for cell compactness feature.

Figure 29: Similar to Figure 27 but for cell count feature.

Figure 30: Heat-map of top 3 right ASVs calculated over 21 features measured on all MEMAs.

Figure 31: Missing values for well A03 on outlier plate LI8X00515. This plate is an outlier because it was processed using a different version of imaging processing software. Missing spots are indicated in green. Other colors indicate cell compactness feature. Notice that the missing values for (NT) are nearly identical to the the dark red spots in the second right singular vector in Supplementary Figure 25. This is what forms the group structure in Figure 11 as these missing spots are picked up on the outlying plate.

Figure 32: Pct. of variance captured by successive singular vectors for our four example features.