Supplemental material for Bureerat and Sleesongsom, "Constraint Handling Technique for Four-Bar Linkage Path Generation Using
 Self-Adaptive Teaching-Learning Based Optimization with a Diversity
 Archive", Engineering Optimization, 2020.

 Appendix

 Appendix}
A. Algorithm 1. Function evaluation (with/without prescribed timing)

Input $\mathbf{x}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{p x}, r_{p y}, \theta_{0}, x_{O 2}, y_{o 2}, \theta^{i}{ }_{2}\right\}$
Output f, \mathbf{x} and constraints

Evaluate constraints

Step 1 If the optimization problem is the without-prescribe-timing problem and if θ
${ }_{2}{ }_{2}$ cannot fulfil constraint (3.2), activate Algorithm 2 to reassign the angle values.
Step 2 If constraints (3.3)-(3.4) are infeasible, activate the technique to reassign link lengths.

Position analysis and function evaluation

Step 1 Otherwise, solving Equations (2-3) for all values of θ_{2} and solving Equation
(1) for \mathbf{r}_{p} at each θ_{2}.

Step 2 Compute the objective function values and constraints according to Equation (3.1)-(3.5).
B. Algorithm 2: A reassigning technique for timing constraint

```
Input infeasible \mathbf{x}\mathrm{ at elements }\mp@subsup{0}{2}{i},\mp@subsup{,}{2}{i+1},\ldots,\mp@subsup{0}{2}{N}
Output feasible \mathbf{x}\mathrm{ at elements }\mp@subsup{0}{2}{i},\mp@subsup{,}{2}{i+1},\ldots,\mp@subsup{0}{2}{N}
Generate a set of uniform random numbers { }\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{N}{}},\mp@subsup{\alpha}{i}{}\in(0,1)
If ( }\mp@subsup{\alpha}{2}{}+\ldots+\mp@subsup{\alpha}{N}{})\geq2\pi\mathrm{ , scale them down and modify their values as:
```

For $i=2$ to N
Generate $\alpha_{i}=1.99 \pi \alpha_{i} /\left(\alpha_{2}+\ldots+\alpha_{N}\right)$
End
For $i=1$ to N
Step 1 If $i=1, \theta^{i}{ }_{2}=\alpha_{1}$.
Step 2 Otherwise, $\theta^{i}{ }_{2}=\theta_{2}{ }^{i-1}+\alpha_{i}$.
End
C. Algorithm 3: Repairing the Grashof's criterion constraint.

Input infeasible $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$
Output feasible $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$
Step 1 Generate a set of uniform random numbers $\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}, \delta_{i} \in(0,1)$.
Step 2 If $2 \delta_{3} \geq \delta_{1}$
Step 3 Assign values

$$
\begin{aligned}
& S_{1}=\delta_{1} \\
& S_{2}=2 \delta_{3} \\
& S_{3}=2 \delta_{3}+\delta_{2} \\
& S_{4}=2 \delta_{3}+\delta_{2}+\delta_{1}
\end{aligned}
$$

Step 3 If $\max \left(S_{1}, S_{2}, S_{3}, S_{4}\right)>1$, compute $S_{i}=S_{i} / 2$ and compute step (2) until $\max \left(S_{1}, S_{2}, S_{3}, S_{4}\right)<1$

Step 4 Compute $r_{i}=r_{\text {min }}+\left(r_{\max }-r_{\min }\right) S_{i}$ for $i=1, \ldots, 4$.

D. Algorithm 4 Procedure of ATLBO-DA

Input: maximum number of generations $\left(n_{i t}\right)$, population size $\left(n_{P}\right)$
Output : $\mathbf{x}^{\text {best }}, f^{\text {best }}$

Initialization:

Step 0.1 Generate n_{p} initial students $\left\{\mathbf{x}^{i}\right\}$ and perform function evaluations $\left\{f^{i}\right\}$.
Step 0.2 Initiate four 1×2 matrices, $T R R _$Success, $T R R _F a i l, L R R _S u c c e s s$ and $L R R _F a i l$, whose all elements are set to be ones.

Main procedure

Step 1 While (the termination conditions are not met) do

\{Teacher Phase \}

Step 2 Calculate the mean position of solutions $\left\{\mathbf{x}^{i}\right\}$ written as $\mathbf{M}_{\text {avg }}$.
Step 3 Calculate the probabilities of selecting the intervals for $T_{R R}$ using (18).
Step 4 For $i=1$ to n_{P}
Step 4.1 Perform roulette wheel selection with $P T R R_{j}$.
Step 4.1.1 If $j=1$ is selected, $T_{R R}=0.4+0.1$ rand is sampled.

Step 4.1.2 Else, if $j=2$ is selected, $T_{R R}=0.5+0.1$ rand is sampled.
Step 4.2 Generate $P_{r}=$ rand and select a teacher.
Step 4.2.1 If $P_{r} \leq T_{R R}$, set the best solution as a teacher $\mathbf{M}_{\text {best }}$.

Step 4.2.2 Else, if $P_{r}>T_{R R}$, randomly select a solution in \mathbf{A}_{D} and set it as a teacher $\mathbf{M}_{\text {best }}$.

Step 4.3 Create $\mathbf{x}^{i}{ }_{\text {new }}$ using $(10-12)$ and perform function evaluation.
Step 4.3.1 If $\mathbf{x}_{\text {new }}^{i}$ is better than \mathbf{x}^{i}, add 1 point to the j-th element of TRR_Success.

Step 4.3.2 Else, add 1 point to the j-th element of $T R R_{-}$Fail.

Step 5 Replace $\left\{\mathbf{x}^{i}\right\}$ by n_{P} best solutions from $\left\{\mathbf{x}^{i}\right\} \cup\left\{\mathbf{x}^{i}{ }_{\text {new }}\right\}$.

\{Learning Phase\}

Step 6 Calculate the probabilities of selecting the intervals for $L_{R R}$ similar to that for $T_{R R}$ in step 3. PTRR $_{j}=\frac{L R R_{-} \text {Success }_{j}}{L R R_{-} \text {Success }_{j}+L R R_{-} \text {Fail }_{j}}$

Step 7 For $i=1$ to n_{P}
Step 7.1 Perform roulette wheel selection with $P L R R_{j}$.
Step 7.1.1 If $j=1$ is selected, $L_{R R}=0.4+0.1$ rand is sampled.
Step 7.1.2 Else, if $j=2$ is selected, $T_{R R}=0.5+0.1$ rand is sampled.
Step 7.2 Generate $P_{r}=$ rand.
Step 7.2.1 If $P_{r} \leq L_{R R}$, create $\mathbf{x}_{\text {new }}^{i}$ using two-student learning and perform function evaluation.

Step 7.2.2 Else, create $\mathbf{x}_{\text {new }}^{i}$ using three-student learning and perform function evaluation.

Step 7.3 Update $L R R$ _Success and $L R R$ _Fail.
Step 7.3.1 If $\mathbf{x}^{i}{ }_{\text {new }}$ is better than \mathbf{x}^{i}, add 1 point to the j-th element of LRR_Success.

Step 7.3.2 Else, add 1 point to the j-th element of $L R R_{-}$Fail.
Step 8 Replace $\left\{\mathbf{x}^{i}\right\}$ by n_{P} best solutions from $\left\{\mathbf{x}^{i}\right\} \cup\left\{\mathbf{x}^{i}{ }_{\text {new }}\right\}$. Calculate the objective function value of $\mathbf{x}^{i}{ }_{\text {new }}$.

Step 9 Update the diversity archive with the non-dominated solutions obtained from $\left\{\mathbf{x}^{i}\right\}_{\text {old }} \cup\left\{\mathbf{x}^{i}\right\}_{\text {new }}$.

Step 10 End While

