Table S1. Bivariate associations between sleep variables

	Weekdays				Weekends				Relative mid-sleep time on weekdays	Corrected mid-sleep time on weekends
	Bedtime	Wake-up time	Sleep duration	Mid-sleep time	Bedtime	Wake-up time	Sleep duration	Mid-sleep time		
Weekdays										
Bedtime	1.000									
Wake-up time	$0.348^{* * *}$	1.000								
Sleep duration	$-0.788^{* * *}$	$0.225 * * *$	1.000							
Mid-sleep time	0.911***	0.703***	$-0.499 * * *$	1.000						
Weekends										
Bedtime	0.796***	0.329***	$-0.600 * * *$	0.748***	1.000					
Wake-up time	0.328***	0.434***	$-0.075^{* *}$	0.440***	0.446***	1.000				
Sleep duration	$-0.369^{* * *}$	0.139***	$0.471^{* * *}$	$-0.219 * * *$	$-0.429 * * *$	$0.589^{* * *}$	1.000			
Mid-sleep time	0.646***	0.452 ***	-0.381 ***	0.688***	0.832***	0.867 ***	0.126***	1.000		
Relative mid-sleep time on weekdays	$-0.112^{* * *}$	-0.022	0.098***	$-0.094^{* * *}$	$-0.506^{* * *}$	$-0.816^{* * *}$	$-0.359 * * *$	$-0.787^{* * *}$	1.000	
Corrected mid-sleep time on weekends	0.612***	0.518***	$-0.288 * * *$	0.692***	0.919***	0.648***	$-0.180^{* * *}$	0.912***	$-0.664^{* * *}$	1.000

[^0]Table S2. Coefficients of sleep duration on weekdays, relative mid-sleep time on weekdays, and corrected mid-sleep time on weekends on the SMFQ score in multivariate linear regression in males and females

Independent variables	Unstandardized coefficient $(95 \% \mathrm{CI})$	Standardized coefficient	P value
Males $(\mathrm{n}=942)^{1,2}$			
Sleep duration on weekdays	$-0.005(-0.010,-0.000)$	-0.071	$\mathbf{0 . 0 4 1}$
Relative mid-sleep time on weekdays	$-0.011(-0.020,-0.003)$	-0.126	$\mathbf{0 . 0 0 7}$
Corrected mid-sleep time on weekends	$-0.001(-0.009,0.006)$	-0.021	0.684

Females $(\mathrm{n}=940)^{1,3}$

Sleep duration on weekdays	$-0.010(-0.016,-0.004)$	-0.112	$\mathbf{0 . 0 0 1}$
Relative mid-sleep time on weekdays	$-0.015(-0.025,-0.006)$	-0.136	$\mathbf{0 . 0 0 2}$
Corrected mid-sleep time on weekends	$0.002(-0.007,0.010)$	0.018	0.687

[^1]Table S3. Coefficients of sleep duration on weekdays, relative mid-sleep time on weekdays, and corrected mid-sleep time on weekends on the SMFQ score in multivariate linear regression for imputed data sets

Independent variables	$\left.\begin{array}{c}\text { Unstandardized coefficient } \\ (95 \% ~ C I\end{array}\right)$	Standardized coefficient	P value

All ($\mathrm{n}=2309)^{1,2}$

Sleep duration on weekdays	$-0.009(-0.013,-0.005)$	-0.112	$<\mathbf{0 . 0 0 1}$
Relative mid-sleep time on weekdays	$-0.015(-0.021,-0.008)$	-0.149	$<\mathbf{0 . 0 0 1}$
Corrected mid-sleep time on weekends	$0.001(-0.005,0.006)$	0.009	0.781
Sleep duration on weekdays \times sex	$-0.004(-0.012,0.003)$	-0.050	0.233
Relative mid-sleep time on weekdays \times sex	$-0.004(-0.015,0.008)$	-0.019	0.523
Corrected mid-sleep time on weekends \times sex	$0.003(-0.007,0.014)$	0.020	0.546

Males $(\mathrm{n}=1187)^{3,4}$

Sleep duration on weekdays	$-0.007(-0.012,-0.002)$	-0.093	$\mathbf{0 . 0 0 7}$
Relative mid-sleep time on weekdays	$-0.013(-0.021,-0.005)$	-0.143	$\mathbf{0 . 0 0 2}$
Corrected mid-sleep time on weekends	$-0.001(-0.008,0.006)$	-0.009	0.862

Females $(\mathrm{n}=1122)^{3,5}$

Sleep duration on weekdays	$-0.011(-0.017,-0.006)$	-0.128	$<\mathbf{0 . 0 0 1}$
Relative mid-sleep time on weekdays	$-0.017(-0.026,-0.007)$	-0.153	$\mathbf{0 . 0 0 1}$
Corrected mid-sleep time on weekends	$0.002(-0.006,0.011)$	0.024	0.613

[^2]Table S4. Estimated relations of sleep duration on weekdays, relative mid-sleep time on weekdays, and corrected mid-sleep time on weekends with the SMFQ score using GAM in males and females

Smooth terms of independent variables	Estimated degrees of freedom	Chi-square	P value
Males ($\mathrm{n}=942)^{1,2}$			
s (Sleep duration on weekdays)	1.87	10.24	0.010
s (Relative mid-sleep time on weekdays)	1.04	7.33	0.009
s (Corrected mid-sleep time on weekends)	1.00	0.11	0.739
Females ($\mathrm{n}=940)^{1,3}$			
s (Sleep duration on weekdays)	1.70	9.97	0.018
s (Relative mid-sleep time on weekdays)	1.01	6.84	0.009
s (Corrected mid-sleep time on weekends)	1.87	6.45	0.038

[^3]

Figure S1. Estimated partial effects of sleep duration on weekdays, relative mid-sleep time on weekdays, and corrected mid-sleep time on weekends on the Short Mood and Feelings Questionnaire (SMFQ) score from a Generalized Additive Model (GAM) in males. The shadowed areas represent 95\% confidence intervals. Natural cubic splines were applied to detect the best model shape. Age and school were used as covariates. Significant associations are marked with asterisks $(* * \mathrm{P}<0.01$; $* \mathrm{P}<0.05)$.

Figure S2. Estimated partial effects of sleep duration on weekdays, relative mid-sleep time on weekdays, and corrected mid-sleep time on weekends on the SMFQ score from a GAM in females. The shadowed areas represent 95% confidence intervals. Natural cubic splines were applied to detect the best model shape. Age and school were used as covariates. Significant associations are marked with asterisks ($* * \mathrm{P}<0.01$; $* \mathrm{P}<0.05$).

[^0]: ** $\mathrm{p}<0.01$, *** $\mathrm{p}<0.001$

[^1]: ${ }^{1}$ Adjusted by age and school.
 ${ }^{2} \mathrm{~F}(7,934)=2.73, \mathrm{p}<0.01$, adjusted $\mathrm{R}^{2}=0.013$
 ${ }^{3} \mathrm{~F}(7,932)=7.52, \mathrm{p}<0.001$, adjusted $\mathrm{R}^{2}=0.046$

[^2]: ${ }^{1}$ Adjusted by age, sex, and school.
 ${ }^{2} \mathrm{~F}(11,2138.7)=12.71, \mathrm{p}<0.001$, adjusted $\mathrm{R}^{2}=0.058$
 ${ }^{3}$ Adjusted by age and school.
 ${ }^{4} \mathrm{~F}(7,1122.2)=5.24, \mathrm{p}<0.001$, adjusted $\mathrm{R}^{2}=0.027$
 ${ }^{5} \mathrm{~F}(7,1076.4)=9.77, \mathrm{p}<0.001$, adjusted $\mathrm{R}^{2}=0.056$

[^3]: ${ }^{1}$ Adjusted by age and school.
 ${ }^{2}$ Adjusted $\mathrm{R}^{2}=0.016$
 ${ }^{3}$ Adjusted $\mathrm{R}^{2}=0.063$

