Supplementary Material for “Logarithmic Calibration for
Partial Linear Models with Multiplicative Distortion
Measurement Errors” !

1. CONDITIONS

We now list the assumptions needed in the proof of theorems.

(C1) The distortion functions ¢(u) > 0 and ¢,.(u) > 0,r =1,...,p, forallu € [Ur, Ug],
where [U,, Ug| denotes the compact support of U. Moreover, the distortion functions
¢(u) and v, (u)’s have three continuous derivatives. The density function fy(u) of
the random variable U is bounded away from O and satisfies the Lipschitz condition of
order 1 on [U, Ug].

(C2) Forsome s > 4, E(|Y]*) < o0, E(|X,|?) < 00,7 =1,...,p. The matrix X defined

in Theorem 2 is a positive-definite matrix.

(C3) The kernel function K (+) is a symmetric bounded density function supported on [— A, A]
satisfying a Lipschitz condition. K (-) also has second-order continuous bounded deriva-
tives, satisfying K (£A) = 0 with K (¢) = d](ft(j(t) ,and pg = ffA 52K (s)ds # 0,
fge = ffA K2(s)ds > 0.

(C4) Asn — oo, the bandwidths h and h; satisfy nh* = 0, % — 0 and nh? — 0 and
) y
a0,

(C5) The density function of Z, fz(z) is bounded away from zero on Z, where Z is a com-
pact support set in R1. Moreover, fz(2), E(X|Z = z), E(Y|Z = z) and g(z) have

bounded continuous second order derivatives on Z.
(C6) Forall(;jj=1,...,p,¢ —0,/n¢; = coasn — oo,

liminfnﬁocliminfu%mp/{j (w)/¢; > 0.

2. APPENDIX

2.1. A Technical Lemma

Lemma 1 Suppose E(W |V = v) = w(v) and its derivatives up to second order are bounded
forallv € [V, Vg], where [V, V] denotes the compact support of V. E|W |3 exists and
sup, [ |w]®f(v,w)dw < oo for some s > 0, where f(v,w) is the joint density of (V,W)™.
Suppose (V;,W;), i = 1,2, ...n are independent and identically distributed (i.i.d.) samples
from (V,W). If condition (C3) holds true for kernel function K (v), and n®**~*h — oo for
€< 1—s571 wehave

sup Y Kn(Vi = )W, = fy()w(v) = 5 [fv (©)w)]"peh®| = O(ryn), a.s.
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where, fy (v) is the density function of V, and T, j, = h® + \/logn/(nh).

Proof Lemma 1 can be immediately proved from the result obtained by Mack and Silverman
(1982).

2.2. Proof of Theorem 1
Recalling that Y; = ¢(U;)Y; = Y; exp(In(¢(U;))), we have

V=Y = Yiexp (= {5, (U) — (Y] }) - v

= ¥ {exp (n(6(U) — {5, (U) ~ (V) }) ~1}.  AD

Using Lemma 1, recalling the definition of mln(‘?l)(u), we have

mm(m)(u) - mm(p?p(“) (A.2)
1 - ~
" nfu(u) pt Kn(Uj —u) {hl(lYJD - mln(m)(Uj)} )

BN
I
—

f Y U 2 i i
Julu) = % Z;K <UZh ) = fo(u) + u2h v(u) + Op(Tn,n), (A.3)
and
1 n
nfu(u) ; Kn(U; =) {mlnu?\)(Ua‘) - mlnm)(U)} (A.4)
h/2 1 g
- 2fUﬁ(Li) {{mlnwn(“)flf(“)} = My 5y (W) U(u)} +Op(Tan).

Recalling that mln(ﬁ,l)(u) = In(¢(u)) + E(In(]Y])), using (A.2), Taylor expansion entails
that




Let M (-) be a function of W = (Y X)), such that E(M?(W)) < oo. Using (A.1) and (A.5),

log n

as h?logn — 0, nh® — 0 and — 0, we have

n

% Z(ffi —Y;)) M (W) (A.6)
== ZYM
fZYM

> ) s v (T~ 5, )

) {exp (@) = {5, () ~In(¥D}) — 1}
) {m(¥)

In(Y]) — En(Y]) }

@ 2.2 wm(% - U) {mln(\?l)(Uj) - m1n<|?\>(Ui)} +op(n”'/?)

= vn,l + vn,Q + Vn,S-

For the term V,, 1, we have

Vo fZYM ) {m(¥) - Ean(v)) } (A7)

= M Z {ln(DZ\) - E(ln(|Y|))} +op(n1?).

=1

For V,, 2, as nh* — 0, the asymptotic expression of U-statistic (Serfling; 1980) entails that

Voo = fMZ{lnmfmmmwi)}+oP<n*/2> (*8)

= Z{ln Vi) = E(n(|Y )} +op(n="?).

For V,, 3, as nh* — 0, the asymptotic expression of U-statistic (Serfling; 1980) entails that
Vyps=O0p(h?) = op(n~1/?). Together with (A.6)-(A.8), we have

% Z(% - Y;,) M(W;) (A.9)

fZ{ln [V2]) — (Y, } B M(W)) + op(n~"/2)

~ Zln E(YM(W)) 4 op(n=1/?).
Similarly, forr = 1,..., p, we have
1 n R
=~ (X = X)) M(W)) (A.10)
i=1

_ % S~ (X, = n(1X,.) } BCGMW) + op(n1/2)
=1

_ % S (0, (U) ECX, M (W) + 0p(n™1/2).

We complete the proof of Theorem 1.
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2.3. Proof of Theorem 2

Recalling that
B-B = {711_1 [XZ—S’X(ZJ]@}l ®.1)
7115_3 (%= 8x(z0} (V= 8v(2) - X80+ 85208, }
_ {i 2: (X, - 5x(2)] ®2}1 Dt + Dyz + Dy
where
D = 12 (X~ 5x(2)} e ®.2)
D = I3 (K- Sx(z)} (Vv (X X078, B3)

Dy = %zn:{ Xi - 5x(Z)} (B.4)

D, = %Z{Xi—Xi}ez Z{X — Sx(Z)}ei (B.5)

D1 [1] + Dyt [2] + Doy [3]-

Recalling ¢; = Y; — X} By — g(Z;) and E(¢;| X ;, Z;) = 0. Using the asymptotic results of
Theorem 1, we have

% Z {X B X”'} € (B.6)
n Zln (Ur(U))E{X,[Y = X' By — g(2)]} + 0p(n™ ') = 0p(n™/?).

Based on (B.6), we have D,,1[1] = op(n~—1/?).
Step 2.2 In the following, we define

1 -~ Zi—Z s Zz
MﬁSW()_nhlZ< T )K( " )(W W), (B.7)

i=1

where, W; = Vi, W; = Y;and W; = X,;, W; = X,; ford = 0,1, r = 1,...,p and
1=1,...,n



For § = 0, similar to (A.1) and (A.5), we have

Mo (2) = nLZK(Z;;Z) (Xri — Xp4) (B.8)
= > (B e (D - Bn )}

1 L Xm' ZZ_Z UJ_UZ
e ) o ()
x (%) = 5, ()}
‘m%?m(m)’{( ) ()

x mln(\?n(Uj)‘mln(m)(Ui)}

1
+Op< %/ Ogn+h4+rnh+n )
nh

In(¢-(u)) + E(In(]X,|)), the asymptotic expression of U-

Recalling that m,, XTI)(U) =
statistic (Serfling; 1980) entails that

n i i— 2 Uj — UZ
n2h1h2;fU ( I )K< h ) (B.9)
X {ln(\erD - mln(l)?r\)(Uj)}

n

= SX,,'(Z)fz(Z)% > (X)) = E(n(1X,)))} + op(

i=1

n~Y2) + Op(n=/2h3).

Similar to (B.8), we have

1 e Zi—z U; - U
i 2w () < (5

X {mm(m) mln(lf,‘)(Ui)} = Op(h2 + h2h?)

Together with (B.8)-(B.10), as nh* — 0, 12%1” — 0, we have

0.5 = nlhlgK(Z“Z)XM{1n<|)?r|>—E<1n<Xr|>>} (B.11)

nO,)A(T hl

—SXT(Z)fz(Z)% > {In(1X0il) = E(n(1X, )}
=1

+Op<h2+h§h2+h2\/12ghn+h4+rnh+n )
1 n
= sx,(2)f2(2) - 3@ (U1)) + op(n” %),
i=1

Similar to (B.11), we have

My ¢ (2) = ulsx, Zlnwr ) +op(n V2. (B.12)
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Thus, using Lemma 1 and (B.12), we have

R Qna(2)M, n0,X, (2) = Qni(2)M, nl, X, (2)

S z = 13

x(2) Qr2(2)Qn0(2) — [@ui ()] ®-19
Qua2M ¢ (2) = Qui(IM?  (2)

QnQ( )QnO( ) [in( )}

n

B85 2 2), o (U) +oplo )

Directly using Lemma A.1 in Liang and Li (2009) and similar to the proof of Theorem 1 in
Liang and Li (2009), we have

% Z {SX(Zi) - S’}(Zl)} e = op(n~1/?) (B.14)

Do [3] (B.15)
= o2 {sx (2~ 52 }@"ZSX { Zlnwr ; }
+op(n~ %) =0p(n~") +op(n” 1/2) = op(n~1/?).

Thus, according to (B.5)-(B.6) and (B.15), we obtain that
Z{X — Sx(Zi)} e +op(n1/?). (B.16)
Step 2.3 For the argument D,,5, we have
D = I3 {x-x}{Eovi- (% x0T} B.17)
i

23 (X = Sx (20T Y- (X0 - X)) 8,

+% Z {SX(Zi) —~ S’X(Zi)} {Y -Y - (X - Xi)Tﬁo}
def

Let ‘A/z = Yi, or Vz = X,.i, and f)i = Yi, or ﬁi = X,.i, accordingly, V; = Y, or V; = X,;
orV; = Z;,,and D; = Y;,or D; = X,; or D; = Z;. Based on (A.5), as nh® — 0 and

1 2
%t — 0, we have

% SOV = Vi) (Di — D) = Op((n~ Y2 + 12 + 7 )?) = 0p(n™/2). (B8

Using (B.18), we have D,,5[1] = op(n~'/2). For D,;5[2], using E[X — Sx(Z)|Z] = 0, and



Cov(Y, X — Sx(2)) = X8, Theorem 1 entails that

%Z{Xi—sx%)}{ﬁ%} (B.19)
. Zln ~ Sx(2))) +op(n™")
fZln ))Cov(Y, X — Sx(Z ))+0P(n_1/2)

me )08y + op(n1?).
Similarly, we have

{X;—Sx(Z)} (X — X;)" B, (B.20)

S|

M= 1M

:\'—‘

Z{XZ_SX }( TZ_XT’i)/BOT}

(4 (U:) BIX (X — Sx(2))]for + op(n~'/?)

=1

Il
M“ -

Sl g

i
Il
_
-
I

(¢ (U:)E[(X: — Sx(2))®?e el By + op(n~/?).

I
-
M-

ﬂ
Il
—
-
3 |l
—

(¢ (U, ))Eoere Bo +op(n 1/2)'

[
Sle
NE

ﬁ
I
—
o
Il
-

Together with (B.19) and (B.20), we have

- Zln 08, (B.21)

7722111% NZoerel By + op(n~1?).

r=11i=1

Under the condition nh$ — 0 and log" — 0, the conclusion of (A.1) in Liang and Li (2009)
entails that sup|3% (z) — sx, ()] = 0p( VY e=1,...,p
ZE€EZ
According to the proof of Theorem 1 in Zhang et al. (2016), using (B.13), we have

% Z {sx,(Z) — 3x,(Z)} (Xri — Xy4) (B.22)

1< _
:n;{sxl(z SXZ( —sx,(Z Zd)l } ri — Xri) +op(n 1/2)
=O0p(n Y202 +n7 Y 4 op(n~?) = OP(n-l/Q).

Similar to (B.22), D,2[3] = op(n~'/2), and also D,,3 = op(n~'/2). Moreover,

n . . ®2
% 3 [Xi “Sxz)] T B =, (B.23)
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Thus, together with (B.16), (B.21) and (B.23), we obtain that

B-By = 5! (Dpi+Dps+Dy3) +op(n~?) (B.24)

IR
= EZEOI{Xi_SX(Zl)}Q
i=1

+% > {1H(¢(Ui)) - Zln(wr(Ui))ere?} By + op(n~12).
i=1 r=1

We have completed the proof of Theorem 2.

2.4. Proof of Theorem 3

Note that
S0 als) = Tp2(2)Vo(2) = T (2)Ver (2) . |
9(z) — 9(2) T () Ton(2) — [T (o) 9(z) (C.1)
Too(2) [Vao(2) = Tuo(2)9(2)] T (2) Vi () = T (2)a(2)]
2 [

Tn2(z TnO(Z) - [Tnl (Z) Tn2( )T (z) Tnl(z)]2
= Sni(2) — Sn2(2)
For the term S,,1(2), we have
1 n
) = g D@ /T Z ("% ) €2
1
" Too(2) = B ) T nhz < °) i
1
- TnO(z) - [Tnl( )] /T nhQ < ) X
1 1 -
* o) T GIF o) 2 2 ( ) - (Xi-x0'5)
def

= Sn1,111(2) + Sp1,2)(2) + Sn1,131(2) + Spa,a(2)-

Directly using Lemma 1, we have

Snl,[l](z) = nthZ ZK <

>q 1 0p <h§ logn | log"> . (C3)

P nhg nhg
h2 z z logn
Smp(z) = “22g(z)+ h%m% +0p (h% o ) : (€4

By using Theorem 2, we obtain that B —By=0p (nil/z), and we can have that
Sn131(2) = Op(n~'%) = op((nha)~/?). (C.5)

Using (A.1) and (A.5), similar to (B.8), we have
n

Sp1a(2z) = 8y(z)g Z In(¢(U;)) C6)
LS s (2) o Ine (U0) 4 op(n )

=1 r=1

= Op(n™'?) = op((nha)'7?).



Similar to the analysis of (C.2)-(C.6), we have

9'(2)f7(2)

K2 + op(h3 + 1//nhy). (C.7)
fz(z)

SnQ(Z) =
Together with (C.2) and (C.7), we have

h2
9(2) — 9() - 529" (2) (€8)

n Z— =
fZ(zl)nhzzK< I )e¢+0p(h§+1/\/%)_
i=1

The asymptotic result of Theorem is directly obtained from (C.8), we have completed the
proof of Theorem 3.

2.5. Proof of Theorem 4

We first consider the conditional mean cahbratlon Forl < r < p,letgp A[r] i(Bo) be the

r-component of &, ;(3,). We decompose p (ﬂo) into following terms:

O (By) = (Vi — Sy (Zi) — [Xs — Sx (Z:)]" By)[Xri — sx, ( ZRn »
where,

RU, = {Vi—Yi— (X, — X3 "Bo} X — sx, (%),

RV, = {(Vi—Yi— X, - X Bo} X — Xoal,

Rm‘s = {Y, - Yi—[X; — X B }sx, (Z:) — 3x,(Z:)],

R, = {Yi— 8y (Z) — (X~ Sx(Z)]" Bo}lsx, (Z:) — éx.(Z)],

R = (Y= Sy(Z) — [X: — Sx(Z)] 8o} X — X,],

RULe = {(Sv(Z) — Sv(Z) — [Sx(Z) — Sx(Z0)]"Bo}lsx. (Z:) — x,(Z),

RUL, = {Sv(Z) - Sv(Zi) — [Sx(Z:) — 5x(2:)]" By} (X — X,

Ry = {Sv(Z) — 8v(Z) — 1Sx(Z) — Sx(Z)]" By} [Xi — sx.(Z1)]

To prove Theorem 4, we need to show that

1rgla<xn‘pnlt|_op( 1/2)a tzla-"78'

It is noted that for any sequence of 4.i.d random {V;,1 < i < n} and E[V?] < oo, we have

Vi
max u—>0 a.s.. Then,
1<i<n \/ﬁ

max |(Y; — Sy (Zi) - [Xi - Sx(Z:)]"Bo)[Xri — sx,.(Z:)]| = op(n'/?).
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Next, for R[ ] according to (A.1) and (A.5),

n,il?
max [{¥; = Vi) [Xi s, (20)] ®.1)
< max [{exp (1n<¢<Uz»>> Mg U) (7)) }) — 1|
X |Yi[Xri = sx,(Z:)]]
< max [VilXei = sx, (Z0)) (V) = E(n(y )
logn logn
+ max |Yi[Xyi — sx,(Z:)]| Op <h2 + ngh ) + Op (h4 + ngh> Op(n'/?)
= op(n'/?).
Similar to (D.1), we have
— 1/2 _ 1/2
1r£fa‘<x |Rn 11| OP( )7 1128‘<Xn |Rn 1,5| OP( ) (D.2)
For RL ]22, similar to (D.1), we have
max {Y; — Y} [ Xy — X (D.3)

1<i<

< max |ViXo| max HeXp <1n(¢(Uz')) - {mm(m)(UZ’) - ln(ﬁ/D}) - 1}’
{exp (ln(wr(Uz‘)) - {mm(p?r\)(Ui) - m}) B 1}‘

I
— OP <h4+ ogn +n—1) OP(nl/Z) — OP(nl/Q)

X max
1<i<n

nh

Thus, according to (D.3), we show that

max IRUL,| = op(n'/?). (D.4)

The conclusion of (A.1) in Liang and Li (2009) entails that sup| S5 (z)—Sy (2)| = op(n~/*),

z€Z
and bu;z)|§}7(z) —sx,.(2)] = op(n™ %), r =1,...,p. Similar to (B.22), we have
ze
ma [{¥; = Vi lsx, (Z0) — i, (Z0) 03)

< 1r£1a<x Y| max lsx, (Zi) — $x,(Z;)]
{exp (1n(6(U) = {rin) V) ~W(V]) }) = 1}| = on(n'/?).

Similar to (D.5), we show that

X max
1<i<n

Tl 1/2
max IRLLS| = op(n'/?). (D.6)

[r]

Similar to the proofs of |R,,;

= 1,2,3,5, we have max |R£:}it\ = op(n'/?) for t =

4,6,7,8. We omit the detalls. Followed the same arguﬁeﬁt in the proof (2.14) in Owen

(1991), we have A\ = Op(n'/2). Thus, max AT, :(By)| = op(1). Note that log(1 + ) ~
<i<n

t— %tQ for ¢ sufficiently small, we have

[180) =23 (01080 )~ 5 T0,4(80)17) + op(1). (0.7)

10



Note that ) satisfies the following equation,

n i=1 1+ AT@n,i(ﬁO)

Further,
_ Iy nilBy) 1y 1
0T ZlJF)\ @mﬁo n; i(Bo) ;pmﬁo Pn.i(Bo) A

=1 1+>‘ an(IBO)

Above equation (D.8) and max |/A\T ©n.i(Bo)| = op(1) entail that

A= (% Zj; @n,i(ﬁo)@n,i(ﬁo)T) _1% i 6n.i(Bo) +op(n~1/?). (D.9)
Plugging the asym;;;tic expressions (D.7)-(D.9), Z\;e have
Z(BO) (D.10)
:n(;iﬁ;@ HNE zpmﬁo BoT) (%5_3 5)
+ Op(l)

According the proof Theorem 2, we can obtain that

ﬂo —n( Z"@nzﬁo) ( Zﬁnllgo “nz(ﬁo ) ( Z”nzﬁ0)+0P(1)

where k., ;(Bo) = {Yi — Sy (Zi) — [X: — Sx(Z:)]* By }[X: — Sx (Z;)] is independent and
identically distributed p-dimensional random vector with zero mean. Theorem 4 for ] (Bo)

follows from the central limit theorem and the Slutsky theorem.

3. PROOF OF THEOREM 5 AND THEOREM 6
Step 1 Note that
Brn=pB-3% AT {AiilAT}_l [AB — b} . (E.1)
Under the null hypothesis o, we have A3, = b. Using (E.1), it is seen that
Br—By = (3 — /@0) AT {AE_lAT}f1 [AB - Aﬂo} (E2)
s fasa) 4] (500,

Together with (B.23) and (B.24), the equation (E.2) can be expressed as

. -1 .
B — By = [Ip -3;'AT {axgtaTy A] (8-8,) +or ). E3)
14T 1,4t
DefineQq =1,—-3; A {AEE A } A, the expression (E.3) entails that
Vit (B~ By ) 5 N(0,24%5" 5057 Q% + 2aT,4 24).

11
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We have completed the proof of Theorem 5.
Step 2 Under the null hypothesis Hy : A3, = b, using (B.24) and Theorem 1, we have

Vi (4B -b) = vna (8- ,) (E4)
LN (0, AS; '35, 35 AT 4+ AE(M,AT) .

Similar to the analysis of (B.23), we have

ASTE S TAT L AS, ,AT D AR IS 5t AT + AS, , AT (ES)
The Slutsky theorem entails that
AL 'S AT 4 AZAJW,,AT} e [\/ﬁ (AB — b)} (E.6)
5 N(0, 1),

where Iy is a kx k dimensional identity matrix. Using (E.6), the continuous mapping theorem
entails that

~ T c—ley o1 .1 ~ T -1 ~
T, = n (Aﬂ - b) [Az 23 AT+ A3, LA } (Aﬂ - b) (E.7)
L
— X%7
where X7 is the centered chi-squared distribution with degree of freedom k& We have com-

pleted the proof of Theorem 6.

4. PROOF OF THEOREM 7

Step 1 It is noted that b = A8, — n~1/2¢ under the null hypothesis 31, from (E.1) and we

have
. A —1 . —1

Bn = B-3 A" {AE AT}_l [Abe] (F.1)
— B-% A" {Aﬁ]_lAT}_l (A8~ AB, +n" %]
= -3 AT {Aﬁ]_lAT}_l A(B-8)
2T AT {Aﬁ:‘ﬂaﬁ}f1 c.
Using (E.2)-(E.3) and (F.1), we have
Br— By =4 (B - 50) —n 25t AT {AEO‘IAT}_1 c+op(n V2. (F2)
According to Theorem 1, we have
Vi (Br—8,) (3)
L Nz tAT {AzglAT}_1 ¢, QA% 21N + Qa5 Q%)

Step 2 Under the local alternative hypothesis (1, : AB, = b+ n~'/2¢, using Theorem 1,

we have
Jn (Aﬁ — b) — (A[a —ABy + n—l/%) (E4)
= VnA (,Ei' - ﬁo) +ec
LN (c, AZ; 503, AT + AT, AT) .

12



Using (E.5)-(E.6) and (F.4), we have
(A58 AT + A8, 4, A7 e (Vi (a8 -b)] (E5)
LN ([Azolz()ezolAT + A%, 4 AT] e Ik) .
Then, according to (F.5), the continuous mapping theorem entails that
Tn (F.6)
—n(ap-v) [a'8,57'4" 1 4D, ,47] (4B-b)
5 X3 (me),

where X3 (7c) is the noncentral chi-squared distribution with degree of freedom k, and 7.

—1
is the noncentrality parameter, defined as 7. = ¢’ [AE& 1303, AT + AD, AT} c.
We have completed the proof of Theorem 7.

5. PROOF OF THEOREM 8

Step 1 In this step, we establish the asymptotic order of minimizer estimator ﬁ p. Define

1 n R ) R R T 2 p
cr(8) = 5 Y- { i $v(2) - [Xi - 8x(2)] B} +n Do w15
i=1 s=1
Let k, = n™'/% + aj, with aj, = maxi<j<p{p}, (|Bos]), Bo; # 0}, and s = (s1,...,5p)"

with ||s|| = Cy. Moreover, we define 3(n) = 3, + £, s and

n

T 2
Ts = 32 (%82 - [Xi - 8x(2)] B}

n 2
1 R N . ~ T
-3 {m ~ Sy (Z) - [Xi - 5x(2)] ﬂo}
o,
Fn2 = —n Z{pcj(\ﬁoj‘ + fins;jl) = o, (1Bos])}-
j=1

Using (B.23)-(B.24), we have

Fn1 = %niZsT [Xi—SX(Zi)]QMS (G.1)
3 [x-$nz] (5-0)

i=1
= gnisTZlos —nkps’ Lo (B - ﬁo)
—|—0P(7’l:‘€31002) + OP(nl/QHInOO)

As a¥ = Op(n~'/?), we have x,, = Op(n~'/?) and the asymptotic expression (G.1) en-
tails that the first argument of D,, 1 is positive and dominated by 22 C§ in probability and
the second argument of is dominated by CoyOp(1). Taylor expansion and Cauchy-Schawz

inequality entail that

|Fn2| < ny/Doknag|sl| +nesay(|s||* < Conkl {\/po + a3 Co}-

13
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where a;" = maxi<;j<p{p{, (|8o;1), Boj # 0}. Furthermore, D,, » is bounded by 17 CF in
*

probability. Thus, as a;;*, bj;* tend to 0 and C) sufficiently large, D,, ; dominates D,, 5. As a

consequence, for any given § > 0, there exists a large constant C such that

P{ igpr(,B(n)) > LP(IBO)} >1-19,

where 8 = {s : ||s|| = Co}. We conclude that bp is Op(n~1/2).
Step 2. Let 3 satisfies |3} — By1] = Op(n~'/?). Similar to the proof of Lemma 1 in Fan
and Li (2001), we can show that

cp ((877,0M)7) = mincp ((817855)7) (G2)

where, £* = {||33]| < L*n~'/2} and L* is a positive constant. We omit the details for the
proof in this step.

Step 3. Denote that 3 pa 1s the penalized least squares estimator of 3, ;. In addition, we
denote that X i1 and S x.1(Z;) consist of the first py components of X, and S x(Z;), re-
spectively. Define £5(8;) = Lp ( (87, OT)T). Taylor expansion entails that

9Lp(B1)
9B,

n

(G.3)

ﬂlZBP,l

[Xi,l - SX,l(Zi)} {Y/z - {Xm - Sx,l(zi)}Tﬁ(u}

i=1

+’Il.’R<1 + <Z {X@l — SX71<Z1')

i=1

®2 .
} +n3¢, (5P,1 - 50,1) +Op(0n),
where ¢,, = nH@R1 — Bo1 || Similar to (B.24), we have that
1 Kre N . N . T
=3 [Xia = SxalZ0)] { Vi - [Kia = Sxa(Z0)] Boap (G4

n
i=1

L
> N (0py, Boe,1 + B0,1 80,4, To1)

where X 1, 30,1 and X o, are defined in Theorem 1. The asymptotic expression (G.2)
and (G.4) entail that

Vi (o1 + 2¢,) { (/@P,l - ﬁo,1) + (Zoa + 241)_1 :Ril}

£
— N (OmeOe,l -+ 20’12¢7¢12071) .
We have completed the proof of Theorem 8.
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