SUPPORTING INFORMATION

Theoretical Insights into the Antioxidant Activity of Moracin T

Houssem Boulebd

Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria. E-mail : boulebd.houssem@umc.edu.dz

Table of Contents	Page
Figure S1. Potential energy profile for Moracin T as a function of torsion	
angle between the allyl group and the benzofuran ring (left), as well as	S1
optimized molecular geometry with intramolecular hydrogen bond (right).	
Figure S2. Spin density distribution of Moracin T after abstracting of a proton	\$2
from 1-OH (a), 2-OH (b), 3-OH (c) and CH (d).	52
Figure S3: IRC plots for all transition states related to the reaction of HOO [•]	
radical with Moracin T in the gas-phase calculated at B3LYP/6-311G(d,p)	S3
level of theory.	

Figure S1. Potential energy profile for Moracin T as a function of torsion angle between the allyl group and the benzofuran ring (left), as well as optimized molecular geometry with intramolecular hydrogen bond (right).

Figure S2. Spin density distribution of Moracin T after abstracting of a proton from 1-OH (a), 2-OH (b), 3-OH (c) and CH (d).

Figure S3: IRC plots for all transition states related to the reaction of HOO[•] radical with Moracin T in the gas-phase calculated at B3LYP/6-311G(d,p) level of theory.