Supplementary data

Table 6. Cox proportional hazards models with endpoint revision for any reason and due to dislocation, stratified by sex

Outcome Head size	Univariable model		Multivariable model	
	Females $\mathrm{HR}(\mathrm{Cl})$	Males HR (CI)	Females $\mathrm{HR}(\mathrm{Cl})$	Males $\mathrm{HR}(\mathrm{Cl})$
Revision for any reason				
32-mm		1	1	1
36-mm	1.1 (0.8-1.5)	0.8 (0.5-1.1)	1.1 (0.8-1.5)	0.8 (0.5-1.2)
Revision due to dislocation				
32-mm	1	1	1	
$36-\mathrm{mm}$	0.8 (0.5-1.5)	0.8 (0.3-1.8)	0.8 (0.5-1.5)	0.9 (0.4-1.9)

The multivariable model was adjusted for patient age, year of surgery, and type of surgical approach.
HR (CI) = Hazard ratio (95\% confidence interval)

Table 7. Univariable Cox proportional model stratified by national register. Hazard ratios refer to $36-\mathrm{mm}$ heads with $32-\mathrm{mm}$ as the reference

Nation	n	Revision for any reason Revisions (\%) HR (CI)		Revision due to Revisions (\%)	to dislocation $\mathrm{HR}(\mathrm{CI})$
Denmark	2,088	128 (6.1)	1.0 (0.7-1.4)	40 (1.9)	1.3 (0.7-2.5)
Norway	712	30 (4.3)	0.4 (0.1-1.2)	4 (0.6)	a
Sweden	1,280	28 (2.2)	0.8 (0.4-1.6)	11 (0.9)	0.9 (0.3-2.8)
Finland	950	47 (5.0)	0.8 (0.4-1.4)	18 (1.9)	0.2 (0.1-0.4)
$\mathrm{HR}(\mathrm{Cl})=$ a Hazard	zard and	atio (95\% confí Cls could not	idence interval) be calculated.		

Table 8. Distribution of head size for each nation contributing to NARA. Values are number (\%)

Nation	32-mm THA	36-mm THA
Denmark	$1,019(41)$	$1,069(43)$
Norway	$560(22)$	$152(6)$
Sweden	$661(26)$	$619(25)$
Finland	$275(11)$	$675(26)$

Figure 3. The absolute standardized difference in means (ASDM) between 32- and $36-\mathrm{mm}$ groups before and after matching

Figure 6. Kaplan-Meier survival for each national register with endpoint revision due to dislocation separately for $32-\mathrm{mm}$ (left panel) and $36-\mathrm{mm}$ (right panel) THA. $36-\mathrm{mm}$ THA seems to perform quite equally among the 4 national registers while $32-\mathrm{mm}$ THA seems to have a poorer Kaplan-Meier survival in the Finish Register compared with the remaining 3 national registers.

