
Online Supplement for �Threshold Regression With A Threshold
Boundary�: Supporting Lemmas

Lemma 1 Under Assumptions D1-D5 and �10 � �20 is �xed, b� p�! �0.

Proof. We prove the Lemma by applying Theorem 2.1 of Newey and McFadden (1994). The objective

function is Qn(�) = Qn(
; �). It is convenient to consider the recentered version of Qn(
; �):

Sn(
; �) = Qn(
; �)�Qn(
0; �0):

We need only show that (i) sup
�2�

jSn(
; �)� S(
; �)j
p�! 0, where � = ��B1 �B2, and

S(
; �) = E
h
(y � x0�11(q � z0
)� x0�21(q > z0
))

2 � "2
i

= (�10 � �1)
0 E [xx01(q � z0
 ^ z0
0)] (�10 � �1)

+ (�20 � �2)
0 E [xx01(q > z0
 _ z0
0)] (�20 � �2)

+ (�10 � �2)
0 E [xx01(z0
 ^ z0
0 < q � z0
0)] (�10 � �2)

+ (�20 � �1)
0 E [xx01(z0
0 < q � z0
 _ z0
0)] (�20 � �1) ;

(ii) S(
; �) is continuous in � and is uniquely minimized at �0. Given Assumption D5, (i) is straightforward

by applying a Glivenko-Cantelli theorem, so we concentrate on (ii).

The continuity of S(
; �) is obvious given that f(qjz) is bounded from Assumption D4. To show that

S(
; �) is uniquely minimized at �0, we consider four cases. (i) 
 = 
0, � 6= �0.

S(
; �)� S(
0; �0) � max
�
(�10 � �1)

0 E [xx01(q � z0
0)] (�10 � �1) ;
(�20 � �2)

0 E [xx01(q > z0
0)] (�20 � �2)
	
> 0

Assumption D2 guarantees that S(
0; �) is uniquely minimized at �0. (ii) 
 6= 
0, � = �0:

S(
; �0)� S(
0; �0) = (�10 � �20)
0 E [xx01(z0
 ^ z0
0 < q � z0
0)] (�10 � �20)

+ (�20 � �10)
0 E [xx01(z0
0 < q � z0
 _ z0
0)] (�20 � �10) > 0

by Assumptions D3 and D4. (iii) 
 6= 
0, �1 = �20 and/or �2 = �10.

S(
; �)� S(
0; �0) � min
�
(�10 � �20)

0 E [xx01(q � z0
 ^ z0
0)] (�10 � �20) ;
(�20 � �10)

0 E [xx01(q > z0
 _ z0
0)] (�20 � �10)
	
> 0

from Assumptions D1 and D2. (iv) 
 6= 
0, � 6= �0; �1 6= �20 and �2 6= �10.

S(
; �)� S(
0; �0) � max
�
(�10 � �1)

0 E [xx01(q � z0
 ^ z0
0)] (�10 � �1) ;
(�20 � �2)

0 E [xx01(q > z0
 _ z0
0)] (�20 � �2)
	
> 0

by Assumption D2. Combining the previous cases proves the result.

Lemma 2 Under Assumptions D1-D5 and k�nk ! 0,
p
n k�nk ! 1, b�` � �`0 = op(k�nk), and b
 � 
0 =

op(1).
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Proof. We use the notations in the last lemma to prove this result. By result (i) of the Lemma 1, and
k�nk ! 0,

sup
�2�

jSn(
; �)� S(
; �)j
p�! 0;

where S(
; �) is rede�ned as

S(
; �) = E
h
(y � x0�11(q � z0
)� x0�21(q > z0
))

2 � "2
i

= (�10 � �1)
0 E [xx01(q � z0
 ^ z0
0)] (�10 � �1)

+ (�20 � �2)
0 E [xx01(q > z0
 _ z0
0)] (�20 � �2)

+ (�20 � �2)
0 E [xx01(z0
 ^ z0
0 < q � z0
0)] (�20 � �2)

+ (�10 � �1)
0 E [xx01(z0
0 < q � z0
 _ z0
0)] (�10 � �1)

because �10 � �2 = �10 � �20 + �20 � �2 = �n + �20 � �2 ! �20 � �2 and similarly �20 � �1 ! �10 � �1.
From Assumption D2, S(
; �) is uniquely minimized at �0 for any 
 2 �, so by Theorem 2.1 of Newey and

McFadden (1994), b� is consistent for any 
 2 �. However, S(
; �) is not uniquely minimized at �0. For
example, S(
; �0) = 0 for any 
 2 �. To prove the consistency of b
, the normalization in Qn(
; �) should be
a�1n rather than n�1, where an = n�

0
n�n !1. We denote the uncentered and centered objective functions

still as Qn(
; �) and Sn(
; �). Speci�cally,

Sn(
; �) = Qn(
; �)�Qn(
0; �0)

= 1
an
(�10 � �1)

0 nP
i=1

xix
0
i1(qi � z0i
 ^ z0i
0) (�10 � �1)

+ 1
an
(�20 � �2)

0 nP
i=1

xix
0
i1(qi > z

0
i
 _ z0i
0) (�20 � �2)

+ 1
an
(�10 � �2)

0 nP
i=1

xix
0
i1(z

0
i
 ^ z0i
0 < qi � z0i
0) (�10 � �2)

+ 1
an
(�20 � �1)

0 nP
i=1

xix
0
i1(z

0
i
0 < qi � z0i
 _ z0i
0) (�20 � �1)

:= T1(�) + T2(�) + T3(�) + T4(�):

(12)

Also, without loss of generality, the parameter space for �` can be restricted as N`, a small neighborhood of
�`0.

Now, the probability limit of Sn(
; �), S(
; �), is the same as that in Lemma 1 except that �` and �`0
are changed to �`= k�nk and �`0= k�nk, in other words, we rescale �` and �`0. We can similarly analyze the
four cases to conclude that (�` � �`0) = k�nk = op(1) and b
 � 
0 = op(1), which implies the results we want.
Lemma 3 Under Assumptions D1-D5 and �10��20 is �xed, n (b
 � 
0) = Op(1), and pn (� � �0) = Op(1).
Proof. This proof uses Corollary 3.2.6 of van der Vaart and Wellner (1996). We follow the notations in
Lemma 1.

First, Q (�) � Q (�0) � Cd2 (�; �0), where Q (�) is the probability limit of Qn(�), d (�; �0) = k� � �0k +p
k
 � 
0k for � 2 N with N being an open neighborhood of �0.

Q (�)�Q (�0)
= E [T (wj�1; �10) 1(q � z0
 ^ z0
0)] + E [T (wj�2; �20) 1(q > z0
 _ z0
0)]

+E
�
Z1 (wj�2; �10) 1(z0
 ^ z0
0 < q � z0
0)

�
+ E

�
Z2 (wj�1; �20) 1(z0
0 < q � z0
 _ z0
0)

�
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= (�10 � �1)
0 E [xx01(q � z0
 ^ z0
0)] (�10 � �1) + (�20 � �2)

0 E [xx01(q > z0
 _ z0
0)] (�20 � �2)
+ (�10 � �2)

0 E [xx01(z0
 ^ z0
0 < q � z0
0)] (�10 � �2) + (�20 � �1)
0 E [xx01(z0
0 < q � z0
 _ z0
0)] (�20 � �1)

� C
�

�1;0 � �1

2 + 

�2;0 � �2

2 + k
 � 
0k� ;

where the last inequality is from Assumptions D1-D4.

Second, E

"
sup

d(�;�0)<�

jGn (m (wj�)�m (wj�0))j
#
� C� for any su¢ ciently small �. From Pakes and Pollard

(1989) or Andrews (1994), fA (wj�) : d (�; �0) < �g, fB (wj�) : d (�; �0) < �g, fC (wj�) : d (�; �0) < �g, and
fD (wj�) : d (�; �0) < �g are all VC subgraph. From Theorem 2.14.2 of Van der Vaart and Wellner (1996),

E

"
sup

d(�;�0)<�

jGn (m (wj�)�m (wj�0))j
#
� C

p
PF 2;

where F is the envelope of fm (wj�)�m (wj�0) : d (�; �0) < �g and can take the form of, e.g.,

F =
�
�2 kxk2 + 2� kx"1k

�
sup

d(�;�0)<�

1 (q � z0
 ^ z0
0) +
�
�2 kxk2 + 2� kx"2k

�
sup

d(�;�0)<�

1 (q > z0
 _ z0
0)

+ sup
d(�;�0)<�

�
k�10 � �2k

2 kxk2 + 2 k�10 � �2k kx"1k
�
1 (z0
 ^ z0
0 < q � z0
0)

+ sup
d(�;�0)<�

�
k�20 � �1k

2 kxk2 + 2 k�20 � �1k kx"2k
�
1 (z0
0 < q � z0
 _ z0
0) :

By Assumptions D4 and D5,
p
PF 2 � C� for � < 1. So � (�) = � in Corollary 3.2.6 of Van der Vaart and

Wellner (1996) and �=�� is decreasing for all 1 < � < 2. Since r2n�
�
1
rn

�
= rn,

p
nd
�b� � �0� = OP (1). By

the de�nition of d, the result follows.

Lemma 4 Under Assumptions D1-D5 and k�nk ! 0,
p
n k�nk ! 1, an (b
 � 
0) = Op(1), and pn (� � �0) =

Op(1).

Proof. Since �n depends on n, Corollary 3.2.6 of van der Vaart and Wellner (1996) cannot be used.

Nevertheless, we can apply the proof idea of Theorem 3.2.5 in van der Vaart and Wellner (1996) to prove

this result. De�ne dn (�; �0) = k� � �0k + k�nk
p
k
 � 
0k for � in a neighborhood of �0. For each n, the

parameter space (minus �0) can be partitioned into the "shells" Sj;n =
�
� : 2j�1 <

p
ndn (�; �0) � 2j

	
with

j ranging over the integers. Given an integer J ,

P
�
dn

�b�; �0� > 2J� � P
j�J;k���0k<Mk�nk;k
�
0k<�

P

�
inf

�2Sj;n
(Qn(�)�Qn(�0)) � 0

�
+P (2 k� � �0k �M k�nk ; 2 k
 � 
0k � �) ;

(13)

where Qn(�)�Qn(�0) = Sn(�) is de�ned in (12), andM and � are small positive numbers. The second term

on the right hand side of (13) converges to zero as n ! 1 for every � > 0 and M > 0 by Lemma 2, so we

can concentrate on the �rst term.

P

�
inf

�2Sj;n
(Qn(�)�Qn(�0)) � 0

�
� P

 
sup
�2Sj;n

jQn(�)�Qn(�0)� E [Qn(�)�Qn(�0)]j � inf
�2Sj;n

jE [Qn(�)�Qn(�0)]j
!

� E

"
sup
�2Sj;n

jQn(�)�Qn(�0)� E [Qn(�)�Qn(�0)]j
#,

inf
�2Sj;n

jE [Qn(�)�Qn(�0)]j
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�
4X

k=1

E

"
sup
�2Sj;n

jTk (�)� E [Tk (�)]j
#,

inf
�2Sj;n

jE [Qn(�)�Qn(�0)]j ;

where the last equality is from Markov�s inequality, and Tk (�), k = 1; 2; 3, is de�ned in (12).

From Lemma 2, it is not hard to see that

inf
�2Sj;n

jE [Qn(�)�Qn(�0)]j = inf
�2Sj;n

����X4

k=1
E [Tk (�)]

����
= inf

�2Sj;n
C
��� nan k� � �0k2 + n

an
k�10 � �2k

2 k
 � 
0k+ n
an
k�20 � �1k

2 k
 � 
0k
���

= inf
�2Sj;n

C
��� nan k� � �0k2 + n

an
k�nk2 k
 � 
0k

��� = inf
�2Sj;n

C n
an
dn (�; �0)

2 � C 22j�2

an
= C 22j

an
;

where the third equality is because �10 � �20 = �n and k�` � �`0k < M k�nk so that k�1 � �20k = O (k�nk)
and k�20 � �1k = O (k�nk). From Lemma 3, for k = 1; 2,

2X
k=1

E

"
sup
�2Sj;n

jTk (�)� E [Tk (�)]j
#
� C

sup
�2Sj;n

k� � �0k
p
n�0n�n

:

As to T3 (�), applying a maximal inequality (e.g., Theorem 2.14.2 of van der Vaart and Wellner (1996)) we

can show that

E

"
sup
�2Sj;n

jT3 (�)� E [T3 (�)]j
#
� C

sup
�2Sj;n

q
k�10 � �2k

2
p
j
 � 
0j

p
n�0n�n

=

sup
�2Sj;n

k�nk
p
j
 � 
0j

p
n�0n�n

:

Similarly, E

"
sup
�2Sj;n

jT3 (�)� E [T3 (�)]j
#
� C

sup
�2Sj;n

k�nk
p
j
�
0j

p
n�0n�n

. So

4X
k=1

E

"
sup
�2Sj;n

jTk (�)� E [Tk (�)]j
#
� C

sup
�2Sj;n

dn (�; �0)

p
n�0n�n

� C 2j=
p
np

n�0n�n
= C

2j

an
:

In summary,

X
j�J;k���0k<Mk�nk;j
�
0j<�

P

 
sup
�2Sj;n

(Qn (�)�Qn (�0)) � 0
!
� C

X
j�J

�
2j

an

�
22j

an

�
� C

X
j�J

1

2j
;

which can be made arbitrarily small by letting J large enough. So
p
ndn

�b�; �0� = Op(1), which implies

an (b
 � 
0) = Op(1), and pn (� � �0) = Op(1).
Lemma 5 Under Assumption D, uniformly for h = (u0; v)0 in any compact set of R2(d+1)+1,

nPn

�
m

�
�
�����0 + up

n
; 
0 +

v

n

�
�m (� j�0; 
0 )

�
= u01E [xx01 (� � 0)]u1 + u02E [xx01 (� > 0)]u2 � 2Wn (u) +Dn (v) + op (1) ;
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where u = (u01; u
0
2)
0 2 R2(d+1), and

Dn (v) =
nX
i=1

Z1i1 (z
0
iv < n�i � 0) +

nX
i=1

Z2i1 (0 < n�i � z0iv) ;

Wn (u) = W1n (u1) +W2n (u2) ;

with

W1n (u1) = u
0
1

 
1p
n

nX
i=1

xi"1i1 (�i � 0)
!
, W2n (u2) = u

0
2

 
1p
n

nX
i=1

xi"2i1 (�i > 0)

!
:

Proof. First note that

nPn

�
m
�
�
����0 + up

n
; 
0 +

v
n

�
�m (� j�0; 
0 )

�
=

nP
i=1

�
u01

xix
0
i

n u1 � u01 2p
n
xi"1i

�
1(qi � z0i

�

0 +

v
n

�
^ z0i
0)

+
nP
i=1

�
u02

xix
0
i

n u2 � u02 1p
n
xi"2i

�
1(qi > z

0
i
0 _ z0i

�

0 +

v
n

�
)

+
nP
i=1

��
�10 � �20 � u2p

n

�0
xix

0
i

�
�10 � �20 � u2p

n

�
+ 2x0i

�
�10 � �20 � u2p

n

�
"1i

�
1
�
z0i
�

0 +

v
n

�
< qi � z0i
0

�
+

nP
i=1

��
�1;0 +

u1p
n
� �2;0

�0
xix

0
i

�
�1;0 +

u1p
n
� �2;0

�
� 2x0i

�
�10 +

u1p
n
� �20

�
"2i

�
1
�
z0i
0 < qi � z0i

�

0 +

v
n

��
:= T1(h) + T2(h) + T3(h) + T4(h):

We take T1 and T3 as examples since T2 and T4 can be similarly analyzed.

T1: By a Glivenko-Cantelli theorem and Assumption D4,

1

n

nX
i=1

xix
0
i1
�
qi � z0i

�

0 +

v

n

�
^ z0i
0

�
p�! E [xix0i1 (qi � z0i
0)] ;

where E [xix0i1 (qi � z0i
0)] = E [xix0i1 (�i � 0)] by the de�nition of �i. By stochastic equicontinuity of

Gnxi"1i1(qi � z0i
) as a function of 
,

Gnxi"1i1
�
qi � z0i

�

0 +

v

n

�
^ z0i
0

�
�Gnxi"1i1(qi � z0i
0) = op(1):

T3: We need to show that

1p
n

nX
i=1

xix
0
i1
�
z0i

�

0 +

v

n

�
< qi � z0i
0

�
= op(1);

1p
n

nX
i=1

x0i"1i1
�
z0i

�

0 +

v

n

�
< qi � z0i
0

�
= op(1):

The former follows from n�1
Pn

i=1 xix
0
i1 (z

0
i (
0 + v=n) < qi � z0i
0) = Op(n�1) by a Glivenko-Cantelli theo-

rem and Assumption D3. The latter follows the stochastic equicontinuity of Gnxi"1i1(qi � z0i
) as a function
of 
.

Lemma 6 Under Assumptions D1-D8 and k�nk ! 0,
p
n k�nk ! 1, uniformly for h = (u0; v)0 in any

compact set of R2(d+1)+1,
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nPn

�
m

�
�
�����0 + up

n
; 
0 +

v

an

�
�m (� j�0; 
0 )

�
= u01E [xx01 (� � 0)]u1 + u02E [xx01 (� > 0)]u2 � 2Wn (u) + 2Cn (v) + op (1) ;

where Wn (u) is de�ned in the last lemma, and

Cn (v) = B1n(v)�B2n(v) +
1

2
I(v); (14)

with I(v) de�ned in Theorem 2 and

B1n(v) = �
0
n

"
nX
i=1

xi"1i1 (z
0
iv=an < �i � 0)

#
; B2n(v) = �

0
n

"
nX
i=1

xi"2i1 (0 < �i � z0iv=an)
#
:

Proof. We �rst decompose nPn
�
m
�
�
����0 + up

n
; 
0 +

v
an

�
�m (� j�0; 
0 )

�
in a similar way as in the last

lemma; the only di¤erence is to replace n by an and �10 � �20 by �n. The approximation for the regular
parameter � is similar, so we concentrate on the approximation for the nonregular parameter 
 here. Di¤erent

from the �xed-threshold-e¤ect case, we must combine T3(h) and T4(h) for the approximation since for a �xed

v, some zi�s are included in T3(h) while the others are included in T4(h).

First note that

�0n

"
nX
i=1

xix
0
i1

�
z0i

�

0 +

v

an

�
< qi � z0i
0

�#
�n

p�! I1(v)

by calculating the mean (which converges to I1(v)) and variance (which is O(�
0
n�n)). Similarly,

�0n

"
nX
i=1

xix
0
i1

�
z0i
0 < qi � z0i

�

0 +

v

an

��#
�n

p�! I2(v):

Next,
1p
n

nX
i=1

xi"1i1

�
z0i

�

0 +

v

an

�
< qi � z0i
0

�
= op(1)

by the stochastic equicontinuity of Gnxi"1i1(qi � z0i
) as a function of 
. Similarly,

1p
n

nX
i=1

xi"2i1
�
z0i
0 < qi � z0i

�

0 +

v

n

��
= op(1):

So the approximation is valid.

Lemma 7 Under Assumption D, the �nite-dimensional (�di) weak limit of Dn(v) is the same as D(v).

Proof. The behavior of Dn (v) is determined by near-to-threshold observations, whose behavior is described
using point processes. Our proof includes two steps. Step 1 constructs a point process and derives its limit.

Step 2 applies Step 1 to obtain the �di-limit of Dn (v) and shows the asymptotic independence between

Dn (v) and Wn (u).

Step 1. The intuition for Step 1 is provided after Theorem 1.

De�ne E := R � Z with the usual Euclidean topology. De�ne the point process of interest as follows:
for any Borel subset A, bN(A) =Pn

i=1 1 ((n�i; zi) 2 A). Take bN as a random element of Mp(E), the metric

6



space of nonnegative point measures on E, with the metric generated by the topology of vague convergence;

cf. Resnick (1987, Chapter 3). We show that bN N inMp(E), for N given in the comments after Theorem

1. This is done in the steps (a) and (b).

(a) For any F 2 T , the basis of relatively compact open sets in E (�nite unions of bounded rectangles,

cf. the remark after Proposition 3.22 of Resnick (1987)),

lim
n!1

E
h bN(F )i := lim

n!1
nP ((n�i; zi) 2 F ) =

R
F�
f�jz (0jz) dFz(z) +

R
F+
f�jz (0jz) dFz(z) = m(F ) <1;

where F� = F \ (R� � Z) with R� := (�1; 0] , and F+ = FnF�, and the measure m is de�ned as

dm(v; z) =
�
f�jz (0jz) 1(v � 0)dv + f�jz (0jz) 1(v > 0)dv

�
dFz(z). Since f(n�i; zi) 2 Fg are independent across

i, by Meyer�s Theorem (cf. Meyer (1973))

lim
n!1

P
�bN(F ) = 0� = e�m(F ):

By Proposition 3.22 of Resnick (1987), bN N inMp(E), where N is a Poisson point process with the mean

intensity measure m (�).
(b) In this step, we show N has the same distribution as N given after Theorem 1. First, consider the

canonical Poisson processes N10 and N20 with points fJ1ig and fJ2ig de�ned in Theorem 1. N10 has the

mean measure m10(du) = du on (�1; 0], and N20 has the mean measure m20(du) = du on (0;1); see
Resnick (1987, p. 138). Because N10 and N20 are independent, N12 (�) := N10 (�) + N20 (�) is a Poisson
point process with mean measure m12(du) = du on R by de�nition of the Poisson process; see Resnick

(1987, p. 130). Because fzi; z0ig are i.i.d. and independent of fJ1i;J2ig, by Proposition 3.8 in Resnick
(1987), the composed process N 0

12 with points (fJ1i; z1ig ; fJ2i; z2ig ; i � 1) is a Poisson process with the
mean measure m0

12 (dv; dz) = dvdFz(z) on E. Finally, N with the points fT (J1i; z1i) ; T (J2i; z2i)g, where
T : (v; z) 7!

�
1(v � 0)v=f�jz (0jz) + 1(v > 0)v=f�jz (0jz) ; z

�
, is a Poisson process with the desired mean

measure m(dv; dz) = m0
12 � T�1(dv; dz) =

�
f�jz (0jz) 1(v � 0) + f�jz (0jz) 1(v > 0)

�
dvFz(dz), by Proposition

3.7 in Resnick (1987).

Step 2. Because Dn (v) cannot be written as a Lebesgue integral with respect to bN , we cannot apply
the continuous mapping theorem as in Chernozhukov and Hong (2004) to derive the weak limit of Dn (v).

Rather, we apply Theorem 7.6 of Billingsley (1968), i.e., use the convergence of characteristic functions, to

prove our results. De�ne

T1 =
1p
n

nP
i=1

xi"1i1 (�i � 0) =: 1p
n

nP
i=1

S1i; T2 =
1p
n

nP
i=1

xi"1i1 (�i > 0) =:
1p
n

nP
i=1

S2i;

T3 =
nP
i=1

Z1i1 (z
0
iv1 < n�i � 0) ; T4 =

nP
i=1

Z2i1 (0 < n�i � z0iv2)

for some v1 and v2. We have

E
�
exp

�p
�1 [s01T1 + s02T2 + t1T3 + t2T4]

	�
=
Qn
i=1

�
1 + 1

n

�
� 1
2s
0
1E [S1iS01i] s1 � 1

2s
0
2E [S2iS02i] s2

�
+ o

�
1
n

�	
� E
�
exp

�p
�1
�
t1

nP
i=1

�
Z1i1 (z

0
iv1 < n�i � 0) + o

�
1
n

��
+ t2

nP
i=1

�
Z2i1 (0 < n�i � z0iv2) + o

�
1
n

�����
! exp

�
� 1
2s
0
1E [S1iS01i] s1 � 1

2s
0
2E [S2iS02i] s2

	
� E
�
exp

�p
�1t1

nP
i=1

Z1i1 (z
0
iv1 < J1i � 0)

��
� E
�
exp

�p
�1t2

nP
i=1

Z2i1 (0 < J2i � z0iv2)
��
;
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where the equality is from Assumptions D4 and D5, the �rst part of the limit is standard, and the sec-

ond part needs more explanation. De�ne the functional T : R1 �Mp(E) 7�! R2 as (Z1i; Z2i; � � � ; N) 7�!�
nP
i=1

Z1i1 ((1; z
0
i) v1 < Ji � 0) ;

nP
i=1

Z2i1 (0 < Ji � (1; z0i) v2)
�
, where N (�) =

Pn
i=1 1 ((Ji; zi) 2 �). By Proposi-

tion 3.13 of Resnick (1987), T is discontinuous at D(T ) := R1 �D(N), where D(N) = fN 2Mp(E) : J
N =�

1; zN 0i
�
v1 or JN =

�
1; zN 0i

�
v2} for some i � 1, and

�
JN ; zNi ; i � 1

�
denote the points of N . By de�nition of

N, P ((Z1i; Z2i; � � � ;N) 2 D(T )) = P (N 2 D(N)) = 0. By the continuous mapping theorem (cf. Resnick

(1987, p.152)), it follows that 
nX
i=1

Z1i1 ((1; z
0
i) v1 < Ji � 0) ;

nX
i=1

Z2i1 (0 < Ji � (1; z0i) v2)
!
 
 

nX
i=1

Z1i1 (z
0
iv1 < J1i � 0) ;

nX
i=1

Z2i1 (0 < J2i � z0iv2)
!

if N  N. From Step 1 and Theorem 7.6 of Billingsley (1968), the second part of the convergence holds.

Finally, by Theorem 7.6 of Billingsley (1968), the convergence of the characteristic function implies Dn (v) 
D(v) and is asymptotically independent of Wn(u).

Lemma 8 Under Assumptions D1-D7 and k�nk ! 0,
p
n k�nk ! 1, Cn (v) C(v) on any compact set of

R2(d+1)+1, where C(v) is de�ned in Theorem 2.

Proof. This proof includes two parts: (i) the �di weak limit of Cn (v) are the same as C (v); (ii) the process
Cn (v) is stochastically equicontinuous.

Part (i): This can be checked by direct calculation. Also, it can be checked that Cn (v) is asymptotically

independent of Wn(u) by using the characteristic function as in the last lemma.

Part (ii): It is obvious that I(v) in continuous in v, so we are left to prove B1n(v)+B2n(v) is stochastically

equicontinuous. Without loss of generality, we prove the result only for B2n(v) here. For v1; v2 in a compact

set and for any � > 0,

P

 
sup

kv2�v1k<�
jB2n(v2)�B2n(v1)j > �

!
(1)

� P

 
sup

kv2�v1k<�

���� 1pn nP
i=1

�0nxi"2i1
�
z0iv1^z

0
iv2

an
< �i � z0iv1_z

0
iv2

an

����� > �p
n

!
(2)

� C

r
�0n�nE

h
E
h
kxk2 "22

��� z; � = 0i f�jz(0jz) kzki �=an� �p
n

(3)

� C
p
�

� ;

where (1) is obvious, (2) is from Markov�s inequality and a maximal inequality (e.g., Theorem 2.14.2 of van

der Vaart and Wellner (1996)), and C in (3) is �nite from Assumptions D4 and D5. So we can choose a

small enough � (which may depend on �) such that P

 
sup

kv2�v1k<�
jB2n(v2)�B2n(v1)j > �

!
is less than any

speci�ed level.

Lemma 9 (Bounding Moduli of Continuity) Under Assumption D, for all n � n0, where n0 is su¢ -

ciently large, and any bounded rectangle R,

P (!Dn
(R;') = 1) � C jRj'

for all su¢ ciently small ' > 0, where jRj = sup fkvk : v 2 Rg, and !Dn
(R;') = 1

�
inf
v2R

Dn(v) < inf
v2fvkjg\R

Dn(v)

�
is a Skorohod-type modulus.

Proof. This proof essentially follows from Lemma G.3 of Chernozhukov and Hong (2003b). To avoid

duplication and show the main structure of this proof, we use a simple example with dim(z) = 1 to mark

the key points.
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Figure 5: Vkj for Di¤erent Combinations of j and k When C = 1, � = 0:1 and ' =
p
0:1

(a) [Covering Sets] Cover [0; 1], the support of z, by the minimal number of closed equal-lengthed intervals

fI�;j ; j � J (�)g with � < 1; e.g., I�;j = [(j � 1)�; j�]. Construct the (overlapping) sets

fVkj ; k = �m; � � � ;m; j = 1; � � � ; J (�)g � R2

such that

Vkj :=
�
v 2 R2 : �k � ' � v1 + v2z � �k + ' such that z 2 I�;j

	
;

where ' > 0 and �k = k', for k = �m; � � � ; 0; � � � ;m. Suppose R = [�C;C] � [�C;C], then the range
of v1 + v2z is O (C), and we can cover the range by 2m + 1 brackets of the form [�k � '; �k + '] where
m = O (C='). Choose � = O

�
'2
�
for all small '. Hence the total number L of covering sets Vkj is bounded

as L � (2m+1)J (�) and grows at most at rate C='3. Next, construct the "centers" vkj in Vkj \R so that,

�kj � v1kj + v2kjz � �kj + � for any z 2 I�;j ,

where �kj = inf
v2Vkj\R;z2I�;j

fv1 + v2zg, and � = O
�
'2
�
. For this special case, fVkjgmk=�m for any j can cover

R, and � can take 0. Figure 5 shows the form of Vkj for di¤erent combinations of j and k when C = 1, where

Vkj is the area surrounded by the two (or one) lines. In this �gure, we set � = 0:1, so J (�) = 10. ' =
p
0:1.

When j = 1, m = 3; when j = 5, m = 4; when j = 10, m = 6. Obviously, vkj may not be unique.

(b) [Characterization of Break-Points] Recall that

Dn(v) =

nX
i=1

Z1i1 (z
0
iv < n�i � 0) +

nX
i=1

Z2i1 (0 < n�i � z0iv)

= : D�
n (v) +D

+
n (v);
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where z0iv = v1 + v2zi. We will examine the nature of the discontinuities of Dn(v) by examining those of

D+
n (v) for an example since the case for D

�
n (v) is similar.

Suppose we have n�i = v1 + v2zi for some v 2 Vkj and zi 2 I�;j , then the pair (n�i; zi) is said to induce
a break-point in the set Vkj and in the bracket [�k � '; �k + '] to which v1 + v2zi belongs. Given that this
is the only pair that induces a break-point in Vkj it follows that

inf
v2Vkj\R


D+
n (v) 6= D+

n (vkj) only if n�i 2 [�kj ; �kj + �] ,

since D+
n (v) is piecewise-constant. We need to control the probability of two kinds of events. First, the

errors n�i are not separated in non-overlapping brackets, which is the event

A1 (R) := [jkj<m fthere are n�i, n�i0 2 [�k � '; �k + ']g :

Second, we need to control the probability that for all n�i that are separated into the brackets [�k � '; �k + '],
they do not fall into the "bad subset" [�kj ; �kj + �] of such brackets, given that zi 2 I�;j . Formally, condi-
tionally on the complement of A1 (R), i.e., on Ac1 (R) de�ne the event A2(R) as the union of

A2i;k;j (R) := fn�i 2 [�kj ; �kj + �]jn�i 2 [�k � '; �k + '] ; zi 2 I�;j ; v 2 Vkjg

across i � n, jkj < m, j � J (�).
First,

P (A1 (R)) �
X
jkj<m

nX
i0=1:i0 6=i

nX
i=1

P (n�i, n�0i 2 [�k � '; �k + '])

� (2m+ 1) (2C')
2 � C jRj'.

Denote the total number of n�i that fall into brackets of the form [�k � '; �k + '] by Nn. By a similar
analysis in Chernozhukov and Hong (2003b),

P (A2(R)jNn; Ac1 (R)) � CNn sup
i�n;jkj<m;j�J(�)

P (A2i;k;j (R)) � CNn
�

2'
:

Since E [Nn] � nE [jn�ij � (1 + jZj) jRj] � C jRj,

P (A2(R)jAc1 (R)) � C jRj
�

'
:

Since � can take 0 in this special case and �i is absolutely continuous, A2(R) has probability zero. Hence,

P

0@[
k;j

�
inf
v2Vkj

Dn(v) 6= Dn(vkj)
�1A � P (A2(R) \Ac1 (R)) + P (A2(R) \A1 (R))

� P (A2(R)jAc1 (R)) + P (A1 (R)) � C jRj
�
�

'
+ '

�
� C jRj'.

Therefore,

P

�
inf
v2R

D+
n (v) 6= inf

fvkjg
D+
n (vkj)

�
� C jRj':
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