
Appendix

Derivation of Equation (26): Multiplying expression (24) by n1p1 and using φ ≡ τ 1−σ

n1p1x
∗
1 = µ1n1p

1−σ
1

(
Y d

1

P 1−σ
1

+
φY d

2

P 1−σ
2

)

replacing the left hand side for the corresponding expressions (11), (13) and (15)

LE1w1

σ − 1
+ LE1w1 = µ1n1p

1−σ
1

(
Y d

1

P 1−σ
1

+
φY d

2

P 1−σ
2

)

using expressions (16) and (23), and by adding and subtracting (1− µ1)Y d
1 ,

H1wH1+L1w1−Y d
1−

1−µ
2

(
pA1

PA

)1−σ (
Y d

1 +Y d
2

)
+ (1− µ)Y d

1 +µ1Y
d

1 = µ1n1p
1−σ
1

(
Y d1
P 1−σ
1

+
φY d2
P 1−σ
2

)

where µ ≡ µ1 +µ2. Considering the agricultural price index (9) and Y d
1 = (1− t)Y1, and

after some manipulation, it yields

tY 1+ 1−µ
2P 1−σ
A

(
Y d1
pσ−1
A2

− Y d2
pσ−1
A1

)
+µ1Y

d
1

(
1−n1p

1−σ
1

P 1−σ
1

)
= µ1n1p

1−σ
1

φY d2
P 1−σ
2

finally, by using the expression of industrial price index (8), equation (26) it is obtained.

Proof of Proposition 1: First, and hereinafter, labor in region 2 is taken as numerarie,

then, w2 = ps2 = pA2 = 1 and p2 = β σ
σ−1

, and µ ≡ µ1 + µ2. Furthermore,

w ≡ p1

p2

=
pA1

pA2

=
ps1
ps2

=
w1

w2

= w1 (36)
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Using expressions (16), (20)-(23), (29) and replacing these in (27) and (28) it is obtained,

Y1 =
σ

σ − µ1

[
Lw +

tµ2Lw

σ − 1 + µ2 (1− t)
+

1− µ
2P 1−σ

A

Lw − (1-L) p1−σ
A

σ − 1 + µ2 (1− t)

]
(37)

Y2 =
σ

σ − µ1

[
(1-L)− tµ2Lw

σ − 1 + µ2 (1− t)
+

1− µ
2P 1−σ

A

(1-L) p1−σ
A − Lw

σ − 1 + µ2 (1− t)

]
(38)

Y w = Y1 + Y2 = Y d
1 + Y d

2 and Y w =
σ

(σ − µ1)
[Lw + (1− L)] (39)

Using (8)-(9), (36), (15), and (37)-(39) the current account equation (26) can be

rewritten as

CA2(H,w) ≡ sy (1− t)
{
µ1φ

[
Hw1−σ

Hφw1−σ + 1−H
+

1−H
Hw1−σ + (1−H)φ

]
+ (1− µ)

}
+tsy−

[
µ1φ

Hw1−σ

Hφw1−σ + 1−H
+ (1− µ)

w1−σ

1 + w1−σ

]
= 0 (40)

where sy ≡ Y1(w)/Y w(w). Implicit differentiation of (40) leads to

dw

dH

∣∣∣∣
CA2=0

= −
∂CA2

∂H
∂CA2

∂w

(41)

where,

∂CA2

∂H
= − µ1φw1−σ

(Hw1−σφ+1−H)2

{
1− sy (1− t) (1−φ2)

[
(Hw1−σ)

2
−(1−H)2

]
[Hw1−σ+(1−H)φ]2

}
< 0 (42)

the second term in curly brackets could be negative or positive, but in the last case, it

will always be lower than one, so the expression is always negative. Additionally,

∂CA2

∂w
= µ1φ(σ−1)H(1−H)

wσ(Hw1−σφ+1−H)2

{
1− sy (1− t) (1−φ2)

[
(Hw1−σ)

2
−(1−H)2

]
[Hw1−σ+(1−H)φ]2

}
+ (1−µ)(σ−1)w−σ

(1+w1−σ)2

+∂sy
∂w

{
1− µ (1− t) + µ1φ (1− t)

[
Hw1−σ

Hw1−σφ+1−H+ 1−H
Hw1−σ+(1−H)φ

]}
(43)
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Note that,

∂Y1

∂w
=

σ

σ − µ1

{
L+ µ2tL

σ−1+µ2(1−t) + 1−µ
(1+w1−σ)2

L(σw1−σ+1)+(1−L)(σ−1)w−σ

σ−1+µ2(1−t)

}
> 0

∂Y w

∂w
=

σ

σ − µ1

L

On comparing these expressions it can be observed that, ∂Y1
∂w

> ∂Y w

∂w
, and Y w > Y1, thus,

∂sy
∂w

=
∂Y1
∂w
Y w − ∂Y w

∂w
Y1

(Y w)2 > 0 (44)

Then,

∂CA2

∂w
> 0 (45)

Considering the signs of (42) and (45), (41) must always be positive.

Proof of Proposition 2: From expressions (37) and (39) it can be obtained that

∂sy
∂t

=
∂Y1/∂t

Y w
=

µ2

σ − 1 + µ2 (1− t)
sy (46)

Then, deriving the current account equation (40) with respect to t,

∂CA2

∂t
= sy
σ−1+µ2(1−t)

{
(σ−1+µ2)− (σ−1)

[
µ1Hw1−σφ

Hw1−σφ+1−H+ µ1(1−H)φ
Hw1−σ+(1−H)φ

+ (1−µ)
]}

(47)

The sum in the square brackets is equal to or lower than 1, and [(σ − 1 + µ2) − (σ −

1)(µ1 + 1− µ)] > 0. Thus, the expression is always positive. Then:

dw

dt

∣∣∣∣
CA2=0

= −
∂CA2

∂t
∂CA2

∂w

< 0
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For the second part of the proposition, equation (19) is divided by (39), such that

T2

Y w
= tsy and

Y w − T2

Y w
= (1− tsy)

Deriving this expressions and expression (39) with respect to t,

d (tsy)

dt
= t∂sy

∂t
+ sy + t∂sy

∂w
dw
dt

∣∣
CA2=0

= σ−1+µ2
σ−1+µ2(1−t)sy + t∂sy

∂w
dw
dt

∣∣
CA2=0

> 0

d (1− tsy)
dt

= −d (tsy)

dt
< 0

dY w

dt
=

σ

σ − µ1

L
dw

dt

∣∣∣∣
CA2=0

< 0

On looking at equations (43)-(47), it is clear that the first expression is always positive,

while the last two are always negative. Thus, if T2/Y
w increases and (Y w − T2) /Y w

decreases as t rises, dT2/dt must be positive.

Proceeding in the same way for the disposable incomes,

Y d
1

Y w
=

(1− t)Y1

Y w
= (1− t) sy and

Y d
2

Y w
= 1− (1− t) sy

by differentiating these expressions with respect to t it is obtained that

d [(1− t) sy]
dt

= − σ − 1

σ − 1 + µ2 (1− t)
sy + (1− t) ∂sy

∂w

dw

dt

∣∣∣∣
CA2=0

< 0

d [1− (1− t) sy]
dt

= −d [(1− t) sy]
dt

> 0

Then, taking into account that dY w/dt < 0, the last two expressions imply that

dY d
1

dt
< 0 and

dY d
2

dt
> 0

Proof of Proposition 3: The change in the industrial sector as a proportion of the
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labor force in the sector is:

dLEj/dt

LEj
=
∂LEj/∂t

LEj
+
∂LEj/∂w

LEj

dw

dt

∣∣∣∣
CA2=0

≷ 0

Using equations (23), (29), (37), (38), (43) and (47), the previous expression for region 1

at the symmetric equilibrium (30) is equal to

dLE1/dt

LE1

∣∣∣∣
sym

=
σU (φ)

Z(φ)
≷ 0 (48)

where U (φ), and Z(φ) > 0 for φ ≥ 0 (dZ(φ)/dφ > 0), are polynomials,

U (φ) = [2µ2+σ (1− µ)]φ2+2µ2 (2σ − 1)φ− σ (1− µ)≷ 0 (49)

Z(φ) = (σ − 1 + µ2)
[
4µ1 (σ − 1)φ+ (1− µ) (σ − 1) (1 + φ)2] (50)

+ (σ − 1 + µ2)
[
1+ σ(1−µ)

σ−1+µ2

] [
(1− µ2) (1 + φ)2−µ1

(
1− φ2

)]
> 0 (51)

where Z (φ) > 0 for all φ ∈ [0, 1]. Then, the sign of expression (48) depends only on

the numerator. The polynomial (49) has a unique positive root: P (φ = φsr) = 0 with

φsr ∈ (0, 1), and

φsr =
−µ2 (2σ − 1) +

√
[µ2 (2σ − 1)]2 + σ (1− µ) [2µ2 + σ (1− µ)]

[2µ2 + σ (1− µ)]
(52)

Moreover, evaluating expression (48) for the extreme cases of φ = 0 and φ = 1 yields

dLE1/dt

LE1

(φ = 0)

∣∣∣∣
sym

= − σ

(σ − µ1)
< 0

dLE1/dt

LE1

(φ = 1)

∣∣∣∣
sym

=
µ2σ

(1− µ2) (σ − µ1)
> 0

Then, expression (48) is negative for 0 ≤ φ < φsr and positive for φsr < φ ≤ 1. Proceeding
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in the same way for region 2, (and by symmetry) it is obtained that

dLE2/dt

LE2

∣∣∣∣
sym

= −dLE1/dt

LE1

∣∣∣∣
sym

= −σU (φ)

Z(φ)
≷ 0

Proof of Proposition 4: From equation U(φ) = 0 (polynomial (49)) and the implicit

differentiation, it is obtained that

∂φsr

∂µ2

= −
2φsr [φsr + (2σ − 1)] + σ

[
1− (φsr)2]

2 [2µ2 + σ (1− µ)]φsr + 2µ2 (2σ − 1)
< 0 (53)

∂φsr

∂σ
= − (1− µ) (φsr)2 + 4µ2φ

sr − (1− µ)

2 [2µ2 + σ (1− µ)]φsr + 2µ2 (2σ − 1)
< 0 (54)

While expression (53) is clearly negative, expression (54) is also negative since µ2 > 0

and

∂φsr

∂σ
< 0←→ φsr > φ∗

where φ∗ is the unique positive root of the numerator of (54):

φ∗ =
−2µ2

1− µ
+

√(
2µ2

1− µ

)2

+ 1 (55)

Proof of Proposition 5: The proof is divided in two parts. The first part proves the

existence of the thresholds φb and φr that determine the stability/instability of the sym-

metric equilibrium. The second part derives the analytical expression for these thresholds.

Part 1: By differentiating V (H,w) from equation (34) with respect to H,

dV

dH
=
∂V

∂H
− ∂V

∂w

∂CA2/∂H

∂CA2/∂w
≷ 0 (56)

If this expression is negative, the equilibrium is stable, and if it is positive the equilibrium

is unstable. Evaluating expression (56) at the interior symmetric equilibrium (30) it is
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obtained that

dV

dH

∣∣∣∣
sym

= −4 [1−d+φ(1+d)]
1+φ

+
4µ1

φ

(1+φ)2

[
σ2(1−µ)

µ1(σ−1+µ2)
+1−µ2−

µ1(1−φ)
(1+φ)

]
µ1(σ−1)φ

(1+φ)2
+

(1−µ)(σ−1)
4

+ 1
4

[
1+

σ(1−µ)
σ−1+µ2

]
(1+µ2+µ1

1−φ
1+φ)

(57)

where d ≡ µ1
σ−1

. Evaluating (57) at φ = 1 yields,

dV

dH

∣∣∣∣
sym

(φ = 1) = −4
µ1 (σ − 1 + µ2)2

σ (σ − µ1) (1− µ2)
< 0 (58)

Thus, when φ = 1, the symmetric equilibrium is always stable. Additionally, evaluating

expression (57) at φ = 0 yields,

dV

dH

∣∣∣∣
sym

(φ = 0) = 4

[
µ1

σ − 1
− 1

]
(59)

Which implies that, if the BHC holds, the symmetric equilibrium is unstable for φ = 0,

and stable otherwise. Furthermore, expression (57) can be rewritten as

dV

dH

∣∣∣∣
sym

=
P (φ)

K(φ)
=
−Aφ3 +Bφ2 + Cφ+D

K(φ)
≷ 0 (60)

where

A ≡ (1 + d)
[(

1+ σ(1−µ)
σ−1+µ2

)
(1− µ2+µ1) + (1− µ) (σ − 1)

]
> 0 (61)

B ≡ 4µ1

[
σ(1−µ)
σ−1+µ2

+1− µ2+µ1

]
−2 (1 + d)

[
σ(1−µ)(σ−µ1)

σ−1+µ2
+µ1 (σ − 1)

]
(62)

− (1− d)
{[

σ(1−µ)
σ−1+µ2

+ 1
]

(1− µ2+µ1) + (1− µ) (σ − 1)
}

C ≡ 4µ1

[
σ2(1−µ)

µ1(σ−1+µ2)
+1− µ

]
− (1 + d) σ(1−µ)(σ−µ1)

σ−1+µ2
(63)

−2 (1− d)
[
σ(1−µ2)(σ−µ1)

σ−1+µ2
+ µ1 (σ − 1)

]
(64)

D ≡ (d− 1) σ(1−µ)(σ−µ1)
σ−1+µ2

(65)

K(φ) ≡
4µ1(σ−1)φ+(1−µ)(σ−1)(1+φ)2+

(
1+

σ(1−µ)
(σ−1+µ2)

)
[(1−µ2)(1+φ)−µ1(1−φ2)]

4(1+φ)−1 > 0 (66)

43



Since expression (66) is positive for all values of φ ≥ 0, only P (φ) determines the sign

of the expression (57). As φ → ∞, P (φ) → −∞; and as φ → −∞, P (φ) → ∞.

Moreover, if d ≷ 1, then D ≷ 0. Also, when d ≥ 1, C > 0, then there exists a

threshold µ̄1(σ, µ2) ∈ (0,min [1, σ − 1]) for the parameter µ1, which can be expressed as

d̄ ≡ µ̄1(σ,µ2)
σ−1

, such that if d̄ < d < 1, then C > 0, and there exist two real positive roots of

the polynomial P (φ). And whenever C < 0, B < 0, according to expression (67), there

are, therefore, no real positive roots.

B − C = −2µ1
[(1+µ1)+2(1−µ2)]σ2−[(1+µ1)+(1+3µ1)(1−µ2)]σ+(1−µ2)(1+2µ1)

(σ−1)(σ−1+µ2)
< 0 (67)

Part 2: In order to obtain a closed form for the thresholds (φb and φr) it is taken into

account that φ∗ = −1 is always a solution of P (φ) = 0. Then, this polynomial can be

rewritten as

P (φ) = − (φ+ 1)
[
φ2 − (Tr)φ+ (Det)

]
(68)

where, Tr ≡ B
A

+ 1 and Det ≡ −D
A

. Thus, the other two roots of P (φ) are

φb =
Tr −

√
(Tr)2 − 4Det

2
(69)

φr =
Tr +

√
(Tr)2 − 4Det

2
(70)

If (Tr)2−4Det > 0, there are three cases: 1) if Tr > 0 and Det > 0, then 0 < φb < φr < 1;

2) if Tr ≶ 0 and Det < 0, then φb < 0 < φr < 1 and 3) if Tr < 0 and Det > 0, then

φb < φr < 0. If (Tr)2 − 4Det = 0, then φb = φr ∈ [0, 1). If (Tr)2 − 4Det < 0, then φb

and φr are conjugated complexes.

Additionally, from these relations, µ̄1(σ, µ2) ∈ (0,min [1, σ − 1]) can be implicitly
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defined as the value of µ1 that ensures that the following conditions are fulfilled:

Tr2 − 4Det = 0 with Tr > 0 and Det > 0 (71)

µ1 − (σ − 1) < 0 (72)

Figure 7: Regions of Bifurcation Points in the space (µ1,µ2,σ)
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The region above the plane in Figure 7 (a) corresponds to d < 1 (condition (72)).

Only the parameter values below the dashed line of Figure 7 in the plane (µ1, µ2) are

feasible due to the parameter restriction: µ1 + µ2 ≡ µ ∈ (0, 1). The red surface in

Figure 7 (b) depicts condition (71). Below this surface Tr2 − 4Det > 0, and above

Tr2− 4Det < 0. Thus, for each value of σ and µ2, there exist a value µ1 = µ̄1(σ, µ2) such

that Tr2 − 4Det = 0. Moreover, Figure 7 (c) divides the space of parameters (µ1, µ2, σ)

in three regions: 1) below the gray plane, d > 1 and the symmetric equilibrium has only

one bifurcation point, φr; 2) above the gray plane and below the red surface, d̄ < d < 1

and the symmetric equilibrium has two bifurcation points, φb and φr; and 3) above the

red surface, d < d̄ < 1 and the symmetric equilibrium is stable for all values of φ.

Proof of Proposition 6: By fully differentiating the system (40)-(33) with respect to

t, it is obtained that

 ∂CA2

∂w
∂CA2

∂H

∂V
∂w

∂V
∂H


 dw

dt

dH
dt

 =

 −∂CA2

∂t

−∂V
∂t


Then, the change in the number of firms is

dH

dt
=

(
∂CA2

∂t
∂V
∂w
− ∂V

∂t
∂CA2

∂w

)(
∂CA2

∂w
∂V
∂H
− ∂CA2

∂H
∂V
∂w

)
After some manipulation,

dH

dt
= −

∂V
∂t

+ ∂V
∂w

(
− ∂CA2/∂t
∂CA2/∂w

)
∂V
∂H

+ ∂V
∂w

(
−∂CA2/∂H

∂CA2/∂w

) (73)

The denominator is equal to the stability condition (57) in Proposition 5, while the

numerator is the effect of a change in the rate of transfers (t) over the ratio of indirect

utilities (V1/V2). Additionally, using (16) and (32), the numerator of (73) can be rewritten
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as

dV

dt
=
V1

V2

{[
dLE1

dt

LE1

−
dLE2

dt

LE2

]
+

[
dw
dt

∣∣
CA2=0

w

]
−

[
µ2

w
+ µ1

∂(P1/P2)
∂w

P1/P2

]
dw

dt

∣∣∣∣
CA2=0

}

which is equal to expression (35). Evaluating at the symmetric equilibrium,

dV

dt

∣∣∣∣
sym

=
2

Z(φ)
[σU (φ)− J (φ)] ≷ 0 (74)

where

J (φ) ≡ (1− µ2+µ1) [µ2σ − µ1 (σ − 1)]φ2 (75)

+2
[
µ2(1− µ2)σ + µ2

1 (σ − 1)
]
φ+ (1−µ) [µ2σ + µ1 (σ − 1)]

U (φ) and Z (φ) are defined in (49) and (50), and J (φ) > 0. Thus, the sign is determined

by the numerator. After some manipulations it is obtained that

σU (φ)− J (φ) = aφ2 + bφ+ c ≷ 0 (76)

where

a ≡ 2µ2σ − (1− µ2 + µ1) [µ2σ − µ1 (σ − 1)] + σ2 (1− µ) > 0 (77)

b ≡ 2
[
2µ2σ (σ − 1) + µ2

2σ − µ2
1 (σ − 1)

]
≷ 0 (78)

c ≡ − (1− µ)
[
σ2 + µ2σ + µ1 (σ − 1)

]
< 0 (79)

Additionally, evaluating (74) at the extreme cases φ = 0 and φ = 1,

dV

dt

∣∣∣∣
sym

(φ = 0) = −2
µ1 (σ − 1) + σ (σ + µ2)

σ (σ − 1)
< 0 (80)

dV

dt

∣∣∣∣
sym

(φ = 1) = 2µ2
σ − 1 + µ2

(σ − µ1) (1− µ2)
> 0 (81)
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Thus, the polynomial (76) has only one positive root,

φlr =
−b+

√
b2 − 4ac

2a
∈ (0, 1) (82)

Furthermore, because J (φ) > 0 for all φ ≥ 0, then the following relation must hold:

0 < φsr < φlr < 1 when µ2 ∈ (0, 1− µ1) (83)

φsr = φlr when µ2 = 0, 1− µ1 (84)

Combining these results with those from Proposition 5 properties i) and ii) of Proposition

6 are derived. Additionally, from polynomial (49) and the implicit differentiation, it is

obtained that

∂φlr

∂σ
= −

∂a
∂σ

(
φlr
)2

+ ∂b
∂σ
φlr + ∂c

∂σ

2aφlr + b
(85)

The denominator is positive since φlr > −b/ (2a). Hence, the sign of (85) depends on the

numerator. Figure 8 depicts the region for which ∂φlr/∂σ > 0.

Figure 8: Region for ∂φlr/∂σ > 0 in the space (µ1, µ2, σ)
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Figure 8 (a) shows that only for a very narrow range of values of the parameters (µ1,µ2,σ)

is the derivative (85) positive. Furthermore, Figure 8 (b) highlights that if the agricultural

sector is not too small (approximately 1− µ > 0.08), derivative (85) will be negative.

Derivation of the Figures 3 (a) - (e): First the focus is putted on φlr, which presents

the same shape for all values of d. Then, φb and φr are analyzed, by considering the

different cases (d < 1, d = 1 and d > 1).

Differentiating of the polynomial (76) with respect to µ2 yields

∂(σU(φ)−J(φ))
∂µ2

= σ
{

2µ2φ
2+
(
µ-µ1φ

2
)

+ (σ-1)φ (4-φ) +4µ2φ+ σ-1+µ2

}
+µ1 (σ-1)> 0

And the differential with respect to φ is

∂ (σU (φ)− J (φ))

∂φ
= 2aφ+ b > 0

which is positive because φlr > −b
2a

(see expression (82)). Then, the implicit differentiation

gives

∂φlr

∂µ2

= −∂ (σU (φ)− J (φ)) /∂µ2

∂ (σU (φ)− J (φ)) /∂φ
< 0

Additionally, evaluating the polynomial (76) at µ2 = 0 and µ2 = 1− µ1,

φlr (µ2 = 0) = 1 and φlr (µ2 = 1− µ1) = 0

For φb and φr the simplest case, d = 1 (σ − 1 = µ1) is studied first. In this special

case it is obtained that

φb (σ − 1 = µ1) = 0 and φr (σ − 1 = µ1) =
1−µ2−µ1[4µ21+µ1(6µ2−1)+2µ22+µ2−2]

1−µ2−µ1[2µ21+µ1(2µ2−1)+µ2−2]
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Thus, only φr needs to be analyzed. Differentiating φr (σ − 1 = µ1) with respect to µ2,

∂φr(σ − 1 = µ1)

∂µ2

=
µ21(5-2µ21)+µ2(2-µ2-µ31)+3µ31(1-µ2)+2µ1[1+µ2(2-µ2)]+2µ21µ2(1-µ2)

−(2µ1)−1{1−µ2−µ1[2µ21+µ1(2µ2−1)+µ2−2]}2 < 0

Additionally, note that the previous derivative tends to −∞ when µ2 = 1−µ1. Evaluating

φr(σ − 1 = µ1) at µ2 = 0 and µ2 = 1− µ1:

φr(σ − 1 = µ1, µ2= 0) =
1+2µ1+µ21−4µ31
1+2µ1+µ21−2µ31

and φr(σ − 1 = µ1, µ2= 1− µ1) = 0

Bringing these results together, d = 1 yields φr(µ2 = 0) < φlr (µ2 = 0) and φr(µ2 =

1−µ1) = φlr (µ2 = 1− µ1) = 0. Both thresholds diminish as µ2 increases, and they cross

at least once within the interval µ2 ∈ (0, 1− µ1).

When d > 1 (σ − 1 < µ1), the BHC case, φb < 0. Then, again, only φr needs to be

studied. By differentiating expression (70) with respect to µ2,

∂φr

∂µ2

=
1√

(Tr)2 − 4Det

[
∂Tr

∂µ2

φr − ∂Det

∂µ2

]
(86)

where

∂Det

∂µ2

= −2µ1σ(σ−1−µ1)(σ−µ1)2

(σ-1+µ1)[σµ21-σ2(1-µ2)+µ1(σ-2)(σ-1+µ2)]
2 > 0 if σ − 1 < µ1

∂Tr

∂µ2

− ∂Det

∂µ2

=
−{σ(σ2-µ21)-µ1(1-µ2)+σ[(1-µ2)σ-µ1(σ-1)]+µ1[σ(2-µ)-(1-µ2)]}

[4µ1(σ-1)(σ-1+µ2)]−1(σ-1+µ1)[µ21σ-σ2(1-µ2)+µ1(σ-2)(σ-1+µ2)]
2 < 0

Then, expression (86) must be negative whenever d > 1. Now, evaluating φr at µ2 = 0

and µ2 = 1 − µ1 yields that φr ∈ (0, 1). Thus, when the BHC holds with inequality

(d > 1), φr(µ2 = 0) < φlr (µ2 = 0) and φr(µ2 = 1 − µ1) > φlr (µ2 = 1− µ1). As in

the previous case, both thresholds diminish as µ2 increases, and they cross at least once

within the interval µ2 ∈ (0, 1− µ1).

When d < 1 (σ − 1 > µ1), the analysis focuses on the case when the thresholds are
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real numbers (0 < φb ≤ φr < 1), that is, when d̄ ≤ d < 1. From Proposition 5 a value

µ2 = µ20 (implicitly defined by (Tr)2−4Det = 0) can be defined, such that φ0 ≡ φb = φr.

Then, by differentiating the polynomial O(φ,µ2)≡φ2−(Tr)φ+Det = 0 (see the polynomial

(68)), and evaluating at (µ20 ,φ0),

∂O
∂φ

(µ20 , φ0) = 2φ− Tr|φ0 = 2φ0 − (φ0 + φ0) = 0

∂O
∂µ2

(µ20 , φ0) > 0

∂2O
∂φ2

(µ20 , φ0) = 2

Thus, for the function µ2(φ) implicitly defined by O(φ,µ2) = 0, it is obtained that

dµ2

dφ
(µ20 , φ0) = 0 and

d2µ2

dφ2
(µ20 , φ0) < 0

which implies that the function µ2(φ) (implicitly defined by O(φ,µ2) = 0) has a maximum

at (µ20 ,φ0). In a close neighborhood of µ20 , φ
b increases, and φr diminishes as µ2 increases

until µ2 = µ20 . At this point, both thresholds converge to the value φ0.
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