Appendix

Derivation of Equation (26): Multiplying expression (24) by $n_{1} p_{1}$ and using $\phi \equiv \tau^{1-\sigma}$

$$
n_{1} p_{1} x_{1}^{*}=\mu_{1} n_{1} p_{1}^{1-\sigma}\left(\frac{Y_{1}^{d}}{P_{1}^{1-\sigma}}+\frac{\phi Y_{2}^{d}}{P_{2}^{1-\sigma}}\right)
$$

replacing the left hand side for the corresponding expressions (11), (13) and (15)

$$
\frac{L_{E_{1}} w_{1}}{\sigma-1}+L_{E_{1}} w_{1}=\mu_{1} n_{1} p_{1}^{1-\sigma}\left(\frac{Y_{1}^{d}}{P_{1}^{1-\sigma}}+\frac{\phi Y_{2}^{d}}{P_{2}^{1-\sigma}}\right)
$$

using expressions (16) and (23), and by adding and subtracting $\left(1-\mu_{1}\right) Y_{1}^{d}$,
$H_{1} w_{H_{1}}+L_{1} w_{1}-Y_{1}^{d}-\frac{1-\mu}{2}\left(\frac{p_{A_{1}}}{P_{A}}\right)^{1-\sigma}\left(Y_{1}^{d}+Y_{2}^{d}\right)+(1-\mu) Y_{1}^{d}+\mu_{1} Y_{1}^{d}=\mu_{1} n_{1} p_{1}^{1-\sigma}\left(\frac{Y_{1}^{d}}{P_{1}^{1-\sigma}}+\frac{\phi Y_{2}^{d}}{P_{2}^{1-\sigma}}\right)$
where $\mu \equiv \mu_{1}+\mu_{2}$. Considering the agricultural price index (9) and $Y_{1}^{d}=(1-t) Y_{1}$, and after some manipulation, it yields

$$
t Y_{1}+\frac{1-\mu}{2 P_{A}^{1-\sigma}}\left(\frac{Y_{d}^{d}}{p_{A_{2}}^{\sigma-1}}-\frac{Y_{2}^{d}}{p_{A_{1}}^{-1}}\right)+\mu_{1} Y_{1}^{d}\left(1-\frac{n_{1} p_{1}^{1-\sigma}}{P_{1}^{1-\sigma}}\right)=\mu_{1} n_{1} p_{1}^{1-\sigma} \frac{\phi Y_{2}^{d}}{P_{2}^{1-\sigma}}
$$

finally, by using the expression of industrial price index (8), equation (26) it is obtained.

Proof of Proposition 1: First, and hereinafter, labor in region 2 is taken as numerarie, then, $w_{2}=p_{s_{2}}=p_{A_{2}}=1$ and $p_{2}=\beta \frac{\sigma}{\sigma-1}$, and $\mu \equiv \mu_{1}+\mu_{2}$. Furthermore,

$$
\begin{equation*}
w \equiv \frac{p_{1}}{p_{2}}=\frac{p_{A_{1}}}{p_{A_{2}}}=\frac{p_{s_{1}}}{p_{s_{2}}}=\frac{w_{1}}{w_{2}}=w_{1} \tag{36}
\end{equation*}
$$

Using expressions (16), (20)-(23), (29) and replacing these in (27) and (28) it is obtained,

$$
\begin{align*}
Y_{1} & =\frac{\sigma}{\sigma-\mu_{1}}\left[L w+\frac{t \mu_{2} L w}{\sigma-1+\mu_{2}(1-t)}+\frac{1-\mu}{2 P_{A}^{1-\sigma}} \frac{L w-(1-L) p_{A}^{1-\sigma}}{\sigma-1+\mu_{2}(1-t)}\right] \tag{37}\\
Y_{2} & =\frac{\sigma}{\sigma-\mu_{1}}\left[(1-L)-\frac{t \mu_{2} L w}{\sigma-1+\mu_{2}(1-t)}+\frac{1-\mu}{2 P_{A}^{1-\sigma}} \frac{(1-L) p_{A}^{1-\sigma}-L w}{\sigma-1+\mu_{2}(1-t)}\right] \tag{38}\\
Y^{w} & =Y_{1}+Y_{2}=Y_{1}^{d}+Y_{2}^{d} \quad \text { and } \quad Y^{w}=\frac{\sigma}{\left(\sigma-\mu_{1}\right)}[L w+(1-L)] \tag{39}
\end{align*}
$$

Using (8)-(9), (36), (15), and (37)-(39) the current account equation (26) can be rewritten as

$$
\begin{array}{cl}
C A_{2}(H, w) \equiv s_{y}(1-t) & \left\{\mu_{1} \phi\left[\frac{H w^{1-\sigma}}{H \phi w^{1-\sigma}+1-H}+\frac{1-H}{H w^{1-\sigma}+(1-H) \phi}\right]+(1-\mu)\right\} \\
+t s_{y}- & {\left[\mu_{1} \phi \frac{H w^{1-\sigma}}{H \phi w^{1-\sigma}+1-H}+(1-\mu) \frac{w^{1-\sigma}}{1+w^{1-\sigma}}\right]=0} \tag{40}
\end{array}
$$

where $s_{y} \equiv Y_{1}(w) / Y^{w}(w)$. Implicit differentiation of (40) leads to

$$
\begin{equation*}
\left.\frac{d w}{d H}\right|_{C A_{2}=0}=-\frac{\frac{\partial C A_{2}}{\partial H}}{\frac{\partial C A_{2}}{\partial w}} \tag{41}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{\partial C A_{2}}{\partial H}=-\frac{\mu_{1} \phi w^{1-\sigma}}{\left(H w^{1-\sigma} \phi+1-H\right)^{2}}\left\{1-s_{y}(1-t) \frac{\left(1-\phi^{2}\right)\left[\left(H w^{1-\sigma}\right)^{2}-(1-H)^{2}\right]}{\left[H w^{1-\sigma}+(1-H) \phi\right]^{2}}\right\}<0 \tag{42}
\end{equation*}
$$

the second term in curly brackets could be negative or positive, but in the last case, it will always be lower than one, so the expression is always negative. Additionally,

$$
\begin{align*}
\frac{\partial C A_{2}}{\partial w}= & \frac{\mu_{1} \phi(\sigma-1) H(1-H)}{w^{\sigma}\left(H w^{1-\sigma} \phi+1-H\right)^{2}}\left\{1-s_{y}(1-t) \frac{\left(1-\phi^{2}\right)\left[\left(H w^{1-\sigma}\right)^{2}-(1-H)^{2}\right]}{\left[H w^{1-\sigma}+(1-H) \phi\right]^{2}}\right\}+\frac{(1-\mu)(\sigma-1) w^{-\sigma}}{\left(1+w^{1-\sigma}\right)^{2}} \\
& +\frac{\partial s_{y}}{\partial w}\left\{1-\mu(1-t)+\mu_{1} \phi(1-t)\left[\frac{H w^{1-\sigma}}{H w^{1-\sigma} \phi+1-H}+\frac{1-H}{H w^{1-\sigma}+(1-H) \phi}\right]\right\} \tag{43}
\end{align*}
$$

Note that,

$$
\begin{aligned}
\frac{\partial Y_{1}}{\partial w} & =\frac{\sigma}{\sigma-\mu_{1}}\left\{L+\frac{\mu_{2} L}{\sigma-1+\mu_{2}(1-t)}+\frac{1-\mu}{\left(1+w^{1-\sigma}\right)^{2}} \frac{L\left(\sigma w^{1-\sigma}+1\right)+(1-L)(\sigma-1) w^{-\sigma}}{\sigma-1+\mu_{2}(1-t)}\right\}>0 \\
\frac{\partial Y^{w}}{\partial w} & =\frac{\sigma}{\sigma-\mu_{1}} L
\end{aligned}
$$

On comparing these expressions it can be observed that, $\frac{\partial Y_{1}}{\partial w}>\frac{\partial Y^{w}}{\partial w}$, and $Y^{w}>Y_{1}$, thus,

$$
\begin{equation*}
\frac{\partial s_{y}}{\partial w}=\frac{\frac{\partial Y_{1}}{\partial w} Y^{w}-\frac{\partial Y^{w}}{\partial w} Y_{1}}{\left(Y^{w}\right)^{2}}>0 \tag{44}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{\partial C A_{2}}{\partial w}>0 \tag{45}
\end{equation*}
$$

Considering the signs of (42) and (45), (41) must always be positive.

Proof of Proposition 2: From expressions (37) and (39) it can be obtained that

$$
\begin{equation*}
\frac{\partial s_{y}}{\partial t}=\frac{\partial Y_{1} / \partial t}{Y^{w}}=\frac{\mu_{2}}{\sigma-1+\mu_{2}(1-t)} s_{y} \tag{46}
\end{equation*}
$$

Then, deriving the current account equation (40) with respect to t,

$$
\begin{equation*}
\frac{\partial C A_{2}}{\partial t}=\frac{s_{y}}{\sigma-1+\mu_{2}(1-t)}\left\{\left(\sigma-1+\mu_{2}\right)-(\sigma-1)\left[\frac{\mu_{1} H w^{1-\sigma_{\phi}}}{H w^{1-\sigma} \phi+1-H}+\frac{\mu_{1}(1-H) \phi}{H w^{1-\sigma}+(1-H) \phi}+(1-\mu)\right]\right\} \tag{47}
\end{equation*}
$$

The sum in the square brackets is equal to or lower than 1 , and $\left[\left(\sigma-1+\mu_{2}\right)-(\sigma-\right.$ $\left.1)\left(\mu_{1}+1-\mu\right)\right]>0$. Thus, the expression is always positive. Then:

$$
\left.\frac{d w}{d t}\right|_{C A_{2}=0}=-\frac{\frac{\partial C A_{2}}{\partial t}}{\frac{\partial C A_{2}}{\partial w}}<0
$$

For the second part of the proposition, equation (19) is divided by (39), such that

$$
\frac{T_{2}}{Y^{w}}=t s_{y} \quad \text { and } \quad \frac{Y^{w}-T_{2}}{Y^{w}}=\left(1-t s_{y}\right)
$$

Deriving this expressions and expression (39) with respect to t,

$$
\begin{aligned}
\frac{d\left(t s_{y}\right)}{d t} & =t \frac{\partial s_{y}}{\partial t}+s_{y}+\left.t \frac{\partial s_{y}}{\partial w} \frac{d w}{d t}\right|_{C A_{2}=0}=\frac{\sigma-1+\mu_{2}}{\sigma-1+\mu_{2}(1-t)} s_{y}+\left.t \frac{\partial s_{y}}{\partial w} \frac{d w}{d t}\right|_{C A_{2}=0}>0 \\
\frac{d\left(1-t s_{y}\right)}{d t} & =-\frac{d\left(t s_{y}\right)}{d t}<0 \\
\frac{d Y^{w}}{d t} & =\left.\frac{\sigma}{\sigma-\mu_{1}} L \frac{d w}{d t}\right|_{C A_{2}=0}<0
\end{aligned}
$$

On looking at equations (43)-(47), it is clear that the first expression is always positive, while the last two are always negative. Thus, if T_{2} / Y^{w} increases and $\left(Y^{w}-T_{2}\right) / Y^{w}$ decreases as t rises, $d T_{2} / d t$ must be positive.

Proceeding in the same way for the disposable incomes,

$$
\frac{Y_{1}^{d}}{Y^{w}}=\frac{(1-t) Y_{1}}{Y^{w}}=(1-t) s_{y} \quad \text { and } \quad \frac{Y_{2}^{d}}{Y^{w}}=1-(1-t) s_{y}
$$

by differentiating these expressions with respect to t it is obtained that

$$
\begin{aligned}
\frac{d\left[(1-t) s_{y}\right]}{d t} & =-\frac{\sigma-1}{\sigma-1+\mu_{2}(1-t)} s_{y}+\left.(1-t) \frac{\partial s_{y}}{\partial w} \frac{d w}{d t}\right|_{C A_{2}=0}<0 \\
\frac{d\left[1-(1-t) s_{y}\right]}{d t} & =-\frac{d\left[(1-t) s_{y}\right]}{d t}>0
\end{aligned}
$$

Then, taking into account that $d Y^{w} / d t<0$, the last two expressions imply that

$$
\frac{d Y_{1}^{d}}{d t}<0 \quad \text { and } \quad \frac{d Y_{2}^{d}}{d t}>0
$$

Proof of Proposition 3: The change in the industrial sector as a proportion of the
labor force in the sector is:

$$
\frac{d L_{E_{j}} / d t}{L_{E_{j}}}=\frac{\partial L_{E_{j}} / \partial t}{L_{E_{j}}}+\left.\frac{\partial L_{E_{j}} / \partial w}{L_{E_{j}}} \frac{d w}{d t}\right|_{C A_{2}=0} \gtrless 0
$$

Using equations (23), (29), (37), (38), (43) and (47), the previous expression for region 1 at the symmetric equilibrium (30) is equal to

$$
\begin{equation*}
\left.\frac{d L_{E_{1}} / d t}{L_{E 1}}\right|_{s y m}=\frac{\sigma U(\phi)}{Z(\phi)} \gtrless 0 \tag{48}
\end{equation*}
$$

where $U(\phi)$, and $Z(\phi)>0$ for $\phi \geq 0(d Z(\phi) / d \phi>0)$, are polynomials,

$$
\begin{align*}
U(\phi)= & {\left[2 \mu_{2}+\sigma(1-\mu)\right] \phi^{2}+2 \mu_{2}(2 \sigma-1) \phi-\sigma(1-\mu) \gtrless 0 } \tag{49}\\
Z(\phi)= & \left(\sigma-1+\mu_{2}\right)\left[4 \mu_{1}(\sigma-1) \phi+(1-\mu)(\sigma-1)(1+\phi)^{2}\right] \tag{50}\\
& +\left(\sigma-1+\mu_{2}\right)\left[1+\frac{\sigma(1-\mu)}{\sigma-1+\mu_{2}}\right]\left[\left(1-\mu_{2}\right)(1+\phi)^{2}-\mu_{1}\left(1-\phi^{2}\right)\right]>0 \tag{51}
\end{align*}
$$

where $Z(\phi)>0$ for all $\phi \in[0,1]$. Then, the sign of expression (48) depends only on the numerator. The polynomial (49) has a unique positive root: $P\left(\phi=\phi^{s r}\right)=0$ with $\phi^{s r} \in(0,1)$, and

$$
\begin{equation*}
\phi^{s r}=\frac{-\mu_{2}(2 \sigma-1)+\sqrt{\left[\mu_{2}(2 \sigma-1)\right]^{2}+\sigma(1-\mu)\left[2 \mu_{2}+\sigma(1-\mu)\right]}}{\left[2 \mu_{2}+\sigma(1-\mu)\right]} \tag{52}
\end{equation*}
$$

Moreover, evaluating expression (48) for the extreme cases of $\phi=0$ and $\phi=1$ yields

$$
\begin{aligned}
& \left.\frac{d L_{E_{1}} / d t}{L_{E 1}}(\phi=0)\right|_{s y m}=-\frac{\sigma}{\left(\sigma-\mu_{1}\right)}<0 \\
& \left.\frac{d L_{E_{1}} / d t}{L_{E 1}}(\phi=1)\right|_{s y m}=\frac{\mu_{2} \sigma}{\left(1-\mu_{2}\right)\left(\sigma-\mu_{1}\right)}>0
\end{aligned}
$$

Then, expression (48) is negative for $0 \leq \phi<\phi^{s r}$ and positive for $\phi^{s r}<\phi \leq 1$. Proceeding
in the same way for region 2 , (and by symmetry) it is obtained that

$$
\left.\frac{d L_{E_{2}} / d t}{L_{E 2}}\right|_{s y m}=-\left.\frac{d L_{E_{1}} / d t}{L_{E 1}}\right|_{s y m}=-\frac{\sigma U(\phi)}{Z(\phi)} \gtrless 0
$$

Proof of Proposition 4: From equation $U(\phi)=0$ (polynomial (49)) and the implicit differentiation, it is obtained that

$$
\begin{align*}
\frac{\partial \phi^{s r}}{\partial \mu_{2}} & =-\frac{2 \phi^{s r}\left[\phi^{s r}+(2 \sigma-1)\right]+\sigma\left[1-\left(\phi^{s r}\right)^{2}\right]}{2\left[2 \mu_{2}+\sigma(1-\mu)\right] \phi^{s r}+2 \mu_{2}(2 \sigma-1)}<0 \tag{53}\\
\frac{\partial \phi^{s r}}{\partial \sigma} & =-\frac{(1-\mu)\left(\phi^{s r}\right)^{2}+4 \mu_{2} \phi^{s r}-(1-\mu)}{2\left[2 \mu_{2}+\sigma(1-\mu)\right] \phi^{s r}+2 \mu_{2}(2 \sigma-1)}<0 \tag{54}
\end{align*}
$$

While expression (53) is clearly negative, expression (54) is also negative since $\mu_{2}>0$ and

$$
\frac{\partial \phi^{s r}}{\partial \sigma}<0 \longleftrightarrow \phi^{s r}>\phi^{*}
$$

where ϕ^{*} is the unique positive root of the numerator of (54):

$$
\begin{equation*}
\phi^{*}=\frac{-2 \mu_{2}}{1-\mu}+\sqrt{\left(\frac{2 \mu_{2}}{1-\mu}\right)^{2}+1} \tag{55}
\end{equation*}
$$

Proof of Proposition 5: The proof is divided in two parts. The first part proves the existence of the thresholds ϕ^{b} and ϕ^{r} that determine the stability/instability of the symmetric equilibrium. The second part derives the analytical expression for these thresholds.

Part 1: By differentiating $V(H, w)$ from equation (34) with respect to H,

$$
\begin{equation*}
\frac{d V}{d H}=\frac{\partial V}{\partial H}-\frac{\partial V}{\partial w} \frac{\partial C A_{2} / \partial H}{\partial C A_{2} / \partial w} \gtrless 0 \tag{56}
\end{equation*}
$$

If this expression is negative, the equilibrium is stable, and if it is positive the equilibrium is unstable. Evaluating expression (56) at the interior symmetric equilibrium (30) it is
obtained that

$$
\begin{equation*}
\left.\frac{d V}{d H}\right|_{s y m}=-4 \frac{[1-d+\phi(1+d)]}{1+\phi}+\frac{4 \mu_{1} \frac{\phi}{1+\phi)^{2}}\left[\frac{\sigma^{2}(1-\mu)}{\mu_{(1)}\left(-1+\mu_{2}\right)}+1-\mu_{2}-\frac{\mu_{1(1-\phi)}^{(1+\phi)}}{(1+\phi}\right]}{\frac{\mu_{1}(\sigma-1) \phi}{(1+\phi)^{2}}+\frac{(1-\mu)(\sigma-1)}{4}+\frac{1}{4}\left[1+\frac{\sigma(1-\mu)}{\sigma-1+\mu_{2}}\right]\left(1+\mu_{2}+\mu_{1} \frac{1-\phi}{1+\phi}\right)} \tag{57}
\end{equation*}
$$

where $d \equiv \frac{\mu_{1}}{\sigma-1}$. Evaluating (57) at $\phi=1$ yields,

$$
\begin{equation*}
\left.\frac{d V}{d H}\right|_{s y m}(\phi=1)=-4 \frac{\mu_{1}\left(\sigma-1+\mu_{2}\right)^{2}}{\sigma\left(\sigma-\mu_{1}\right)\left(1-\mu_{2}\right)}<0 \tag{58}
\end{equation*}
$$

Thus, when $\phi=1$, the symmetric equilibrium is always stable. Additionally, evaluating expression (57) at $\phi=0$ yields,

$$
\begin{equation*}
\left.\frac{d V}{d H}\right|_{s y m}(\phi=0)=4\left[\frac{\mu_{1}}{\sigma-1}-1\right] \tag{59}
\end{equation*}
$$

Which implies that, if the BHC holds, the symmetric equilibrium is unstable for $\phi=0$, and stable otherwise. Furthermore, expression (57) can be rewritten as

$$
\begin{equation*}
\left.\frac{d V}{d H}\right|_{s y m}=\frac{P(\phi)}{K(\phi)}=\frac{-A \phi^{3}+B \phi^{2}+C \phi+D}{K(\phi)} \gtrless 0 \tag{60}
\end{equation*}
$$

where

$$
\begin{align*}
A \equiv & (1+d)\left[\left(1+\frac{\sigma(1-\mu)}{\sigma-1+\mu_{2}}\right)\left(1-\mu_{2}+\mu_{1}\right)+(1-\mu)(\sigma-1)\right]>0 \tag{61}\\
B \equiv & 4 \mu_{1}\left[\frac{\sigma(1-\mu)}{\sigma-1+\mu_{2}}+1-\mu_{2}+\mu_{1}\right]-2(1+d)\left[\frac{\sigma(1-\mu)\left(\sigma-\mu_{1}\right)}{\sigma-1+\mu_{2}}+\mu_{1}(\sigma-1)\right] \tag{62}\\
& -(1-d)\left\{\left[\frac{\sigma(1-\mu)}{\sigma-1+\mu_{2}}+1\right]\left(1-\mu_{2}+\mu_{1}\right)+(1-\mu)(\sigma-1)\right\} \\
C \equiv & 4 \mu_{1}\left[\frac{\sigma^{2}(1-\mu)}{\mu_{1}\left(\sigma-1+\mu_{2}\right)}+1-\mu\right]-(1+d) \frac{\sigma(1-\mu)\left(\sigma-\mu_{1}\right)}{\sigma-1+\mu_{2}} \tag{63}\\
& -2(1-d)\left[\frac{\sigma\left(1-\mu_{2}\right)\left(\sigma-\mu_{1}\right)}{\sigma-1+\mu_{2}}+\mu_{1}(\sigma-1)\right] \tag{64}\\
D \equiv & (d-1) \frac{\sigma(1-\mu)\left(\sigma-\mu_{1}\right)}{\sigma-1+\mu_{2}} \tag{65}\\
K(\phi) \equiv & \frac{4 \mu_{1}(\sigma-1) \phi+(1-\mu)(\sigma-1)(1+\phi)^{2}+\left(1+\frac{\sigma(1-\mu)}{\left(\sigma-1+\mu_{2}\right)}\right)\left[\left(1-\mu_{2}\right)(1+\phi)-\mu_{1}\left(1-\phi^{2}\right)\right]}{4(1+\phi)^{-1}}>0 \tag{66}
\end{align*}
$$

Since expression (66) is positive for all values of $\phi \geq 0$, only $P(\phi)$ determines the sign of the expression (57). As $\phi \rightarrow \infty, P(\phi) \rightarrow-\infty$; and as $\phi \rightarrow-\infty, P(\phi) \rightarrow \infty$. Moreover, if $d \gtrless 1$, then $D \gtrless 0$. Also, when $d \geq 1, C>0$, then there exists a threshold $\bar{\mu}_{1}\left(\sigma, \mu_{2}\right) \in(0, \min [1, \sigma-1])$ for the parameter μ_{1}, which can be expressed as $\bar{d} \equiv \frac{\bar{\mu}_{1}\left(\sigma, \mu_{2}\right)}{\sigma-1}$, such that if $\bar{d}<d<1$, then $C>0$, and there exist two real positive roots of the polynomial $P(\phi)$. And whenever $C<0, B<0$, according to expression (67), there are, therefore, no real positive roots.

$$
\begin{equation*}
B-C=-2 \mu_{1} \frac{\left[\left(1+\mu_{1}\right)+2\left(1-\mu_{2}\right)\right] \sigma^{2}-\left[\left(1+\mu_{1}\right)+\left(1+3 \mu_{1}\right)\left(1-\mu_{2}\right)\right] \sigma+\left(1-\mu_{2}\right)\left(1+2 \mu_{1}\right)}{(\sigma-1)\left(\sigma-1+\mu_{2}\right)}<0 \tag{67}
\end{equation*}
$$

Part 2: In order to obtain a closed form for the thresholds $\left(\phi^{b}\right.$ and $\left.\phi^{r}\right)$ it is taken into account that $\phi^{*}=-1$ is always a solution of $P(\phi)=0$. Then, this polynomial can be rewritten as

$$
\begin{equation*}
P(\phi)=-(\phi+1)\left[\phi^{2}-(\operatorname{Tr}) \phi+(D e t)\right] \tag{68}
\end{equation*}
$$

where, $\operatorname{Tr} \equiv \frac{B}{A}+1$ and $\operatorname{Det} \equiv-\frac{D}{A}$. Thus, the other two roots of $P(\phi)$ are

$$
\begin{align*}
\phi^{b} & =\frac{T r-\sqrt{(T r)^{2}-4 D e t}}{2} \tag{69}\\
\phi^{r} & =\frac{T r+\sqrt{(T r)^{2}-4 D e t}}{2} \tag{70}
\end{align*}
$$

If $(T r)^{2}-4$ Det >0, there are three cases: 1) if $\operatorname{Tr}>0$ and Det >0, then $0<\phi^{b}<\phi^{r}<1$; 2) if $\operatorname{Tr} \lessgtr 0$ and Det <0, then $\phi^{b}<0<\phi^{r}<1$ and 3) if $\operatorname{Tr}<0$ and Det >0, then $\phi^{b}<\phi^{r}<0$. If $(T r)^{2}-4 D e t=0$, then $\phi^{b}=\phi^{r} \in[0,1)$. If $(T r)^{2}-4 D e t<0$, then ϕ^{b} and ϕ^{r} are conjugated complexes.

Additionally, from these relations, $\bar{\mu}_{1}\left(\sigma, \mu_{2}\right) \in(0, \min [1, \sigma-1])$ can be implicitly
defined as the value of μ_{1} that ensures that the following conditions are fulfilled:

$$
\begin{align*}
& \operatorname{Tr}^{2}-4 D e t=0 \text { with } \operatorname{Tr}>0 \text { and } \text { Det }>0 \tag{71}\\
& \mu_{1}-(\sigma-1)<0 \tag{72}
\end{align*}
$$

(a)

(c)

(b)

$$
\begin{aligned}
& \cdots-1-\mu_{1}-\mu_{2}=0 \\
& \mu_{1}-(\sigma-1)=0 \\
& \quad T^{2}-\text { Det }=0 \text { with } \operatorname{Tr}>0 \wedge \text { Det }>0
\end{aligned}
$$

Figure 7: Regions of Bifurcation Points in the space $\left(\mu_{1}, \mu_{2}, \sigma\right)$

The region above the plane in Figure 7 (a) corresponds to $d<1$ (condition (72)). Only the parameter values below the dashed line of Figure 7 in the plane (μ_{1}, μ_{2}) are feasible due to the parameter restriction: $\mu_{1}+\mu_{2} \equiv \mu \in(0,1)$. The red surface in Figure 7 (b) depicts condition (71). Below this surface $\operatorname{Tr}^{2}-4 D e t>0$, and above $T r^{2}-4 D e t<0$. Thus, for each value of σ and μ_{2}, there exist a value $\mu_{1}=\bar{\mu}_{1}\left(\sigma, \mu_{2}\right)$ such that $T r^{2}-4$ Det $=0$. Moreover, Figure $7(\mathrm{c})$ divides the space of parameters $\left(\mu_{1}, \mu_{2}, \sigma\right)$ in three regions: 1) below the gray plane, $d>1$ and the symmetric equilibrium has only one bifurcation point, $\phi^{r} ; 2$) above the gray plane and below the red surface, $\bar{d}<d<1$ and the symmetric equilibrium has two bifurcation points, ϕ^{b} and ϕ^{r}; and 3) above the red surface, $d<\bar{d}<1$ and the symmetric equilibrium is stable for all values of ϕ.

Proof of Proposition 6: By fully differentiating the system (40)-(33) with respect to t, it is obtained that

$$
\left(\begin{array}{cc}
\frac{\partial C A_{2}}{\partial w} & \frac{\partial C A_{2}}{\partial H} \\
\frac{\partial V}{\partial w} & \frac{\partial V}{\partial H}
\end{array}\right)\binom{\frac{d w}{d t}}{\frac{d H}{d t}}=\binom{-\frac{\partial C A_{2}}{\partial t}}{-\frac{\partial V}{\partial t}}
$$

Then, the change in the number of firms is

$$
\frac{d H}{d t}=\frac{\left(\frac{\partial C A_{2}}{\partial t} \frac{\partial V}{\partial w}-\frac{\partial V}{\partial t} \frac{\partial C A_{2}}{\partial w}\right)}{\left(\frac{\partial C A_{2}}{\partial w} \frac{\partial V}{\partial H}-\frac{\partial C A_{2}}{\partial H} \frac{\partial V}{\partial w}\right)}
$$

After some manipulation,

$$
\begin{equation*}
\frac{d H}{d t}=-\frac{\frac{\partial V}{\partial t}+\frac{\partial V}{\partial w}\left(-\frac{\partial C A_{2} / \partial t}{\partial C A_{2} / \partial w}\right)}{\frac{\partial V}{\partial H}+\frac{\partial V}{\partial w}\left(-\frac{\partial C A_{2} / \partial H}{\partial C A_{2} / \partial w}\right)} \tag{73}
\end{equation*}
$$

The denominator is equal to the stability condition (57) in Proposition 5, while the numerator is the effect of a change in the rate of transfers (t) over the ratio of indirect utilities (V_{1} / V_{2}). Additionally, using (16) and (32), the numerator of (73) can be rewritten
as

$$
\frac{d V}{d t}=\frac{V_{1}}{V_{2}}\left\{\left[\frac{\frac{d L_{E_{1}}}{d t}}{L_{E_{1}}}-\frac{\frac{d L_{E_{2}}}{d t}}{L_{E_{2}}}\right]+\left[\frac{\left.\frac{d w}{d t}\right|_{C A_{2}=0}}{w}\right]-\left.\left[\frac{\mu_{2}}{w}+\mu_{1} \frac{\frac{\partial\left(P_{1} / P_{2}\right)}{\partial w}}{P_{1} / P_{2}}\right] \frac{d w}{d t}\right|_{C A_{2}=0}\right\}
$$

which is equal to expression (35). Evaluating at the symmetric equilibrium,

$$
\begin{equation*}
\left.\frac{d V}{d t}\right|_{s y m}=\frac{2}{Z(\phi)}[\sigma U(\phi)-J(\phi)] \gtrless 0 \tag{74}
\end{equation*}
$$

where

$$
\begin{align*}
J(\phi) \equiv & \left(1-\mu_{2}+\mu_{1}\right)\left[\mu_{2} \sigma-\mu_{1}(\sigma-1)\right] \phi^{2} \tag{75}\\
& +2\left[\mu_{2}\left(1-\mu_{2}\right) \sigma+\mu_{1}^{2}(\sigma-1)\right] \phi+(1-\mu)\left[\mu_{2} \sigma+\mu_{1}(\sigma-1)\right]
\end{align*}
$$

$U(\phi)$ and $Z(\phi)$ are defined in (49) and (50), and $J(\phi)>0$. Thus, the sign is determined by the numerator. After some manipulations it is obtained that

$$
\begin{equation*}
\sigma U(\phi)-J(\phi)=a \phi^{2}+b \phi+c \gtrless 0 \tag{76}
\end{equation*}
$$

where

$$
\begin{align*}
a & \equiv 2 \mu_{2} \sigma-\left(1-\mu_{2}+\mu_{1}\right)\left[\mu_{2} \sigma-\mu_{1}(\sigma-1)\right]+\sigma^{2}(1-\mu)>0 \tag{77}\\
b & \equiv 2\left[2 \mu_{2} \sigma(\sigma-1)+\mu_{2}^{2} \sigma-\mu_{1}^{2}(\sigma-1)\right] \gtrless 0 \tag{78}\\
c & \equiv-(1-\mu)\left[\sigma^{2}+\mu_{2} \sigma+\mu_{1}(\sigma-1)\right]<0 \tag{79}
\end{align*}
$$

Additionally, evaluating (74) at the extreme cases $\phi=0$ and $\phi=1$,

$$
\begin{align*}
& \left.\frac{d V}{d t}\right|_{\text {sym }}(\phi=0)=-2 \frac{\mu_{1}(\sigma-1)+\sigma\left(\sigma+\mu_{2}\right)}{\sigma(\sigma-1)}<0 \tag{80}\\
& \left.\frac{d V}{d t}\right|_{\text {sym }}(\phi=1)=2 \mu_{2} \frac{\sigma-1+\mu_{2}}{\left(\sigma-\mu_{1}\right)\left(1-\mu_{2}\right)}>0 \tag{81}
\end{align*}
$$

Thus, the polynomial (76) has only one positive root,

$$
\begin{equation*}
\phi^{l r}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \in(0,1) \tag{82}
\end{equation*}
$$

Furthermore, because $J(\phi)>0$ for all $\phi \geq 0$, then the following relation must hold:

$$
\begin{gather*}
0<\phi^{s r}<\phi^{l r}<1 \quad \text { when } \quad \mu_{2} \in\left(0,1-\mu_{1}\right) \tag{83}\\
\phi^{s r}=\phi^{l r} \quad \text { when } \quad \mu_{2}=0,1-\mu_{1} \tag{84}
\end{gather*}
$$

Combining these results with those from Proposition 5 properties i) and ii) of Proposition 6 are derived. Additionally, from polynomial (49) and the implicit differentiation, it is obtained that

$$
\begin{equation*}
\frac{\partial \phi^{l r}}{\partial \sigma}=-\frac{\frac{\partial a}{\partial \sigma}\left(\phi^{l r}\right)^{2}+\frac{\partial b}{\partial \sigma} \phi^{l r}+\frac{\partial c}{\partial \sigma}}{2 a \phi^{l r}+b} \tag{85}
\end{equation*}
$$

The denominator is positive since $\phi^{l r}>-b /(2 a)$. Hence, the sign of (85) depends on the numerator. Figure 8 depicts the region for which $\partial \phi^{l r} / \partial \sigma>0$.

Figure 8: Region for $\partial \phi^{l r} / \partial \sigma>0$ in the space $\left(\mu_{1}, \mu_{2}, \sigma\right)$

Figure 8 (a) shows that only for a very narrow range of values of the parameters (μ_{1}, μ_{2}, σ) is the derivative (85) positive. Furthermore, Figure 8 (b) highlights that if the agricultural sector is not too small (approximately $1-\mu>0.08$), derivative (85) will be negative.

Derivation of the Figures 3 (a) - (e): First the focus is putted on $\phi^{l r}$, which presents the same shape for all values of d. Then, ϕ^{b} and ϕ^{r} are analyzed, by considering the different cases $(d<1, d=1$ and $d>1)$.

Differentiating of the polynomial (76) with respect to μ_{2} yields

$$
\frac{\partial(\sigma U(\phi)-J(\phi))}{\partial \mu_{2}}=\sigma\left\{2 \mu_{2} \phi^{2}+\left(\mu-\mu_{1} \phi^{2}\right)+(\sigma-1) \phi(4-\phi)+4 \mu_{2} \phi+\sigma-1+\mu_{2}\right\}+\mu_{1}(\sigma-1)>0
$$

And the differential with respect to ϕ is

$$
\frac{\partial(\sigma U(\phi)-J(\phi))}{\partial \phi}=2 a \phi+b>0
$$

which is positive because $\phi^{l r}>\frac{-b}{2 a}$ (see expression (82)). Then, the implicit differentiation gives

$$
\frac{\partial \phi^{l r}}{\partial \mu_{2}}=-\frac{\partial(\sigma U(\phi)-J(\phi)) / \partial \mu_{2}}{\partial(\sigma U(\phi)-J(\phi)) / \partial \phi}<0
$$

Additionally, evaluating the polynomial (76) at $\mu_{2}=0$ and $\mu_{2}=1-\mu_{1}$,

$$
\phi^{l r}\left(\mu_{2}=0\right)=1 \text { and } \phi^{l r}\left(\mu_{2}=1-\mu_{1}\right)=0
$$

For ϕ^{b} and ϕ^{r} the simplest case, $d=1\left(\sigma-1=\mu_{1}\right)$ is studied first. In this special case it is obtained that

$$
\phi^{b}\left(\sigma-1=\mu_{1}\right)=0 \text { and } \phi^{r}\left(\sigma-1=\mu_{1}\right)=\frac{1-\mu_{2}-\mu_{1}\left[4 \mu_{1}^{2}+\mu_{1}\left(6 \mu_{2}-1\right)+2 \mu_{2}^{2}+\mu_{2}-2\right]}{1-\mu_{2}-\mu_{1}\left[2 \mu_{1}^{2}+\mu_{1}\left(2 \mu_{2}-1\right)+\mu_{2}-2\right]}
$$

Thus, only ϕ^{r} needs to be analyzed. Differentiating $\phi^{r}\left(\sigma-1=\mu_{1}\right)$ with respect to μ_{2},

$$
\frac{\partial \phi^{r}\left(\sigma-1=\mu_{1}\right)}{\partial \mu_{2}}=\frac{\mu_{1}^{2}\left(5-2 \mu_{1}^{2}\right)+\mu_{2}\left(2-\mu_{2}-\mu_{1}^{3}\right)+3 \mu_{1}^{3}\left(1-\mu_{2}\right)+2 \mu_{1}\left[1+\mu_{2}\left(2-\mu_{2}\right)\right]+2 \mu_{1}^{2} \mu_{2}\left(1-\mu_{2}\right)}{-\left(2 \mu_{1}\right)^{-1}\left\{1-\mu_{2}-\mu_{1}\left[2 \mu_{1}^{2}+\mu_{1}\left(2 \mu_{2}-1\right)+\mu_{2}-2\right]\right\}^{2}}<0
$$

Additionally, note that the previous derivative tends to $-\infty$ when $\mu_{2}=1-\mu_{1}$. Evaluating $\phi^{r}\left(\sigma-1=\mu_{1}\right)$ at $\mu_{2}=0$ and $\mu_{2}=1-\mu_{1}:$

$$
\phi^{r}\left(\sigma-1=\mu_{1}, \mu_{2}=0\right)=\frac{1+2 \mu_{1}+\mu_{1}^{2}-4 \mu_{1}^{3}}{1+2 \mu_{1}+\mu_{1}^{2}-2 \mu_{1}^{3}} \text { and } \phi^{r}\left(\sigma-1=\mu_{1}, \mu_{2}=1-\mu_{1}\right)=0
$$

Bringing these results together, $d=1$ yields $\phi^{r}\left(\mu_{2}=0\right)<\phi^{l r}\left(\mu_{2}=0\right)$ and $\phi^{r}\left(\mu_{2}=\right.$ $\left.1-\mu_{1}\right)=\phi^{l r}\left(\mu_{2}=1-\mu_{1}\right)=0$. Both thresholds diminish as μ_{2} increases, and they cross at least once within the interval $\mu_{2} \in\left(0,1-\mu_{1}\right)$.

When $d>1\left(\sigma-1<\mu_{1}\right)$, the BHC case, $\phi^{b}<0$. Then, again, only ϕ^{r} needs to be studied. By differentiating expression (70) with respect to μ_{2},

$$
\begin{equation*}
\frac{\partial \phi^{r}}{\partial \mu_{2}}=\frac{1}{\sqrt{(T r)^{2}-4 D e t}}\left[\frac{\partial T r}{\partial \mu_{2}} \phi^{r}-\frac{\partial D e t}{\partial \mu_{2}}\right] \tag{86}
\end{equation*}
$$

where

$$
\begin{aligned}
\frac{\partial D e t}{\partial \mu_{2}} & =\frac{-2 \mu_{1} \sigma\left(\sigma-1-\mu_{1}\right)\left(\sigma-\mu_{1}\right)^{2}}{\left(\sigma-1+\mu_{1}\right)\left[\sigma \mu_{1}^{2}-\sigma^{2}\left(1-\mu_{2}\right)+\mu_{1}(\sigma-2)\left(\sigma-1+\mu_{2}\right)\right]^{2}}>0 \text { if } \sigma-1<\mu_{1} \\
\frac{\partial T r}{\partial \mu_{2}}-\frac{\partial D e t}{\partial \mu_{2}} & =\frac{-\left\{\sigma\left(\sigma^{2}-\mu_{1}^{2}\right)-\mu_{1}\left(1-\mu_{2}\right)+\sigma\left[\left(1-\mu_{2}\right) \sigma-\mu_{1}(\sigma-1)\right]+\mu_{1}\left[\sigma(2-\mu)-\left(1-\mu_{2}\right)\right]\right\}}{\left[4 \mu_{1}(\sigma-1)\left(\sigma-1+\mu_{2}\right)\right]^{-1}\left(\sigma-1+\mu_{1}\right)\left[\mu_{1}^{2} \sigma-\sigma^{2}\left(1-\mu_{2}\right)+\mu_{1}(\sigma-2)\left(\sigma-1+\mu_{2}\right)\right]^{2}}<0
\end{aligned}
$$

Then, expression (86) must be negative whenever $d>1$. Now, evaluating ϕ^{r} at $\mu_{2}=0$ and $\mu_{2}=1-\mu_{1}$ yields that $\phi^{r} \in(0,1)$. Thus, when the BHC holds with inequality $(d>1), \phi^{r}\left(\mu_{2}=0\right)<\phi^{l r}\left(\mu_{2}=0\right)$ and $\phi^{r}\left(\mu_{2}=1-\mu_{1}\right)>\phi^{l r}\left(\mu_{2}=1-\mu_{1}\right)$. As in the previous case, both thresholds diminish as μ_{2} increases, and they cross at least once within the interval $\mu_{2} \in\left(0,1-\mu_{1}\right)$.

When $d<1\left(\sigma-1>\mu_{1}\right)$, the analysis focuses on the case when the thresholds are
real numbers $\left(0<\phi^{b} \leq \phi^{r}<1\right)$, that is, when $\bar{d} \leq d<1$. From Proposition 5 a value $\mu_{2}=\mu_{2_{0}}\left(\right.$ implicitly defined by $\left.(T r)^{2}-4 D e t=0\right)$ can be defined, such that $\phi_{0} \equiv \phi^{b}=\phi^{r}$. Then, by differentiating the polynomial $\mathcal{O}_{\left(\phi, \mu_{2}\right)} \equiv \phi^{2}-(T r) \phi+$ Det $=0$ (see the polynomial (68)), and evaluating at $\left(\mu_{2_{0}}, \phi_{0}\right)$,

$$
\begin{aligned}
\frac{\partial \mathcal{O}}{\partial \phi}\left(\mu_{2_{0}}, \phi_{0}\right) & =2 \phi-\left.T r\right|_{\phi_{0}}=2 \phi_{0}-\left(\phi_{0}+\phi_{0}\right)=0 \\
\frac{\partial \mathcal{O}}{\partial \mu_{2}}\left(\mu_{2_{0}}, \phi_{0}\right) & >0 \\
\frac{\partial^{2} \mathcal{O}}{\partial \phi^{2}}\left(\mu_{2_{0}}, \phi_{0}\right) & =2
\end{aligned}
$$

Thus, for the function $\mu_{2}(\phi)$ implicitly defined by $\mathcal{O}_{\left(\phi, \mu_{2}\right)}=0$, it is obtained that

$$
\frac{d \mu_{2}}{d \phi}\left(\mu_{2_{0}}, \phi_{0}\right)=0 \quad \text { and } \quad \frac{d^{2} \mu_{2}}{d \phi^{2}}\left(\mu_{2_{0}}, \phi_{0}\right)<0
$$

which implies that the function $\mu_{2}(\phi)$ (implicitly defined by $\mathcal{O}_{\left(\phi, \mu_{2}\right)}=0$) has a maximum at $\left(\mu_{2_{0}}, \phi_{0}\right)$. In a close neighborhood of $\mu_{2_{0}}, \phi^{b}$ increases, and ϕ^{r} diminishes as μ_{2} increases until $\mu_{2}=\mu_{2_{0}}$. At this point, both thresholds converge to the value ϕ_{0}.

