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This document provides the necessary assumptions and the proofs of the theoretical results in the main

text, and some additional simulation results. Appendix A of this document reports a set of standard

assumptions that have been widely used in the literature on nonparametric estimation and inference; see for

example Kong et al. (2010) and Noh et al. (2013) among others. Appendix B contains the detailed proofs

of the theoretical results developed in sections 5, 6 and 7 of the main text. In particular, it contains the

proofs of theorems 1, 2, 3, 4, and 5 and propositions 3 and 4 of the main text. Appendix C provides four

auxiliary lemmas which are useful to prove the results in sections 5-7 of the main text. Finally, Appendix D

contains the tables of some additional simulation results that examine a bootstrap bias-corrected estimator

of measure of Granger causality in quantiles.

Appendix A: Assumptions

First of all, let {(Xt, Yt)} be a jointly stationary process. Since we are interested in time series data, we need

to specify the dependence in the processes of interest. In what follows, we define the mixing dependence

that we consider in this paper. The stationary stochastic process {(Xt, Yt)} is strongly mixing, with γ(k)

its strong mixing coeffi cient, if

γ(k) = sup
A∈F0−∞,B∈F∞k

|P (AB)− P (A)P (B)| → 0 as k →∞,

with Fba = σ
(
{(Xt, Yt)}bt=a

)
, where σ(·) means the smallest sigma algebra. Furthermore, let Vx and Vz be

two open convex sets in Rd1 and Rd1+d2 , respectively. We now consider the following assumptions:

A.1. The processes {(Xt, Yt)} are strongly mixing with mixing coeffi cients γ(k) satisfying

∞∑
k=1

kα [γ(k)]1−2/ν2 <∞,

for some ν2 > 2 and α > max{(p+ d1 + 1)(1− 2/ν2)/d1, (q + d1 + d2 + 1)(1− 2/ν2)/(d1 + d2)}.



A.2. All partial derivatives of q̄τ (x) up to order p + 1 exist and are continuous for all x ∈ Vx, and there

exists a constant C1 > 0 such that |Dr q̄τ (x)| ≤ C1, for all x ∈ Vx and |r| = p+1. All partial derivatives

of qτ (z) up to order q + 1 exist and are continuous for all z ∈ Vz, and there exists a constant C2 > 0

such that |Drqτ (z)| ≤ C2, for all z ∈ Vz and |r| = q + 1.

A.3. The marginal density of εt = Xt − qτ (Zt−1) is bounded and satisfies E(ϕ(εt)|Zt−1) = 0.

A.4. For all e in a neighbourhood of zero, the conditional density fε|Z−1(e|z) of εt = Xt − qτ (Zt−1) given

Zt−1 = z satisfies ∣∣∣fε|Z−1(e|z1)− fε|Z−1(e|z2)∣∣∣ ≤ Ke‖z1 − z2‖,

where Ke is a positive constant depending on e. Further, the conditional density is positive for e = 0

for all values of z ∈ Vz, and its first partial derivative with respect to e, D1fε|Z−1(e|z), is bounded for

all z ∈ Vz and e in a neighbourhood of zero.

A.5. The weight function w(z) is continuous, and its support D ⊂ Vz is compact and has non-empty interior.

A.6. The kernel function K(·) has a compact support and
∣∣∣Hj(u)−Hj(v)

∣∣∣ ≤ ‖u− v‖ for all j with 0 ≤ j ≤

max{2p+ 1, 2q + 1}, where Hj(u) = ujK(u).

A.7. The probability density function of Zt−1, fZ(z), is positive and bounded with bounded first-order

derivatives on Vz. The joint probability density of (Z0, Z l) satisfies f(Z0,Zl)(u, v; l) ≤ C < ∞ for all

l ≥ 1.

A.8. The conditional density fZ−1|X of Zt−1 given Xt exists and is bounded. The conditional density

function f(Z0,Zl)|(X1,Xl+1) of (Z0, Z l) given (X1, Xl + 1) exists and is bounded for all l ≥ 1.

A.9. The bandwidth sequences h1 and h2 satisfy h1 → 0, Thd1+2(p+1)1 / log T = O(1), h2 → 0, and

Th
d1+d2+2(q+1)
2 / log T = O(1) as T → ∞. Furthermore, we assume Th2(d1+d2)2 /(log T )3 → ∞, h1 =

o(h2), and h
d1+d2
2 = o(hd11 ).

A.10. The bootstrap bandwidth h∗ satisfies h∗ → 0 and Th∗ d1+d2+2(q+1)/(log T )λ = O(1), for some λ > 0

as T →∞.

The assumptions presented here are frequently seen for nonparametric smoothing in multivariate time

series analysis, see Masry (1996) and Kong et al. (2010). Assumptions A.1-A.2, A.6-A.8 and A.9 are

standard. Assumptions A.4 and A.5 are required to derive the Bahadur representations in Lemmas 3-4 in

Appendix C. Assumption A.10 is assumed to guarantee the consistency of the smoothed local bootstrap.
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Appendix B: Proofs of the main results

This section provides the proofs of the main theoretical results developed in sections 5, 6 and 7 of the main

text.

Proof of Theorem 1: Theorem 1 can be proved by combing the first order Taylor expansion of ̂Cτ (Y → X)

around 1 (i.e. using ln y ≈ y−1) and the asymptotic Bahadur representations in Lemmas 3 and 4 of Appendix

C and with the equality â/b̂ = a/b+ b̂−1[(â− a)− (b̂− b)(a/b)]. �

Proof of Theorem 2: Note that for any x, y,

ρτ (x− y)− ρτ (x) = (−y)ϕ(x) + 2(y − x)[1(y > x > 0)− 1(y < x < 0)].

Let d̂(x) = ̂̄qτ (x)− q̄τ (x) and d̂(z) = q̂τ (z)−qτ (z). By straightforward calculation, under the null hypothesis

of no causality, we obtain

1

T

T∑
t=1

ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)−
1

T

T∑
t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

=
1

T

T∑
t=1

[(
q̂τ (Zt−1)− qτ (Zt−1)

)
−
(̂̄qτ (Xt−1)− q̄τ (Xt−1)

)]
w(Zt−1)ϕ(εt)

+
2

T

T∑
t=1

(
Xt − q̂τ (Zt−1)

){
1(d̂(Zt−1) > ε1t > 0)− 1(d̂(Zt−1) < εt < 0)

}
w(Zt−1)

− 2

T

T∑
t=1

(
Xt − ̂̄qτ (Xt−1)

){
1(d̂(Xt−1) > εt > 0)− 1(d̂(Xt−1) < εt < 0)

}
w(Zt−1)

:=AT +BT + CT .

From the above decomposition, we will show that under the assumed assumptions, the term AT is asymp-

totically normal, and the terms BT and CT are asymptotically negligible.

Now, let us first show the asymptotic negligibility of term BT . Define I(w) = {t : Zt−1 ∈ D, t = 1, . . . , T}.

Note that Xt − q̂τ
(
Zt−1

)
= −d̂

(
Zt−1

)
+ εt. Then,

|BT | ≤
2

T

T∑
t=1

w(Zt−1)
∣∣Xt − q̂τ (Zt−1)

∣∣ 1(|εt| < ∣∣∣d̂ (Zt−1)∣∣∣)
≤ 2

T

T∑
t=1

w(Zt−1)
(∣∣∣d̂ (Zt−1)∣∣∣+ |εt|

)
1
(
|εt| <

∣∣∣d̂ (Zt−1)∣∣∣)
≤ 4

T

T∑
t=1

w(Zt−1)
∣∣∣d̂ (Zt−1)∣∣∣ 1(|εt| < ∣∣∣d̂ (Zt−1)∣∣∣)

≤ 4 max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣max
z∈D

w(z)
1

T

T∑
t=1

1

(
|εt| < max

s∈I(w)

∣∣∣d̂ (Zs−1)∣∣∣) .
From the Glivenko-Cantelli Theorem for strictly stationary sequences, we have

sup
a∈R

∣∣∣∣∣ 1

T

T∑
t=1

1 (|εt| < a)− Pr (|ε| < a)

∣∣∣∣∣ = Op

(
T−1/2

)
,
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It thus follows that

|BT | ≤4 max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣max
z∈D

w(z)

{
Pr

(
|ε| < max

t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣)+Op

(
T−1/2

)}
=4 max

t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣max
z∈D

w(z)

{
Fε

(
max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣)− Fε(− max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣)}
+ 4 max

t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣max
z∈D

w(z) Op

(
T−1/2

)
≤C

(
max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣)2 + CT−1/2 max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣ ,
where the third step follows from the Taylor expansion of Fε, bounded marginal density of εt in Assumption

A.3, and bounded weight function w(·) in Assumption A.5. From Kong et al. (2010), we have

max
t∈I(w)

∣∣∣d̂ (Zt−1)∣∣∣ = Op

(
log T

Thd2

)3/4
,

It follows that BT = Op

((
log T
Thd2

)3/2
+ T−1/2

(
log T
Thd2

)3/4)
= op

((
Th

d/2
2

)−1)
under Assumption A.9.

Similar to the term BT , it can be proved that the term CT = op

((
Th

d1/2
1

)−1)
= op

((
Th

d/2
2

)−1)
under hd2 = o(hd11 ) in Assumption A.9. It follows that it is suffi cient to establish that Thd/22 AT converges in

distribution to a normal random variable with asymptotic variance given by σ̃20τ := κ (τ)2 σ20τ , for κ (τ) =

E
[
ρτ
(
Xt − qτ

(
Zt−1

))
w
(
Zt−1

)]
.

Using Lemmas 1 and 2 of Appendix C, we have

AT =− 1

T (T − 1)

T∑
t=1

T∑
s=1,s 6=t

w(Zt−1)e
′
1

H−1T
hd2

S−1T,q(Zt−1)Kh2(Zs−1 − Zt−1)µ(Zs−1 − Zt−1)ϕ(εt)ϕ(εs)

+
1

T (T − 1)

T∑
t=1

T∑
s=1,s 6=t

w(Zt−1)e
′
1

H−1T
hd11

S−1T,p(Xt−1)Kh1(Xs−1 −Xt−1)µ(Xs−1 −Xt−1)ϕ(εt)ϕ(εs)

+ op

((
Th

d/2
2

)−1)
:=A1T +A2T + op

((
Th

d/2
2

)−1)
,

where the negligible terms with t = s have been dropped to apply U -statistic theory due to the leave

one observation out in the estimation part. We will show that Thd/22 A1T converges in distribution and

A2T = op

((
Th

d/2
2

)−1)
under our assumptions. First of all, to facilitate our analysis, from the notion of

“equivalent kernel”representation for local polynomial estimator [see Fan and Gijbels, 1996, pp.63-64], we

get

A1T =
1

T (T − 1)

T∑
t=1

T∑
s=1,s 6=t

w(Zt−1)

fε|Z(0|Zt−1)fZ(Zt−1)
Kh2(Zt−1 − Zs−1)ϕ(εt)ϕ(εs) + op

((
Th

d/2
2

)−1)

≡ A1T + op

((
Th

d/2
2

)−1)
, say.
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Note that we can rewrite Thd/22 A1T into a standard U -statistic form with a symmetrized kernel depending

on the sample size T , i.e.

Th
d/2
2 A1T =

2

T − 1

∑
1≤t<s≤T

UT (χt, χs), (1)

where χt = (Zt−1, εt), UT (χt, χs) = ηT (χt, χs) + ηT (χs, χt), and

ηT (χt, χs) =
w(Zt−1)

2fε|Z(0|Zt−1)fZ(Zt−1)

1

h
d
2
2

K

(
Zt−1 − Zs−1

h2

)
ϕ(εt)ϕ(εs).

Note that E[UT (χt, χs)] = E[ηT (χt, χs)] = E[UT (χt, χs)|χt] = E[ηT (χt, χs)|χt] = 0 under Assumption

A.3. So the previous U -statistic is a degenerate second order U -statistic. We can apply a central limit

theorem (CLT) for second order degenerate U -statistic with strong mixing processes. Under Assumptions

A.1, A.3, A.6, and A.9, one can verify that the conditions of Theorem A.1 in Gao (2007) are satisfied for

kernel UT (χt, χs) so that a CLT applies to the term Th
d/2
2 A1T . Its asymptotic variance is given by

σ̃20τ = lim
T→∞

2EtEs
[
U2T (χt, χs)

]
= lim

T→∞
2EtEs

[
ηT (χt, χs)

2 + ηT (χs, χt)
2 + 2ηT (χt, χs)ηT (χs, χt)

]
= 2τ2 (1− τ)2

∫
K2(u) du

∫
w2(z)

f2ε|Z(0|z) dz

:= κ (τ)2 σ20τ ,

where Et denotes the expectation with respect to χt. For example, by straightforward calculation of condi-

tional expectation, we have

lim
T→∞

EtEs
[
ηT (χt, χs)

2
]

=
1

4
τ2 (1− τ)2 lim

T→∞

∫ ∫
w2(z1)

f2ε|Z(0|z1)f2Z(z1)

1

hd2
K2

(
z1 − z2
h2

)
fZ(z1)fZ(z2) dz1 dz2

=
1

4
τ2 (1− τ)2

∫
K2(u) du

∫
w2(z)

f2ε|Z(0|z) dz

by standard use of change of variables and Assumptions A.7 and A.9. The U -statistic representation in (1),

together with the form of asymptotic variance σ̃20τ , implies that Th
d/2
2 A1T = Th

d/2
2 A1T +op(1)

d−→ N
(
0, σ̃20τ

)
.

Observing that by using almost the same steps as in proving the asymptotic normality of Thd/22 A1T , we

can prove that Thd1/21 A2T converges in distribution to a normal variable, and therefore Th
d1/2
1 A2T = Op(1).

Thus, Thd/22 AT = Th
d/2
2 A1T +

(
h
d/2
2 /h

d1/2
1

)(
Th

d1/2
1 A2T

)
+ op(1)

d−→ N
(
0, σ̃20τ

)
by the assumption hd2 =

o
(
hd11

)
in A.9.

In addition, a consistent estimator for σ̃20τ is given by

̂̃σ20τ =2τ2 (1− τ)2
1

T (T − 1)

T∑
t=1

T∑
s=1,s 6=t

w2(Zt−1)

f̂2ε,Z(0, Zt−1)

1

hd2
K2

(
Zt−1 − Zs−1

h2

)

=2τ2 (1− τ)2
1

T (T − 1)

T∑
t=1

T∑
s=1,s 6=t

w2(Zt−1)

f2ε,Z(0, Zt−1)

1

hd2
K2

(
Zt−1 − Zs−1

h2

)
+ op(1),
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where f̂ε,Z(0, Zt−1) is the leave-one-out kernel density estimator defined in the main text for fε,Z(0, Zt−1) ≡

fε|Z(0|Zt−1)fZ(Zt−1). As a consequence, the main term of ̂̃σ20τ can also be written into a standard U -statistic
form with a symmetrized kernel

HT (Zt−1, Zs−1) = 2τ2 (1− τ)2
(

w2(Zt−1)

f2ε,Z(0, Zt−1)
+

w2(Zs−1)

f2ε,Z(0, Zs−1)

)
1

hd2
K2

(
Zt−1 − Zs−1

h2

)
.

Note that in contrast to (1), ̂̃σ20τ is a non-degenerate second order U -statistic and by the usual Hoeffding
decomposition, one can thus show that ̂̃σ20τ = σ̃20τ + op(1).

Finally, observing that by Taylor expansion of ln y around 1 (i.e. ln y ≈ y− 1) and using the asymptotic

equivalence of κ̂ (τ) to κ (τ) = E[ρτ (Xt − qτ (Zt−1))w(Zt−1)] stated in Lemma 4 of Appendix C, together

with Slutsky’s theorem, we have

Th
d/2
2

̂Cτ (Y → X) = Th
d/2
2

(
T−1

∑T
t=1 ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)

T−1
∑T

t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)
− 1

)
+ op(1)

= κ (τ)−1 Th
d/2
2 AT + op(1)

d−→ N
(
0, σ20τ

)
,

where σ20τ := σ̃20τ/κ (τ)2. It is straightforward to show that σ̂20τ = ̂̃σ20τ/κ̂(τ)
2
is a consistent estimator for

σ20τ . Thus, our test statistic Γ̂τ = Th
d/2
2

̂Cτ (Y → X)/σ̂0τ
d−→ N (0, 1). This ends the proof of Theorem 2. �

Proof of Proposition 3: This result can be shown by following the same steps as in the proof of Theorem

2. Noting that, under the fixed alternative hypothesis H1 in Equation (15) of the main text, we have

1

T

T∑
t=1

ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)−
1

T

T∑
t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

=

(
1

T

T∑
t=1

ρτ (Xt − q̄τ (Xt−1))w(Zt−1)−
1

T

T∑
t=1

ρτ (Xt − qτ (Zt−1))w(Zt−1)

)

+AT +BT + CT

:=DT +AT +BT + CT ,

where the last three terms AT , BT , and CT are as defined before in the proof of Theorem 2. Following

the same arguments as those in Theorem 2, Thd/22 (AT +BT + CT ) = Op(1). As a matter of fact, one can

furthermore prove that all AT , BT and CT are of order op
(
T−1/2

)
, see the proof of lemma 3 in Noh et al.

(2013). On the other hand, under H1 of causality, the weak law of large numbers yields immediately

DT = E
[
ρτ (Xt − q̄τ (Xt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
+ op(1) (2)

= E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

](E [ρτ (Xt − q̄τ (Xt−1))w(Zt−1)
]

E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

] − 1

)
+ op(1)

= E
[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
Cτ (Y → X) + op(1)

:= κ (τ)× Cτ (Y → X) + op(1),
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where the third step follows by a Taylor expansion of ln y around 1.

Therefore, since under H1, Cτ (Y → X) > 0, or equivalently, Pr
[
qτ (Zt−1) = q̄τ (Xt−1)

]
< 1, we have

Th
d/2
2

̂Cτ (Y → X)

=Th
d/2
2

T−1
∑T

t=1 ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)− T−1
∑T

t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)

T−1
∑T

t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)
× [1 + op(1)]

=κ (τ)−1
[
Th

d/2
2 DT + Th

d/2
2 (AT +BT + CT )

]
× [1 + op(1)]

=Th
d/2
2 Cτ (Y → X)→∞.

Alternatively, under H1 of causality, one can simply apply the consistency result in Proposition 2 to

show that ̂Cτ (Y → X) converges in probability to Cτ (Y → X) > 0, and consequently Thd/22
̂Cτ (Y → X) will

diverge to infinity under our assumptions.

On the other hand, following arguments similar to those we have used in the proof of the consistency

of estimator σ̂20τ to the asymptotic variance σ
2
0τ in Theorem 2 under the null hypothesis, we can show

that σ̂20τ := ̂̃σ20τ/Ĉ2τ = Op(1) under the alternative hypothesis of no causality. Proposition 3 follows then

from Th
d/2
2

̂Cτ (Y → X) → ∞ and σ̂0τ = Op(1) as T → ∞. Hence, the test Γ̂τ = Th
d/2
2

̂Cτ (Y → X)/σ̂0τ is

diverging to infinity at the rate Thd/22 and is consistent. �

Proof of Proposition 4: First, following similar arguments as in Theorem 2 and Proposition 3, with the

only exception that the term DT defined in (2) now takes a different form. Specifically, we can show that

under the local alternatives given in Equation (18) of the main text,

Th
d/2
2

(
1

T

T∑
t=1

ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)−
1

T

T∑
t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)−DT

)

:=Th
d/2
2 (AT +BT + CT )

d−→ N (0, σ̃20τ ),

with AT , BT , CT , and σ̃20τ given in the proof of Theorem 2.

Second, under the local alternative hypotheses H1(δT ), using the second order Taylor expansion, one can

calculate that

DT = E
[
ρτ (Xt − q̄τ (Xt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
[1 + op(1)]

= E
[
ρτ (Xt − qτ (Zt−1) + δT∆T (Zt−1))w(Zt−1)

]
− E

[
ρτ (Xt − qτ (Zt−1))w(Zt−1)

]
[1 + op(1)]

= δTE
[
∆T (Zt−1)w(Zt−1)ϕ(εt)

]
− δ2T

2
E
[
∆2
T (Zt−1)w(Zt−1)g(Zt−1)

]
[1 + op(1)]

= δ2TE
[
∆2
T (Zt−1)w(Zt−1)fε|Z(0|Zt−1)

]
[1 + op(1)],

where g(z) = ∂E[ϕ(Xt − θ)|Zt−1 = z]/∂θ = −fε|Z(0|z), and the fourth step follows by law of iterated
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expectations and E[ϕ(εt)|Zt−1] = 0 in Assumption A.3. Consequently, with δT =
(
Th

d/2
2

)−1/2
, we have

Th
d/2
2

̂Cτ (Y → X) = κ (τ)−1
[
Th

d/2
2 DT + Th

d/2
2 (AT +BT + CT )

]
× [1 + op(1)]

d−→ N
(
γ, σ20τ

)
under the local alternatives with

γ = κ (τ)−1 lim
T→∞

E
[
∆2
T (Zt−1)w(Zt−1)fε|Z(0|Zt−1)

]
.

This concludes the proof of Proposition 4. �

Proof of Theorem 3: The asymptotic validity of our bootstrap procedure can be proved using similar

arguments to those used in the proof of Theorem 2, with the term A1T replaced by its bootstrapped version

A∗1T using the bootstrapped sample {(X∗t , Y ∗t )}Tt=1. Conditionally on {(Xt, Yt)}Tt=1 and using Theorem 1 of

Hall (1984), we obtain the bootstrap validity result in Theorem 3. �

Proof of Theorem 4: The proof is similar to the proof of Theorem 1 and a sketched proof is provided.

Denote d̂1(W t−1) = (φ̂τ −φτ )′W t−1 and d̂2(Xt−1) = ̂̄qτ (Xt−1)− q̄τ (Xt−1). Note the following expansion

holds,

1

T

T∑
t=1

ρτ

(
Xt − φ̂

′
τW t−1 − ̂̄qτ (Xt−1)

)
w(Zt−1)

=
1

T

T∑
t=1

ρτ

(
Xt − φ

′
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1)

− 1

T

T∑
t=1

(̂̄qτ (Xt−1)− q̄τ (Xt−1)
)
w(Zt−1)ϕ(εt)−

1

T

T∑
t=1

(
φ̂τ − φτ

)′
W t−1w(Zt−1)ϕ(εt)

− 2

T

T∑
t=1

(
Xt − φ̂

′
W t−1 − ̂̄qτ (Xt−1)

){
1(d̂1(W t−1) + d̂2(Xt−1) > εt > 0)

−1(d̂1(W t−1) + d̂2(Xt−1) < εt < 0)
}
w(Zt−1)

:=
1

T

T∑
t=1

ρτ

(
Xt − φ

′
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1) + ET + FT +GT

=
1

T

T∑
t=1

ρτ

(
Xt − φ

′
τW t−1 − q̄τ (Xt−1)

)
w(Zt−1) + op(T

−1/2),

where ET = FT = GT = op(T
−1/2) can be proved using the steps in the proof of lemma 3 in Noh et

al. (2013) and by noting that maxt∈I(w) |d̂1(W t−1)| = Op(T
−1/2) for bounded support. Moreover, the

asymptotic representation for

1

T

T∑
t=1

ρτ

(
Xt − φ̂

′
τW t−1 − q̂τ (Zt−1)

)
w(Zt−1) =

1

T

T∑
t=1

ρτ
(
Xt − φ′τW t−1 − qτ (Zt−1)

)
w(Zt−1) + op(T

−1/2)
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can be obtained using the same arguments as Lemmas 3 and 4 of Appendix C. The proof then follows by

using the equality that âb̂−1 = ab−1 + b̂−1
[
(â− a)−

(
b̂− b

)
ab−1

]
. �

Proof of Theorem 5: Consider the following decomposition of ρτ (·):

1

T

T∑
t=1

ρτ

(
Xt − φ̂

′
τW t−1 − ̂̄qτ (Xt−1)

)
w(Zt−1)−

1

T

T∑
t=1

ρτ

(
Xt − φ̂

′
τW t−1 − q̂τ (Zt−1)

)
w(Zt−1)

=
1

T

T∑
t=1

[(
q̂τ (Zt−1)− qτ (Zt−1)

)
−
(̂̄qτ (Xt−1)− q̄τ (Xt−1)

)]
w(Zt−1)ϕ(εt)

+
1

T

T∑
t=1

((
φ̂τ − φτ

)
−
(
φ̂τ − φτ

))′
W t−1w(Zt−1)ϕ(εt) + higher order terms

:=HT + IT + higher order terms.

Following the same arguments as in the proof of Theorem 2, it can be shown that Thd/22 HT
d−→ N (0, σ̃20τ ) and

Th
d/2
2 IT =

[√
T
(
φ̂τ − φτ

)
−
√
T
(
φ̂τ − φτ

)]
h
d/2
2 Op(1) = op(1) by root-T consistency properties of linear

coeffi cients estimators φ̂τ and φ̂τ . Therefore,

Th
d/2
2

̂CPLτ (Y → X|W )

=(κPL (τ))−1Th
d/2
2 HT × [1 + op(1)]

d−→N (0, σPL20τ ),

which proves that Thd/22
̂CPLτ (Y → X|W ) converges to a normal distribution under the null of no causality

in the presence of control variables W . �

Appendix C: Proofs of auxiliary results

In this section, we provide four auxiliary lemmas which are useful to prove our main results in Appendix

B. In the first lemma, the uniform Bahadur representation for the estimator of the restricted conditional

quantile function q̄τ (x) based on a p-th order local polynomial approximation using bandwidth h1 is derived.

Please notice that the proofs of the following Lemmas 1-4 can be obtained using similar arguments as in

lemmas 2 and 3 in Noh et al. (2013) [or using results in Kong et al. (2010), see their corollary 1, lemmas 8

and 10, respectively], and they are therefore omitted.

Lemma 1: Let e1 be an N1 × 1 vector with its first element given by 1 and all others 0. Suppose A.1-A.9

in Appendix A hold and h1 = O (T−κ1) with κ1 > 1/ (2p+ 2 + d1). Then, with probability one, we have

̂̄qτ (x)− q̄τ (x) = −e′1
H−1T
Thd11

S−1T,p(x)

T∑
t=1

Kh1(Xt−1 − x)ϕ(εt)µ(Xt−1 − x) +RT ,

where εt = Xt − q̄τ
(
Xt−1

)
is the restricted error and RT = op

((
Thd11

)−1/2)
uniformly in x ∈ DX and

DX is the compact support of the weighting function w(·) with respect to the part of X.
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Analogously, the q-th order local polynomial estimator of the unrestricted conditional quantile function

qτ (z) using bandwidth h2, say q̂τ (z), can be defined accordingly as in Section 4 and its uniform Bahadur

representation can be obtained similarly and is stated in the next lemma. Note that Lemma 1 is only a

special case of Lemma 2.

Lemma 2: Denote d = d1 + d2. Let e1 be an N2 × 1 vector with its first element given by 1 and all others

0. Suppose Assumptions A.1-A.9 in Appendix A hold and h2 = O(T−κ2) with κ2 > 1/(2q + 2 + d). Then,

with probability one, we have

q̂τ (z)− qτ (z) = −e′1
H−1T
Thd2

S−1T,q(z)
T∑
t=1

Kh2(Zt−1 − z)ϕ(εt)µ(Zt−1 − z) +RT ,

where εt = Xt − qτ (Zt−1) is the unrestricted error and RT = op

((
Thd2

)−1/2)
uniformly in z ∈ D and D is

the compact support of the weighting function w(·).

On the other hand, to derive the Bahadur representation of ̂Cτ (Y → X), we need to investigate the

asymptotic behaviour of T−1
∑T

t=1 ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1) [resp. T
−1∑T

t=1 ρτ (Xt − q̂τ (Zt−1))w(Zt−1)],

which is stated in the next two lemmas. Again, the proof of Lemma 3 is similar to the one of Lemma 4.

Lemma 3: Suppose Assumptions A.1-A.9 in Appendix A hold, p > d1/2 − 1 and h1 = O(T−κ1) with

1/(2p+ 2 + d1) < κ1 < 1/(2d1). Then,

1

T

T∑
t=1

ρτ (Xt − ̂̄qτ (Xt−1))w(Zt−1)− E[ρτ (Xt − q̄τ (Xt−1))w(Zt−1)]

=
1

T

T∑
t=1

ρτ (Xt − q̄τ (Xt−1))w(Zt−1)− E[ρτ (Xt − q̄τ (Xt−1))w(Zt−1)] + op(T
−1/2).

Lemma 4: Let d = d1 + d2. Suppose Assumptions A.1-A.9 in Appendix A hold, q > d/2 − 1 and

h2 = O(T−κ2) with 1/(2q + 2 + d) < κ2 < 1/(2d). Then, we have

1

T

T∑
t=1

ρτ (Xt − q̂τ (Zt−1))w(Zt−1)− E[ρτ (Xt − qτ (Zt−1))w(Zt−1)]

=
1

T

T∑
t=1

ρτ (Xt − qτ (Zt−1))w(Zt−1)− E[ρτ (Xt − qτ (Zt−1))w(Zt−1)] + op(T
−1/2).

Appendix D: Additional simulation results
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Table 1: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.25

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.1122
(0.1152)

0.1094
(0.1112)

0.7501
(0.3056)

0.7635
(0.3169)

1.0212
(0.3718)

0.7162
(0.3283)

0.8587
(0.3792)

0.8246
(0.3589)

T = 100

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0609
(0.0565)

0.0544
(0.0534)

0.6049
(0.1826)

0.6295
(0.1980)

0.8371
(0.2283)

0.6157
(0.2096)

0.6260
(0.2026)

0.6279
(0.2219)

T = 200

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0380
(0.0316)

0.0314
(0.0319)

0.5071
(0.1138)

0.5370
(0.1250)

0.7156
(0.1458)

0.5649
(0.1476)

0.4696
(0.1206)

0.4889
(0.1305)

T = 400

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0230
(0.0180)

0.0180
(0.0184)

0.4050
(0.0670)

0.4303
(0.0729)

0.5851
(0.0861)

0.4762
(0.0984)

0.3129
(0.0673)

0.3282
(0.0755)

Note: This table shows the average values of bootstrap bias-corrected ( ̂C∗τ,BC(Y → X) ) estimates of causality mea-

sures from Y to X (Cτ (Y → X)). “True”indicates the true value of causality measure, “Bias-Corrected”indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “– ”means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes”means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.
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Table 2: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.50

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y → X No No Yes Yes Yes Yes Yes No

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.1076
(0.1050)

0.0882
(0.0963)

0.6746
(0.3028)

0.6725
(0.3058)

0.9096
(0.3623)

0.6369
(0.3324)

0.7973
(0.3655)

0.1150
(0.1120)

T = 100

Y → X No No Yes Yes Yes Yes Yes No

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0584
(0.0578)

0.0510
(0.0536)

0.5335
(0.1632)

0.5453
(0.1658)

0.8045
(0.2457)

0.5695
(0.2080)

0.5597
(0.2038)

0.0654
(0.0648)

T = 200

Y → X No No Yes Yes Yes Yes Yes No

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0332
(0.0307)

0.0294
(0.0277)

0.4361
(0.0998)

0.4661
(0.1090)

0.7082
(0.1482)

0.5130
(0.1403)

0.4201
(0.1172)

0.0364
(0.0325)

T = 400

Y → X No No Yes Yes Yes Yes Yes No

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0202
(0.0160)

0.0156
(0.0150)

0.3929
(0.0618)

0.4075
(0.0675)

0.6536
(0.1083)

0.4769
(0.1021)

0.3176
(0.0736)

0.0241
(0.0228)

Note: This table shows the average values of bootstrap bias-corrected ( ̂C∗τ,BC(Y → X) ) estimates of causality mea-

sures from Y to X (Cτ (Y → X)). “True”indicates the true value of causality measure, “Bias-Corrected”indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “– ”means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes”means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.
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Table 3: Bootstrap bias-corrected estimation of quantile Granger causality measures at τ = 0.75

Measure DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4 DGP P5 DGP P6

T = 50

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.1062
(0.1090)

0.0891
(0.0995)

0.6985
(0.2831)

0.7092
(0.3075)

0.9373
(0.3925)

0.6840
(0.3078)

0.7700
(0.3706)

0.7603
(0.3410)

T = 100

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0633
(0.0601)

0.0624
(0.0601)

0.5595
(0.1828)

0.5699
(0.1751)

0.8810
(0.2648)

0.5672
(0.1953)

0.6344
(0.2160)

0.5550
(0.1961)

T = 200

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0396
(0.0311)

0.0339
(0.0312)

0.4582
(0.1068)

0.4899
(0.1166)

0.8340
(0.1857)

0.5217
(0.1415)

0.5183
(0.1322)

0.4274
(0.1192)

T = 400

Y → X No No Yes Yes Yes Yes Yes Yes

True Cτ (Y → X) 0.0000 0.0000 – – – – – –

Bias-Corrected ̂C∗τ,BC(Y → X) 0.0239
(0.0194)

0.0164
(0.0165)

0.4045
(0.0674)

0.4253
(0.0709)

0.7746
(0.1179)

0.4768
(0.1010)

0.4275
(0.0851)

0.3286
(0.0718)

Note: This table shows the average values of bootstrap bias-corrected ( ̂C∗τ,BC(Y → X) ) estimates of causality mea-

sures from Y to X (Cτ (Y → X)). “True”indicates the true value of causality measure, “Bias-Corrected”indicates the

average value of the estimate of causality measure after bootstrap bias correction, and “– ”means that the true value

of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction

estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of

causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal

to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes”means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.
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