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This document provides the necessary assumptions and the proofs of the theoretical results in the main
text, and some additional simulation results. Appendix A of this document reports a set of standard
assumptions that have been widely used in the literature on nonparametric estimation and inference; see for
example Kong et al. (2010) and Noh et al. (2013) among others. Appendix B contains the detailed proofs
of the theoretical results developed in sections 5, 6 and 7 of the main text. In particular, it contains the
proofs of theorems 1, 2, 3, 4, and 5 and propositions 3 and 4 of the main text. Appendix C provides four
auxiliary lemmas which are useful to prove the results in sections 5-7 of the main text. Finally, Appendix D
contains the tables of some additional simulation results that examine a bootstrap bias-corrected estimator

of measure of Granger causality in quantiles.

Appendix A: Assumptions

First of all, let {(X¢, Y2)} be a jointly stationary process. Since we are interested in time series data, we need
to specify the dependence in the processes of interest. In what follows, we define the mixing dependence
that we consider in this paper. The stationary stochastic process {(X4, Y;)} is strongly mixing, with (k)

its strong mixing coefficient, if

(k) = sup IP(AB) —P(A)P(B)| — 0 as k — oo,
AeF° ,BeFpe

with F0 = o <{(Xt, Yt)}fza) , where o(-) means the smallest sigma algebra. Furthermore, let V,, and V, be

two open convex sets in R% and R%+92 | respectively. We now consider the following assumptions:

A.1. The processes {(X;,Y;)} are strongly mixing with mixing coefficients (k) satisfying

YRR < oo,
k=1

for some vy > 2 and o > max{(p+di + 1)(1 — 2/v2)/d1,(q+ d1 +da + 1)(1 — 2/v3)/(d1 + d2) }.



A.2.

A.7.

All partial derivatives of gr(x) up to order p + 1 exist and are continuous for all z € V,, and there
exists a constant Cq > 0 such that |DZq,(z)| < C1, for all z € V,, and |r| = p+1. All partial derivatives
of ¢-(z) up to order ¢ + 1 exist and are continuous for all z € V,, and there exists a constant Co > 0

such that |DZg,(z)| < Cy, for all z € V, and |r| = ¢ + 1.

. The marginal density of ¢, = X; — ¢-(Z,_;) is bounded and satisfies E(p(e¢)|Z;_;) = 0.

. For all e in a neighbourhood of zero, the conditional density f.z  (e|z) of &r = Xy — ¢-(Z;_1) given

Z,_, = z satisfies
fa@,l(e’él) - fa\g,1(€|§2) < Kellzg — 2ol

where K. is a positive constant depending on e. Further, the conditional density is positive for e = 0
for all values of z € V,, and its first partial derivative with respect to e, D' Il Z_l(e|§), is bounded for

all z € V, and e in a neighbourhood of zero.

. The weight function w(z) is continuous, and its support D C V, is compact and has non-empty interior.

. The kernel function K () has a compact support and Hl(g) — Hl-(y) < Jlu—vl| for all j with 0 < j <

max{2p + 1,2¢ + 1}, where Hj(u) = wl K (u).

The probability density function of Z, 1, fz(z), is positive and bounded with bounded first-order
derivatives on V. The joint probability density of (Zy, Z,) satisfies f(z z,)(u,v;l) < C < oo for all
[ >1.

. The conditional density fz |x of Z, ; given X; exists and is bounded. The conditional density

function f(z, z,)/x1,x41) of (£, Z;) given (X1, X; + 1) exists and is bounded for all [ > 1.

. The bandwidth sequences h; and ho satisfy hy — 0, Th‘liﬁz(pﬂ)/logT = O(1), hg — 0, and

Tpdtdat2atl) logT = O(1) as T — oo. Furthermore, we assume Tp2(A1+d2) logT)? — o0, h1 =
2 2

o(hg), and h§ T4 = o(h{1).

A.10. The bootstrap bandwidth h* satisfies h* — 0 and Th* “+d2+2(a+1) /(]og T)» = O(1), for some A > 0

as T — oo.

The assumptions presented here are frequently seen for nonparametric smoothing in multivariate time

series analysis, see Masry (1996) and Kong et al. (2010). Assumptions A.1-A.2, A.6-A.8 and A.9 are

standard. Assumptions A.4 and A.5 are required to derive the Bahadur representations in Lemmas 3-4 in

Appendix C. Assumption A.10 is assumed to guarantee the consistency of the smoothed local bootstrap.



Appendix B: Proofs of the main results

This section provides the proofs of the main theoretical results developed in sections 5, 6 and 7 of the main
text.

Proof of Theorem 1: Theorem 1 can be proved by combing the first order Taylor expansion of C'; (?: X)
around 1 (i.e. using Iny ~ y—1) and the asymptotic Bahadur representations in Lemmas 3 and 4 of Appendix
C and with the equality a/b = a/b+ b~'[(a — a) — (b —b)(a/b)]. O

Proof of Theorem 2: Note that for any x, ,

p(x —y) = pr(z) = (—y)p(z) +2(y — 2)[1(y > 2 > 0) = 1(y <z <0)].

Let 3(@) = 57 (z) — G-(2) and d(2) = ¢-(2) — ¢-(2). By straightforward calculation, under the null hypothesis

of no causality, we obtain

1 & o T

TZPT(Xt—ET(Xt—O) (Zi-1) Z 4r(Zy-1))w(Zy-1)
t=1 —
T

i3 [ Zi) ~ e Z0) ~ (7K ) ~ 3K | wlZ et
t=1

T
+ %Z (Xt = ¢-(Z4-1)) {1(d(Zt71) > e >0) — l(C?(Zt,l) <g < 0)} w(Z;_4)

:=Ar + Br + Cr.

From the above decomposition, we will show that under the assumed assumptions, the term Az is asymp-
totically normal, and the terms Br and Cr are asymptotically negligible.

Now, let us first show the asymptotic negligibility of term By. Define I(w) ={t: Z,_; € D,t =1,...,T}.
Note that X; — g, (Z;_1) = —d (Z,_,) + & Then,

< ;iw(zt—l) ‘C/Z\(Zt—l)} (|5t| < ) (Zt 1)‘)

T
‘A Zy ‘maxw Zl (’515\ < Srenlaiuc) ’g(Zs_l)D .

t:1

< 4 max
tel(w)

From the Glivenko-Cantelli Theorem for strictly stationary sequences, we have

=0, <T_1/2> ,

sup
a€R

T

1

TE;I (let| < a) — Pr(|e] < a)
t=



It thus follows that

|Br| <4 max \J(Zt_l)\glgw(z){ <\e| < max ‘E(Zt_l)D 10, (T—1/2)}

tel(w) tel(w)

2D (2) {Fa (tg%fs) )E(Ztl)D ke <_tgé(lfj) ‘J(Ztl)D}

—I—4tIEnIe(L;<) ‘d(Zt 1 ‘maxw( ) Op (T_1/2>

—4 ‘d (Z,

2
~ L1/ ~
=¢ <trenl%z}5) ‘d (Zt_l) D +CT tg}%i)() ‘d (Zt_l) ’

where the third step follows from the Taylor expansion of F., bounded marginal density of ; in Assumption
A.3, and bounded weight function w(-) in Assumption A.5. From Kong et al. (2010), we have

logT)3/4

max ‘J(thl)’ =0, (Thg

tel(w)

3/2 3/4
It follows that Br = O, <(1;%§> +T1/2 (1;%) ) = 0p <<Thd/2) ) under Assumption A.9.
2 2

Similar to the term Br, it can be proved that the term Cr = o, <(Th‘1i1/2) _1> = 0p <(Thg/2>_1>
under h¢ = o(h9') in Assumption A.9. It follows that it is sufficient to establish that Thg/ ® Ar converges in
distribution to a normal random variable with asymptotic variance given by &3, := x (1)? 03, , for & (1) =
Elpr (X1 = ar (Zi-1)) w (Ze-1)]-

Using Lemmas 1 and 2 of Appendix C, we have

T -1

1 Hy"
Z w(Zt—l)QllTZST,}J(Zt—l)KhZ (Zso1 = Zi 1) Zs1 — Zy1)p(er)p(es)
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Z_AlT + AQT + Op (

Thy?) >

where the negligible terms with ¢ = s have been dropped to apply U-statistic theory due to the leave
one observation out in the estimation part. We will show that Thg/ 2A1T converges in distribution and
Aor = o <(Thd/ 2) ) under our assumptions. First of all, to facilitate our analysis, from the notion of
“equivalent kernel” representation for local polynomial estimator [see Fan and Gijbels, 1996, pp.63-64], we

get

_ ! 3 w(Zi ) »
AT T 2 2 Tz, ) ae e Bt~ Leplee ety (7))



Note that we can rewrite Thg/ 2Z1T into a standard U-statistic form with a symmetrized kernel depending

on the sample size T, i.e.

d/2— 2
Thy* Ay = 71 > Ur(xsxs), (1)
1<t<s<T
where Xt = (thlvgt)v UT(Xt?Xs) = 77T(Xt’Xs) + nT(Xth)v and
w(Zy_q) 1 (Zt—l - Zs—l)
) = SR (EE ) o) ().
M) S 2 S i) 1 TEEAS

Note that E[Ur(xs, xs)] = Elnr(xe Xs)| = E[Ur(xs Xo)Ix:) = Elnr(Xe: Xs)|x;] = 0 under Assumption
A.3. So the previous U-statistic is a degenerate second order U-statistic. We can apply a central limit
theorem (CLT) for second order degenerate U-statistic with strong mixing processes. Under Assumptions
A1, A3, A.6, and A.9, one can verify that the conditions of Theorem A.1 in Gao (2007) are satisfied for

kernel Ur(x;, X,) so that a CLT applies to the term T’ hg/ zle. Its asymptotic variance is given by
56, = Nim 2B, By [UF(xp, X,)] = Jim 2B [n7(xi, x,)* + 77T(Xs> Xt)2 + 207 (X X ) (X X)]
(1- K?(u) du /
7 [ Ku)du s Oyz
2
= r(r) a2,

where E; denotes the expectation with respect to x,. For example, by straightforward calculation of condi-

tional expectation, we have

h t ["1 (Xt?Xs
11 ! 271%%//7‘ Uz . 11(2( : 2>J (21)fz(23) dzy dz
: T Z\&
E\Z | 1 fZ 1) hg h2 1/J£\£2 1 Az9

(1—-7) /K2 du/
E\Z ’Z

by standard use of change of variables and Assumptions A.7 and A.9. The U-statistic representation in (1),

together with the form of asymptotic variance G2, implies that Thg/ Ay = Thg/ QZlT-Fop( 1) LN (0,53.).

/2

Observing that by using almost the same steps as in proving the asymptotic normality of Thy'“ A7, we

can prove that Th‘lil/ ® Aoy converges in distribution to a normal variable, and therefore T° h‘lil/ ?Agp = Op(1).
Thus, Th;mAT = Th‘;ﬂAlT + (hgp/hflm) <Thcll1/2A2T> + 0p(1) — N(O 0'07_) by the assumption hd =
0 <h‘111) in A.9.

In addition, a consistent estimator for 53 is given by

T T 2
=2 2 2 1 wH(Zy_y) 1 o (Zyy1—Zsq
Gor =27°(1—1) 72 Z R d (Gl
" (T-1 t=1 s=1,s#t J?Z(O’Zt—l) h3 ha
972 (1 )2 1 i d wz(zt—l) 1 K2 (Zt—l _Zs—1> n (1)
=27 —T) - —_— op(1),
T (T - ]‘) t=1 S=1,S7ét ng’Z(O’Zt—].) h’g h2 P



where fs 2z(0,Z,_4) is the leave-one-out kernel density estimator defined in the main text for f. (0,2, ;) =
~2
fe1z(01Z,_1)fz(Z,_1). As a consequence, the main term of G, can also be written into a standard U-statistic

form with a symmetrized kernel

w*(Zy_1) w*(Z,_1) 1 Zi— 2
HT 7, ’257 _ 27_2 1— 7 2 L1 + Lg—1 7K2 <t_15_1> .
BivrZot) e <f32(072t1) f22(0,Z, 1) ) hg ha

Note that in contrast to (1), 537 is a non-degenerate second order U-statistic and by the usual Hoeffding
decomposition, one can thus show that 537 =63, + op(1).

Finally, observing that by Taylor expansion of Iny around 1 (i.e. Iny ~ y — 1) and using the asymptotic
equivalence of /1/(?) to k(1) = Elp. (Xt — q-(Z;_1))w(Z,_;)] stated in Lemma 4 of Appendix C, together

with Slutsky’s theorem, we have

T2 (X — 30X, ) w(Z,y)
T-1 Zthl P (Xt — Gr(Z4—1))w(Zy—y)

92 Ap + 0,(1)

Thi?C, (Y — X) = ThY/? ( - 1) +0,(1)

=k (r)" ' Th
i>/\/(O,<7%7.),

~ =2 =2 . .
where 02 := 2 /k (7). Tt is straightforward to show that 62 = 7, /k(7) is a consistent estimator for

03 _. Thus, our test statistic T, = Thd/ ’C. (7:)( )/Gor 4N (0,1). This ends the proof of Theorem 2. [J
Proof of Proposition 3: This result can be shown by following the same steps as in the proof of Theorem

2. Noting that, under the fixed alternative hypothesis H; in Equation (15) of the main text, we have

*ZPT /a: (X ))w(Zyy _72107' Gr(Z_1))w(Z;_1)

(T ZPT Xy ))w(Z;y) TZPT Z;q))w (Zt_1)>

+ Ar + Br+Crp
:=Dp + Ap + Bp + Cp,
where the last three terms Ap, Br, and Cr are as defined before in the proof of Theorem 2. Following
the same arguments as those in Theorem 2, Thd/ (A7 + Br + Cr) = Op(1). As a matter of fact, one can

furthermore prove that all A7, Br and Cr are of order o, (T -1/ 2), see the proof of lemma 3 in Noh et al.

(2013). On the other hand, under H; of causality, the weak law of large numbers yields immediately

Dr = E [p,(Xi = 4:(X, )Jw(Zy_1)] — E [p,(X: = 4 (Zy_)Jw(Z,_y)] + 0p(1) (2)

Ep(Xi — @ (Xy))w(Zi1)] o
E [p(Xs — ¢:(Zy1))w(Zy_1)] 1) ot

= B [p(Xt = ¢:(Z4-1))w(Z,1)] C-(Y — X) + 0p(1)

=F [ﬂT(Xt - qT(thl))w(thl)] (

=r(1) x Cr(Y — X) + 0p(1),



where the third step follows by a Taylor expansion of Iny around 1.

Therefore, since under Hy, C-(Y — X) > 0, or equivalently, Pr [¢-(Z,_,) = ¢-(X,_;)] < 1, we have

%0, (v — X)
2T S 0 (K = (X )w(Zi) = TS pr(Xe = e (Zi )l Zy )
’ 150 p(Xe = 4-(Z, ) w(Zy )
=k (1) TR Dy + THY? (Ag + Br + CT)] [+ 0p(1)]

X [L+0p(1)]

—Thd/QC’ Y - X)— o0

Alternatively, under H; of causality, one can simply apply the consistency result in Proposition 2 to
show that C'- (7: X) converges in probability to C-(Y — X) > 0, and consequently T’ hg/ ’c, (7: X) will
diverge to infinity under our assumptions.

On the other hand, following arguments similar to those we have used in the proof of the consistency
of estimator 3(2)7 to the asymptotic variance J%T in Theorem 2 under the null hypothesis, we can show
that 2, := 5(2)7 / 63 = Op(1) under the alternative hypothesis of no causality. Proposition 3 follows then
from Thg/QCT(?:X) — 00 and 0gr = Op(1) as T'— oo. Hence, the test T, = Thd/ZC (?:X)/&\OT is
diverging to infinity at the rate Thg/ % and is consistent. O
Proof of Proposition 4: First, following similar arguments as in Theorem 2 and Proposition 3, with the
only exception that the term Dr defined in (2) now takes a different form. Specifically, we can show that

under the local alternatives given in Equation (18) of the main text,

T
TW% 2 or(Xe = G (X))ol Ze) - TZ tn>@n—m)
=ThY? (Ar + Br + Cr) S N (0,62,),

with A, Br, Cr, and 62 given in the proof of Theorem 2.
Second, under the local alternative hypotheses Hj(d7), using the second order Taylor expansion, one can

calculate that

Dy = E [p; (Xt — G-( Xy ))w(Zy )] = E [pr (X — ¢ (Zy1))w(Zy )] [1+ 0p(1)]
= E [p;(Xt = ¢(Zy 1) + 01 D7(Zy 1) )w(Zy )] = B [pr(Xe = ¢r(Zy1))w(Zy )] [1 + 0p(1))]

ZEM% Dw(Zy1)9(Zy1)] [1+ 0p(1)]

=ork [AT(Zt—1>w(Zt—1)<P(5t)]
= 075 [AF(Z11)w(Zy1) fo12(01Z41)] [T + 0p(1)],

where g(z) = OF[p(Xy — 0)|Z;_1 = 2]/00 = —f.z(0|z), and the fourth step follows by law of iterated



1/2
expectations and E[p(e:)|Z;_;] = 0 in Assumption A.3. Consequently, with 7 = (T hd/ 2) , we have

Th20,Y = X)=r ()" [Thd/QD +ThY? (Ap + Br + CT)} % [1 4 0p(1)]

d
SN (v,08,)
under the local alternatives with

y=r(T)" " lim E [AT(Zt Dw (thl)fdg(mztfl)}'

T—o00

This concludes the proof of Proposition 4. [

Proof of Theorem 3: The asymptotic validity of our bootstrap procedure can be proved using similar

arguments to those used in the proof of Theorem 2, with the term A;p replaced by its bootstrapped version

A%, using the bootstrapped sample {(X;,Y;*)}L ;. Conditionally on {(X;,Y;)},; and using Theorem 1 of

Hall (1984), we obtain the bootstrap validity result in Theorem 3. [J

Proof of Theorem 4: The proof is similar to the proof of Theorem 1 and a sketched proof is provided.
Denote 31 (W,_1) = (27 —¢,)W,_; and 32 (X, 1) = a (X, 1) —3-(X,_;). Note the following expansion

holds,

T
1
ZTZPT (Xt oW, 4 — (X, 1)) w(Zy_1) + Er + Fr+Gr
t=1
1 T
, )
== >0 (X = Wy~ (X)) w(Ziy) + 0p(T7)
t=1

where Ep = Fr = Gp = op(T_l/Q) can be proved using the steps in the proof of lemma 3 in Noh et
al. (2013) and by noting that max;cy(, \dl(Wt D] = O,(T~%/2) for bounded support. Moreover, the

asymptotic representation for

T

1 ~1 . _

T ZPT (Xt — oW, | — (IT(ZtA)) w(Z,_y) ZPT P W, — Q‘F(thl)) w(Zy_1) + op(T 1/2)
t=1



can be obtained using the same arguments as Lemmas 3 and 4 of Appendix C. The proof then follows by
using the equality that ab~! = ab1 + b1 {(& —a) — (l; — b) abil]. O

Proof of Theorem 5: Consider the following decomposition of p_(-):

T T

1 = -~ 1 ~ .

T ZPT <Xt - W,y — qT(Xt—1)> w(Zy_y) — T ZPT (Xt - Wy 4 — CIT(Zt—l)) w(Z;—y)
t=1

ST
Il

% [(AT(thl) - QT<ZI‘/71)) - <§T(Kt71) - QT(Xt71)>} w(Zy_1)p(et)

% Z ((?4;7 ¢r) (¢T 57»/&157110(&5,1)@(&) + higher order terms
:=Hyp + I + higher order terms.

Following the same arguments as in the proof of Theorem 2, it can be shown that Thd/ Hy LN (0,62.) and
Th;l/2IT = [\/T <¢T - ¢7) vT <¢T — ¢, )} hd/2 Op(1) = 0p(1) by root-T' consistency properties of linear

coefficients estimators gAZ)T and ngT. Therefore,

ThY2CPL (Y = X|W)
=(s" (7)) 7' Thy* Hy x [1 4 0,(1)]
N(O O_PLQ)’

which proves that Thg/ 2Cf L(Y — X|W) converges to a normal distribution under the null of no causality

in the presence of control variables W. [

Appendix C: Proofs of auxiliary results

In this section, we provide four auxiliary lemmas which are useful to prove our main results in Appendix
B. In the first lemma, the uniform Bahadur representation for the estimator of the restricted conditional
quantile function g, (z) based on a p-th order local polynomial approximation using bandwidth h; is derived.
Please notice that the proofs of the following Lemmas 1-4 can be obtained using similar arguments as in
lemmas 2 and 3 in Noh et al. (2013) [or using results in Kong et al. (2010), see their corollary 1, lemmas 8
and 10, respectively], and they are therefore omitted.

Lemma 1: Let €; be an Nj x 1 vector with its first element given by 1 and all others 0. Suppose A.1-A.9
in Appendiz A hold and hy = O (T~"') with k1 > 1/ (2p+ 2+ dy). Then, with probability one, we have
Hy 1

@@—@@:—jwlw

ZKhl X, 1 —z)oE)u(X,y — z) + Rr,
t=1

—1/2

_ /
where g, = Xt — @7 (Xt_l) is the restricted error and Ry = op ((Thih) ) uniformly in x € Dx and

Dx is the compact support of the weighting function w(-) with respect to the part of X.



Analogously, the g-th order local polynomial estimator of the unrestricted conditional quantile function
¢-(z) using bandwidth hg, say ¢-(z), can be defined accordingly as in Section 4 and its uniform Bahadur
representation can be obtained similarly and is stated in the next lemma. Note that Lemma 1 is only a
special case of Lemma 2.

Lemma 2: Denote d = dy + da. Let e; be an Ny x 1 vector with its first element given by 1 and all others
0. Suppose Assumptions A.1-A.9 in Appendiz A hold and ho = O(T~"2) with Ky > 1/(2q + 2+ d). Then,

with probability one, we have

Gr(2) — gr(2) = — Thd ZKh2 Z; 4 —2)ple)(Z,_y — 2) + Rr,

where ey = Xy — q-(Z,_4) is the unrestricted error and Ry = o, ((Thg)71/2> uniformly in z € D and D is
the compact support of the weighting function w(-).

On the other hand, to derive the Bahadur representation of CT(f:X ), we need to investigate the
asymptotic behaviour of T-1 "7 | p, (X, = 4,(X,_))w(Z,_y) [resp. T3S0 pr(Xe = 4 (Zyy))w(Zi_y),
which is stated in the next two lemmas. Again, the proof of Lemma 3 is similar to the one of Lemma 4.
Lemma 3: Suppose Assumptions A.1-A.9 in Appendiz A hold, p > d1/2 — 1 and hy = O(T~") with
1/2p+2+4d1) < k1 < 1/(2d1). Then,

pr(Xi = 4 (X)) w(Ziy) — Elp(Xs — 3r(X,_1))w(Z,_y)]

N[ =
E

i
I\

pr (X — 3 (X, )w(Zy 1) — Elp, (X0 — 4-(X,_)w(Z, )] + 0T,

Il
N[ =
E

w
Il
—

Lemma 4: Let d = dy + da. Suppose Assumptions A.1-A.9 in Appendiz A hold, ¢ > d/2 — 1 and
ho = O(T7"2) with 1/(2¢ +2+d) < k2 < 1/(2d). Then, we have

M| =
E

pr(Xi = 4r(Zy1))w(Zy1) = Elp- (X = ¢r(Zp—1))w(Z4—1)]

“
Il
—

1
=l
N

pr(Xe = ar(Z1_1))w(Zy_y) = Elp (X = ar(Z_1)w(Zy_1)] + 0p(T711).

N
Il
—

Appendix D: Additional simulation results
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Table 1: Bootstrap bias-corrected estimation of quantile Granger causality measures at 7 = 0.25

Measure DGP S1 DGPS2 DGPP1 DGP P2 DGPP3 DGP P4 DGPP5 DGPP6
T =150
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.1122 0.1094 0.7501 0.7635 1.0212 0.7162 0.8587 0.8246
’ (0.1152) (0.1112) (0.3056) (0.3169) (0.3718) (0.3283) (0.3792) (0.3589)
T =100
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.0609 0.0544 0.6049 0.6295 0.8371 0.6157 0.6260 0.6279
) (0.0565) (0.0534) (0.1826) (0.1980) (0.2283) (0.2096) (0.2026) (0.2219)
T = 200
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\—> X) 0.0380 0.0314 0.5071 0.5370 0.7156 0.5649 0.4696 0.4889
) (0.0316) (0.0319) (0.1138) (0.1250) (0.1458) (0.1476) (0.1206) (0.1305)
T = 400
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected C* BC/(-Y\—> X) 0.0230 0.0180 0.4050 0.4303 0.5851 0.4762 0.3129 0.3282
) (0.0180) (0.0184) (0.0670) (0.0729) (0.0861) (0.0984) (0.0673) (0.0755)

Note: This table shows the average values of bootstrap bias-corrected (CF 5~ (Y — X) ) estimates of causality mea-
sures from Y to X (C-(Y — X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

»

average value of the estimate of causality measure after bootstrap bias correction, and “—” means that the true value
of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction
estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of
causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal
to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.
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Table 2: Bootstrap bias-corrected estimation of quantile Granger causality measures at 7 = 0.50

Measure DGP S1 DGPS2 DGPP1 DGP P2 DGPP3 DGP P4 DGPP5 DGPP6
T =150
Y - X No No Yes Yes Yes Yes Yes No
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.1076 0.0882 0.6746 0.6725 0.9096 0.6369 0.7973 0.1150
’ (0.1050) (0.0963) (0.3028) (0.3058) (0.3623) (0.3324) (0.3655) (0.1120)
T =100
Y - X No No Yes Yes Yes Yes Yes No
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.0584 0.0510 0.5335 0.5453 0.8045 0.5695 0.5597 0.0654
) (0.0578) (0.0536) (0.1632) (0.1658) (0.2457) (0.2080) (0.2038) (0.0648)
T = 200
Y - X No No Yes Yes Yes Yes Yes No
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\—> X) 0.0332 0.0294 0.4361 0.4661 0.7082 0.5130 0.4201 0.0364
) (0.0307) (0.0277) (0.0998) (0.1090) (0.1482) (0.1403) (0.1172) (0.0325)
T = 400
Y - X No No Yes Yes Yes Yes Yes No
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected C* BC/(-Y\—> X) 0.0202 0.0156 0.3929 0.4075 0.6536 0.4769 0.3176 0.0241
) (0.0160) (0.0150) (0.0618) (0.0675) (0.1083) (0.1021) (0.0736) (0.0228)

Note: This table shows the average values of bootstrap bias-corrected (CF 5~ (Y — X) ) estimates of causality mea-
sures from Y to X (C-(Y — X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

»

average value of the estimate of causality measure after bootstrap bias correction, and “—” means that the true value
of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction
estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of
causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal
to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.
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Table 3: Bootstrap bias-corrected estimation of quantile Granger causality measures at 7 = 0.75

Measure DGP S1 DGPS2 DGPP1 DGP P2 DGPP3 DGP P4 DGPP5 DGPP6
T =150
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.1062 0.0891 0.6985 0.7092 0.9373 0.6840 0.7700 0.7603
’ (0.1090) (0.0995) (0.2831) (0.3075) (0.3925) (0.3078) (0.3706) (0.3410)
T =100
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\H X) 0.0633 0.0624 0.5595 0.5699 0.8810 0.5672 0.6344 0.5550
) (0.0601) (0.0601) (0.1828) (0.1751) (0.2648) (0.1953) (0.2160) (0.1961)
T = 200
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected CZ BC/(-Y\—> X) 0.0396 0.0339 0.4582 0.4899 0.8340 0.5217 0.5183 0.4274
) (0.0311) (0.0312) (0.1068) (0.1166) (0.1857) (0.1415) (0.1322) (0.1192)
T = 400
Y - X No No Yes Yes Yes Yes Yes Yes
True C.(Y - X) 0.0000 0.0000 — — — — — —
Bias-Corrected C* BC/(-Y\—> X) 0.0239 0.0164 0.4045 0.4253 0.7746 0.4768 0.4275 0.3286
) (0.0194) (0.0165) (0.0674) (0.0709) (0.1179) (0.1010) (0.0851) (0.0718)

Note: This table shows the average values of bootstrap bias-corrected (CF 5~ (Y — X) ) estimates of causality mea-
sures from Y to X (C-(Y — X)). “True” indicates the true value of causality measure, “Bias-Corrected” indicates the

»

average value of the estimate of causality measure after bootstrap bias correction, and “—” means that the true value
of causality measure is unknown. Equation (29) in the main text is used to calculate the bootstrap bias-correction
estimates of causality measures. The number of simulations used to compute the averaged values of the estimates of
causality measures and the number of bootstrap replications used to calculate the bias-corrected estimates are equal
to 500 and 199, respectively. “No” indicates non-causality in the true DGP and “Yes” means that there is causality

in the true GDP at the specified quantile. The DGPs in the first row of the table are described in detail in Table 1 of

the main text. In parenthesis is the standard deviation of the estimated value.

13



References

[1]
2]

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications, Chapman & Hall, London.

Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods, Chapman & Hall,
CRC.

Hall, P. (1984), “Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric

Density Estimators,” Journal of Multivariate Analysis, 14, 1-16.

Kong, E., Linton, O., Xia, Y. (2010). “Uniform Bahadur Representation for Local Polynomial Estimates
of M-regression and Its Application to the Additive Model”, Econometric Theory, 26, 1529-1564.

Masry, E. (1996). “Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consis-

tency and Rates”, Journal of Time Series Analysis, 17, 571-599.

Noh, H., El Ghouch, A., Van Keilegom, I. (2013). “Quality of Fit Measures in the Framework of Quantile

Regression”, Scandinavian Journal of Statistics, 40, 105-118.

14



