Supplementary Table 1

Species		m6A Writers			m6A	m6A Erasers			m6A Readers		
Arabidopsis thaliana	AtMTA	AtFIP37	AtVIR	AtHAKAI	AtALKBH9B	AtALKBH10B	AtECT2	AtECT3	AtECT4	AtCPSF30	[7] [11]
	AtMTB						YTHD05, Y	TH YTHD08			[7] [32]
	AtMTC							I			[7]
Cicer arietinum	CaMTA	CaFIP37 1	CaVIR1	CaHAKAI	CaALKBH3B	CaALKBH16B	AtECT2	AtECT3	AtECT4	AtCPSF30	[7]
	CaMTB	CaFIP37 2	CaVIR2			CaALKBH17B	CaECT8	CaECT6		CaECT19	[7]
	CaMTC	CaFIP37 3	CaVIR3								[7]
		CaFIP37 4									[7]
Vitis vinifera	VvMTA	VvFIP37	Vv VIR	VvHAKAI	VvALKBH6B	VvALKBH10B	VvECT9	VvECT1	VvECT11	VvECT3	[7]
	VvMTB										[7]
	VvMTC										[7]
Solanum lycopersicum	SIMTA	SIFIP37	SIVIR	SIHAKAI	SIALKBH3B	SIALKBH10B	SIECT1	SIECT2		SIECT4	[7]
	SIMTB				SIALKBH4B			SIECT9		SIECT6	[7]
	SIMTC										[7]
	SIMTD										[7]
Brassica rapa	BrMTA	BrFIP37 1	BrVIR	BrHAKAI	BrALKBH6B	BrALKBH12B	BrECT16	BrECT1	BrECT14	BrCPSF30 - 1	[7]
	BrMTB	BrFIP37 2						BrECT7	BrECT15	BrCPSF30 - 2	[7]
	BrMTC										[7]
Gossypium hirsutum	GhMTA	GhFIP37 1	GhVIR1	GhHAKAI1	GhALKBH9B	GhALKBH11B	GhECT15	GhECT5	GhECT18	GhECT20	[7]
	GhMTB	GhFIP37 2	GhVIR2	GhHAKAI2	GhALKBH10B	GhALKBH23B	GhECT16	GhECT6		GhECT27	[7]
	GhMTC		GhVIR3	GhHAKAI3							[7]
	GhMTD			GhHAKAI4							[7]
	GhMTE			GhHAKAI5							[7]
Chenopodium quinoa	CqMTA				CqALKBH13B	CqALKBH26B	CqECT14	CqECT15	CqECT9	CqCPSF30 1	[7]
	CqMTB	CqFIP37 1	CqVIR1	CqHAKAI1		CqALKBH27B				CqCPSF30 2	[7]
	CqMTC	CqFIP37 2	CqVIR2	CqHAKAI2							[7]
	CqMTD										[7]
	CqMTE										[7]
	CqMTF										[7]

Zea mays	ZmMTA ZmMTB ZmMTC	ZmFIP37 1 ZmFIP37 2 ZmFIP37 3 ZmFIP37 4 ZmFIP37 5	ZmVIR1 ZmVIR2	ZmHAKAI1 ZmHAKAI2	ZmALKBH1B	ZmALKBH5B ZmALKBH10B	ZmECT7 ZmECT23	ZmECT8	ZmECTI 1 ZmECT25	ZmCPSF30 1	[7] [7] [7] [7] [7]
Triticum aestivum	TaMTA D	TaFIP37 - 1D	TaVIR D	TaHAKAI1 D	TaALKBH4B	TaALKBH6B	TaECT7	TaECT6	TaECT3	TaCPSF30 2	[7]
	TaMTA A	TaFIP37 2D	TaVIR A	TaHAKAI1 - A		TaALKBH29B	TaECT21	TaECT22	TaCPSF30 - 4	TaCPSF30 5	[7]
	TaMTC D TaMTB A TaMTB D TaMTA B TaMTC B TaMTC B TaMTC A	TaFIP37 2A TaFIP37 - 1B	TaVIR B	TaHAKAI1 - B TaHAKAI2 D							[7] [7] [7] [7] [7] [7]
Sorghum bicolor	SbMTA	SbFIP37	SbVIR1	SbHAKAI1	SbALKBH13B	SbALKBH4B	SbCPSF30 3	SbCPSF30 - 1		SbCPSF30 19	[7]
	SbMTB		SbVIR2	SbHAKAI2	SbALKBH14B	SbALKBH15B	SbCPSF30 4	SbCPSF30 - 2	2		[7]
	SbMTC						SbCPSF30 - 8				[7]
Oryza indica	OiMTA OiMTB OiMTC	OiFIP37	OiVIR	OiHAKAI	OiALKBH5B	OiALKBH6B OiALKBH12B	OiECT2	OiECT10	OiECT7		[7] [7] [7] [7]
Oryza sativa	MTA MTB	FIP37	VIRMA		ALKBH10B		YTHD08				[32] [32]
Hordeum vulgare	HvMTA	HvFIP37	HvVIR	HvHAKAI	HvALKBH1B	HvALKBH4B HvALKBH8B	HvECT2 HvECT6	HvECT4	HvECT1 HvECT8		[7] [7]
Selaginella moellendorffi	SmMTA SmMTB	SmFIP37	-	_	SmALKBH4B	SmALKBH14B SmALKBH16B		SmECT2 SmECT4		SmECT1 SmECT3	[7] [7]
Marchantia polymorpha	МарМТА МарМТВ МарМТС	MapFIP37	MapVIR1 MapVIR2	MpHAKAI	MapALKBH6B	MapALKBH10B		MapECT1 MapECT2		MapECT3	[7] [7] [7]
Physcomitrella patens	PpMTA PpMTB PpMTC PpMTD	PpFIP37 1 PpFIP37 2	PpVIR	PpHAKAI1 PpHAKAI2 PpHAKAI3	PpALKBH5B PpALKBH6B	PpALKBH2B PpALKBH4B		PpECT1 PpECT3		PpECT4	[7] [7] [7] [7]

Cyanidioschyzon merolae	CmMTA CmMTB	-	_	_			CmALKBH1B					[7] [7]
Micromonas pusilla	MipMTA	MipFIP37	-	-			MipALKBH4B	MipECT1			MipCPSF30 1	[7]
											MipCPSF30 - 2	[7]
Emiliania huxleyi	EhMTA EhMTB	EhFIP37 1 EhFIP37 2	-	-		EhALKBH21B	EhALKBH18B EhALKBH24B	EhECT1				[7] [7]
Volvox carteri	EhMTC EhMTD VcMTA VcMTB	VcFIP37	-	-		VcALKBH1B VcALKBH4B			VcCPSF30	1	VcECT1	[7] [7] [7] [7]
Ectocarpus siliculosus	VcMTC -	EsFIP37	_	_		Es ALKBH2B	Es ALKBH4B		EsECT1		EsECT2	[7] [7]
Chlorella variabilis	CvMTA	CvFIP37	CvVIR	CvHAKAI		CvALKBH2B	Es ALKBH6B		CvCPSF30	1	EsCPSF30 2 CvECT1	[7] [7]
	CvMTB CvMTC										CvCPSF30 3	[7] [7]
Chlamydomonas reinhardtii	CrMTA	CrFIP37 1	CrVIR	-		CrALKBH1B	CrALKBH2B		CrECT1		CrECT2	[7]
	CrMTB CrMTC CrMTD	CrFIP37 2 CrFIP37 3										[7] [7] [7]
Human	METTL3 METTL14 MT-A70	WTAP ALKBH5	KIAA 1429/VIRM	1. RBM 15	ZC3H13HAKA	I H3K36me3 FTO		YT521-B/YTI	H			[31],[33-38] [31],[33-38] [27],[29],[46] [8],[61],[65]
								YTHDF1 YTHDF2 YTHDF3 YTHDC1 YTHDC2	eIF3 HNRNPA2	IGF2BP B1		[7],[8],[65] [8],[61],[65] [61],[65] [66] [59],[69]
Mice						ALKBH5						[7],[50-53]
Saccharomyces cerevisiae	Ime4	Slz1	Mum2					Pho92	Mrb1			[10], [113], [119]
Schizosaccharomyces pombe								YTHDF/Mmi	1			[10]
Plasmodium falciparum	PfMT-A70 PfMT-A70.2	PfWTAP										[84]

References:

- [1] Liang Z, Geng Y, Gu X. Adenine Methylation: New Epigenetic Marker of DNA and mRNA. Mol. Plant. 2018;11:1219–1221.
- [2] Zhang C, Fu J, Zhou Y. A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Front. Immunol. 2019;10:922.
- [3] Mao Y, Dong L, Liu XM, et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun. 2019;10:5332.
- [4] Anderson SJ, Yu X, Gosai SJ, et al. N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize messenger RNAs in Arabidopsis. Mol. Cell. 2018;25:1146–1157.
- [5] Martínez-Pérez M, Aparicio F, López-Gresa MP, et al. Arabidopsis m 6 A demethylase activity modulates viral infection of a plant virus and the m 6 A abundance in its genomic RNAs. Proc. Natl. Acad. Sci. 2017;114:10755–10760.
- [6] Růžička K, Zhang M, Campilho A, et al. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 2017;215:157–172.
- [7] Yue H, Nie X, Yan Z, et al. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. Plant
 Biotechnol. J. 2019;17:1194–1208.
- [8] Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell.
 2015;161:1388–1399.
- [9] Roignant JY, Soller M. m6A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends Genet.

2017;33:380-390.

- [10] Bodi Z, Bottley A, Archer N, et al. Yeast m6A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment. PLoS One. 2015;10:e0132090.
- [11] Scutenaire J, Deragon JM, Jean V, et al. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in arabidopsis. Plant Cell. 2018;30:986–1005.
- [12] Wei LH, Song P, Wang Y, et al. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in arabidopsis. Plant Cell. 2018;30:968–985.
- [13] Murik O, Chandran SA, Nevo-Dinur K, et al. The topologies of N6 -Adenosine methylation (m6A) in land plant mitochondria and their putative effects on organellar gene-expression. Plant J. 2019;
- [14] Wang X, Lu Z, Gomez A, et al. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature.2014;505:117–120.
- [15] Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 2014;10:927–929.
- [16] Kennedy TD. Lane, B.G. Wheat embryo ribonucleates. XIII. Methyl-Substituted nucleoside constituents and 5'-terminal dinucleotide sequences in bulk poly(AR)-rich RNA from imbibing wheat embryos. Can. J. Biochem. 1979;57:927–931.
- [17] Nichols JL. N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci. Lett. 1979;15:357–361.
- [18] HAUGLAND RA, CLINE MG. Post-transcriptional Modifications of Oat Coleoptile Ribonucleic Acids. Eur. J. Biochem.

2018;104:271-277.

- [19] Zhong S, Li H, Bodi Z, et al. MTA Is an Arabidopsis Messenger RNA Adenosine Methylase and Interacts with a Homolog of a Sex-Specific Splicing Factor. Plant Cell. 2008;20:1278–1288.
- [20] Bhat SS, Bielewicz D, Jarmolowski A, et al. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana. Genes (Basel). 2018;9:596.
- [21] Zhang F, Zhang YC, Liao JY, et al. The subunit of RNA n6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet. 2019;15:e1008120.
- [22] Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29:108–115.
- [23] Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m 6 A RNA methylation. Nat. Rev. Genet. 2014. p. 293–306.
- [24] Deng X, Chen K, Luo GZ, et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 2015;43:6557–6567.
- [25] Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA. 2011;2:611–631.
- [26] Chhabra R. miRNA and methylation: A multifaceted liaison. ChemBioChem. 2015;16:195–203.
- [27] Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011;7:885–887.
- [28] Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nat. Struct. Mol. Biol. 2016;23:98–102.

- [29] Bujnicki JM, Feder M, Radlinska M, et al. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m6A methyltransferase. J. Mol. Evol. 2002;55:431–444.
- [30] Śledź P, Jinek M. Structural insights into the molecular mechanism of the m6A writer complex. Elife. 2016;5:e18434.
- [31] Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol. Cell. 2016;63:306–317.
- [32] Hu J, Manduzio S, Kang H. Epitranscriptomic RNA methylation in plant development and abiotic stress responses. Front. Plant Sci. 2019;10:500.
- [33] Niessen M, Schneiter R, Nothiger R. Molecular identification of virilizer, a gene required for the expression of the sexdetermining gene Sex-lethal in Drosophila melanogaster. Genetics. 2001;157:679–688.
- [34] Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.
- [35] Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation.
 Nat. Chem. Biol. 2014;10:93–95.
- [36] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–189.
- [37] Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 2014;8:284–296.

- [38] Patil DP, Chen CK, Pickering BF, et al. M(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature.2016;537:369–373.
- [39] Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor RbM15/spenito to the m6 a machinery component Wtap/Fl(2)d. Genes Dev. 2018;32:415–429.
- [40] Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–1355.
- [41] Wang X, Feng J, Xue Y, et al. Structural basis of N 6 -adenosine methylation by the METTL3–METTL14 complex. Nature.2016;534:575–578.
- [42] Schöller E, Weichmann F, Treiber T, et al. Interactions, localization, and phosphorylation of the m6A generating METTL3–
 METTL14–WTAP complex. RNA. 2018;24:499–512.
- [43] Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum. Mol. Genet. 2000;9:2231–2239.
- [44] Arribas-Hernández L, Bressendorff S, Hansen MH, et al. An m6A-YTH module controls developmental timing and morphogenesis in arabidopsis. Plant Cell. 2018;30:952–967.
- [45] Bodi Z, Zhong S, Mehra S, et al. Adenosine Methylation in Arabidopsis mRNA is Associated with the 3' End and Reduced Levels Cause Developmental Defects. Front. Plant Sci. 2012;3:48.
- [46] Peters T, Ausmeier K, Rüther U. Cloning of Fatso (Fto), a novel gene deleted by the fused toes (Ft) mouse mutation. Mamm.

Genome. 1999;10:983-986.

- [47] Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m 6 A m in the 5' cap controls mRNA stability. Nature.2017;541:371–375.
- [48] Meyer KD, Jaffrey SR. Rethinking m 6 A Readers, Writers, and Erasers. Annu. Rev. Cell Dev. Biol. 2017;33:319–342.
- [49] Mauer J, Jaffrey SR. FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett. 2018;592:2012–2022.
- [50] Zheng G, Dahl JA, Niu Y, et al. ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol. Cell. 2013;49:18–29.
- [51] Alemu E, He C, Klungland A. ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst). 2016;44:87–91.
- [52] Duan H-C, Wei L-H, Zhang C, et al. ALKBH10B Is an RNA N 6 -Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell. 2017;29:2995–3011.
- [53] Wang Y, Li Y, Yue M, et al. N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 2018;21:195–206.
- [54] Robbens S, Rouzé P, Cock JM, et al. The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J. Mol. Evol. 2008;66:80–84.
- [55] Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is

required for adipogenesis. Cell Res. 2014;24:1403–1419.

- [56] Bartosovic M, Molares HC, Gregorova P, et al. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing. Nucleic Acids Res. 2017;45:11356–11370.
- [57] Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc. Natl. Acad. Sci. U. S. A. 2017;115:E325–E333.
- [58] Colasanti J, Coneva V. Mechanisms of floral induction in grasses: Something borrowed, something new. Plant Physiol. 2009;149:56–62.
- [59] Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell. 2015;162:1299–1308.
- [60] Huang H, Weng H, Sun W, et al. Recognition of RNA N 6 -methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 2018;20:285–295.
- [61] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206.
- [62] Arguello AE, Deliberto AN, Kleiner RE. RNA Chemical Proteomics Reveals the N6-Methyladenosine (m6A)-Regulated Protein-RNA Interactome. J. Am. Chem. Soc. 2017;139:17249–17252.
- [63] Edupuganti RR, Geiger S, H Lindeboom RG, et al. N 6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24:870–878.

- [64] Wu B, Li L, Huang Y, et al. Readers, writers and erasers of N6-methylated adenosine modification. Curr. Opin. Struct. Biol. 2017;47:67–76.
- [65] Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res. 2017;27:315–328.
- [66] Xu C, Liu K, Ahmed H, et al. Structural basis for the discriminative recognition of N6-Methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 2015;290:24902–24913.
- [67] Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell. 2016;61:507–519.
- [68] Xiang Y, Laurent B, Hsu CH, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573–576.
- [69] Jain D, Puno MR, Meydan C, et al. Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife. 2018;7:e30919.
- [70] Meyer KD, Patil DP, Zhou J, et al. 5' UTR m6A Promotes Cap-Independent Translation. Cell. 2015;163:999–1010.
- [71] Nicastro G, Taylor IA, Ramos A. KH-RNA interactions: Back in the groove. Curr. Opin. Struct. Biol. 2015;30:63–70.
- [72] Ok SH, Jeong HJ, Bae JM, et al. Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved Cterminal region that mediates nuclear localization. Plant Physiol. 2005;139:138–150.
- [73] Lee K, Kang H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol. Cells. 2016;39:179–185.

- [74] Kramer MC, Anderson SJ, Gregory BD. The nucleotides they are a-changin': function of RNA binding proteins in posttranscriptional messenger RNA editing and modification in Arabidopsis. Curr. Opin. Plant Biol. 2018;45:88–95.
- [75] Prall W, Sharma B, Gregory BD. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants. Plant Cell Physiol. 2019;60:1939–1952.
- [76] Berulava T, Rahmann S, Rademacher K, et al. N6-Adenosine Methylation in MiRNAs. PLoS One. 2015;10:e0118438.
- [77] Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16:289–301.
- [78] Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science (80-.). 2015;347:1002–1006.
- [79] Park CH, Hong K. Epitranscriptome: m6A and its function in stem cell biology. Genes and Genomics. 2017;39:371–378.
- [80] Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 2018;20:1074–1083.
- [81] Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J. Neurochem. 2018;147:137–152.
- [82] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 2012;149:1635–1646.
- [83] Wang CX, Cui GS, Liu X, et al. METTL3-mediated m 6 A modification is required for cerebellar development. PLoS Biol.

2018;16:e2004880.

- [84] Baumgarten S, Bryant JM, Sinha A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nat. Microbiol. 2019;4:2246–2259.
- [85] Garcia-Campos MA, Edelheit S, Toth U, et al. Deciphering the "m6A Code" via Antibody-Independent Quantitative Profiling. Cell. 2019;178:731–747.
- [86] Zhao BS, Wang X, Beadell A V., et al. M6 A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature. 2017;542:475–478.
- [87] Yu J, Li Y, Wang T, et al. Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS One. 2018;13:e0198604.
- [88] Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806.
- [89] Wang H, Yin H, Huang H, et al. Dual-signal amplified photoelectrochemical biosensor for detection of N6- methyladenosine based on BiVO4-110-TiO2 heterojunction, Ag+-mediated cytosine pairs. Biosens. Bioelectron. 2018;89–96.
- [90] Gerken T, Girard CA, Tung YCL, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science (80-.). 2007;318:1469–1472.
- [91] Church C, Moir L, McMurray F, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 2010;42:1086–1092.

- [92] Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458:894–898.
- [93] Liu N, Dai Q, Zheng G, et al. N(6) -methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–564.
- [94] Srikantan S, Tominaga K, Gorospe M. Functional Interplay between RNA-Binding Protein HuR and microRNAs. Curr. Protein Pept. Sci. 2012;13:372–279.
- [95] Panneerdoss S, Eedunuri VK, Yadav P, et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci. Adv. 2018;4:eaar8263.
- [96] Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–485.
- [97] Knuckles P, Carl SH, Musheev M, et al. RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat. Struct. Mol. Biol. 2017;24:561–569.
- [98] Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16.
- [99] Huang H, Weng H, Zhou K, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567:414–419.
- [100] Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 2017;6:e31311.
- [101] Zhou J, Wan J, Gao X, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature.

2015;526:591-594.

- [102] Vu LP, Pickering BF, Cheng Y, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 2017;23:1369–1376.
- [103] Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552:126–131.
- [104] Wang X, Huang N, Yang M, et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis. 2017;8:e2702.
- [105] Kwok CT, Marshall AD, Rasko JEJ, et al. Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J. Hematol. Oncol. 2017;10:39.
- [106] Du K, Zhang L, Lee T, et al. m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Mol. Neurobiol. 2019;56:1596–1606.
- [107] Cui Q, Shi H, Ye P, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017;18:2622–2634.
- [108] Zhang S, Zhao BS, Zhou A, et al. m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell. 2017;31:e6.
- [109] Batista PJ. The RNA Modification N6-methyladenosine and Its Implications in Human Disease. Genomics, Proteomics Bioinforma. 2017;15:154–163.

- [110] Krug RM, Morgan MA, Shatkin AJ. Influenza viral mRNA contains internal N6-methyladenosine and 5'-terminal 7methylguanosine in cap structures. J. Virol. 1976;20:45–53.
- [111] Lichinchi G, Zhao BS, Wu Y, et al. Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host Microbe. 2016;1:16011.
- [112] Engel M, Eggert C, Kaplick PM, et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron. 2018;99:389–403.
- [113] Agarwala SD, Blitzblau HG, Hochwagen A, et al. RNA methylation by the MIS complex regulates a cell fate decision in yeast.PLoS Genet. 2012;8:e1002732.
- [114] Schwartz S, Agarwala SD, Mumbach MR, et al. High-Resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155:1409–1421.
- [115] Bodi Z, Button JD, Grierson D, et al. Yeast targets for mRNA methylation. Nucleic Acids Res. 2010;38:5327–5335.
- [116] Zhang Y, Hamada M. DeepM6ASeq: Prediction and characterization of m6A-containing sequences using deep learning. BMC Bioinformatics. 2018;19:524.
- [117] Roundtree IA, He C. Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing. Trends Genet. 2016;32:320–321.
- [118] Bushkin GG, Pincus D, Morgan JT, et al. m6A modification of a 3' UTR site reduces RME1 mRNA levels to promote meiosis. Nat. Commun. 2019;10:3414.
- [119] Kang HJ, Jeong SJ, Kim KN, et al. A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism

by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem. J. 2014;457:391–400.

- [120] Theler D, Dominguez C, Blatter M, et al. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Res. 2014;42:13911–13919.
- [121] Berlivet S, Scutenaire J, Deragon JM, et al. Readers of the m6A epitranscriptomic code. Biochim. Biophys. Acta Gene Regul. Mech. 2019;1862:329–342.
- [122] Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–624.
- [123] Shichino Y, Otsubo Y, Kimori Y, et al. YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci. Elife. 2018;7:e32155.
- [124] Stepien A, Knop K, Dolata J, et al. Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip. Rev. RNA. 2017;8.
- [125] Jabre I, Reddy ASN, Kalyna M, et al. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res. 2019;47:2716–2726.
- [126] Nichols JL, Welder L. Nucleotides adjacent to N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci. Lett. 1981;21.
- [127] Luo GZ, Macqueen A, Zheng G, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 2014;5.
- [128] Luo GZ, Macqueen A, Zheng G, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun.

2014;5:5630.

- [129] Wei CM, Gershowitz A, Moss B. 5'-Terminal and Internal Methylated Nucleotide Sequences in Hela Cell mRNA. Biochemistry. 1976;15:397–401.
- [130] Niu Y, Zhao X, Wu YS, et al. N6-methyl-adenosine (m6A) in RNA: An Old Modification with A Novel Epigenetic Function. Genomics, Proteomics Bioinforma. 2013;11:8–17.
- [131] Slobodin B, Han R, Calderone V, et al. Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6adenosine Methylation. Cell. 2017;169:326–337.
- [132] Chaudhary S, Khokhar W, Jabre I, et al. Alternative splicing and protein diversity: Plants versus animals. Front. Plant Sci. 2019;10:708.
- [133] Zhong S, Li H, Bodi Z, et al. MTA Is an Arabidopsis Messenger RNA Adenosine Methylase and Interacts with a Homolog of a Sex-Specific Splicing Factor. PLANT CELL ONLINE. 2008;
- [134] Shen L, Liang Z, Gu X, et al. N 6 -Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Dev. Cell. 2016;38:186–200.
- [135] Mielecki D, Zugaj D, Muszewska A, et al. Novel AlkB dioxygenases-alternative models for in silico and in vivo studies. PLoS One. 2012;7:e30588.
- [136] Jung JH, Lee HJ, Ryu JY, et al. SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Mol. Plant. 2016;9:1647–1659.

- [137] Gaudin V, Libault M, Pouteau S, et al. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development. 2001;128:4847–4858.
- [138] Jiang D, Wang Y, Wang Y, et al. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components. PLoS One. 2008;3:e3404.
- [139] Turck F, Roudier F, Farrona S, et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 2007;3:e86.
- [140] Zhang X, Germann S, Blus BJ, et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat. Struct. Mol. Biol. 2007;14:869–871.
- [141] Searle I, He Y, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006;20:898–912.
- [142] Ma JF, Tamai K, Yamaji N, et al. A silicon transporter in rice. Nature. 2006;440:688–691.
- [143] Liu F, Quesada V, Crevillén P, et al. The Arabidopsis RNA-Binding Protein FCA Requires a Lysine-Specific Demethylase 1 Homolog to Downregulate FLC. Mol. Cell. 2007;28:398–407.
- [144] Jeong JH, Song HR, Ko JH, et al. Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One. 2009;4:e8033.
- [145] Bäurle I, Smith L, Baulcombe DC, et al. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science (80-.). 2007;318:109–112.

- [146] Sonmez C, Bäurle I, Magusin A, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription.
 Proc. Natl. Acad. Sci. U. S. A. 2011;108:8508–8513.
- [147] Tian Y, Zheng H, Zhang F, et al. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Sci. Adv. 2019;5:eaau7246.
- [148] Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA. 2017;8.
- [149] Gandikota M, Birkenbihl RP, Höhmann S, et al. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007;49:683–693.
- [150] Chen X. A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science (80-.).2004;303:2022–2025.
- [151] Li Z, Xu R, Li N. Correction to: MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr. Metab. (Lond). 2018;15:74.
- [152] Wu G, Park MY, Conway SR, et al. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell. 2009;138:750–759.
- [153] Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61:1001–1013.