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Supplementary materials of the article ‘Spatial
Autoregressive Partially Linear Varying Coefficient Models’

In this Web Supplement, we include in Sections S.1 – S.4 some preliminary lemmas and
detailed proofs of the theoretical results in the main article. Section S.6 presents more results
from simulation studies in the main article.

S.1. Preliminary Lemmas

LEMMA S.1 (Theorem 2.7, Lai and Schumaker (2007)) Let {Bj}j∈J be the Bernstein polyno-
mial basis for spline space S with smoothness r and degree d, where J is an index set. Then
there exist positive constants C1, C2 depending on r, d and the shape parameter π such that

C1|4|2
∑
j∈J

c2j ≤

∥∥∥∥∥∥
∑
j∈J

cjBj

∥∥∥∥∥∥
2

L2

≤ C2|4|2
∑
j∈J

c2j .

LEMMA S.2 (Theorem 1.3, Lai and Schumaker (2007)) Assume g(·) ∈ W `+1,∞(Ω). For bi-
integer (α1, α2) with 0 ≤ α1 + α2 ≤ ν, there exist an absolute constant C depending on r and
π and unique spline fit g∗(·) ∈ S such that ‖Dα1

x1
Dα2
x2

(g − g∗)‖∞ ≤ C|4|`+1−α1−α2 |g|`+1,∞.

LEMMA S.3 If two sequences of n×nmatrices {Fn} and {Cn} are uniformly bounded both in
row sums and column sums, then {FnCn} are uniformly bounded both in row sums and column
sums.

Proof. Let Fn = (fn,ij), Cn = (cn,ij), and Pn = FnCn = (pn,ij). Note that for any i =
1, . . . , n,

n∑
j=1

|pn,ij | =
n∑
j=1

|
n∑
k=1

fn,ikcn,kj | ≤
n∑
k=1

|fn,ik|
n∑
j=1

|cn,kj | = O(1).

So Pn are bounded in row sums. Similarly we can prove the result still holds for column sums.
�

In the following, denote

V =

(
V11 V12

V21 V22

)
=

(
Z>Z Z>XB

X>BZ X>BXB

)
=

( ∑n
i=1 ZiZ

>
i

∑n
i=1 Zi{Xi ⊗B∗(Ui)}>∑n

i=1{Xi ⊗B∗(Ui)}Z>i
∑n

i=1{Xi ⊗B∗(Ui)}{Xi ⊗B∗(Ui)}>
)
,

V−1 ≡ U =

(
U11 −U11V12V

−1
22

−U22V21V
−1
11 U22

)
,

where

U−111 = V11 −V12V
−1
22 V21 = Z>(In −PXB

)Z,

U−122 = V22 −V21V
−1
11 V12 = X>B(In −PZ)XB. (S.1)
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Then, the minimizer of (7) can be obtained in the following forms:

γ̂(α) = U11Z
>(In −PXB

)T(α)Y, θ̂(α) = U22X>B(In −PZ)T(α)Y.

LEMMA S.4 Under Assumptions (A1) – (A6), ifKn log n/n→ 0, the eigenvalues of both nU11

and nK−1n U22 are bounded below and above except on an event with probability going to zero.

Proof. Note that all the eigenvalues of PXB
and PZ are either 1 or 0, thus, by (S.1), we have

(nU11)
−1 = n−1Z>(In −PXB

)Z � n−1Z>Z,

(nK−1n U22)
−1 = n−1KnX>B(In −PZ)XB � n−1KnX>BXB.

According to Assumption (A2), the eigenvalues of n−1Z>Z is bounded below and above except
on an event with probability going to zero. By Lemma C.5 in Mu, Wang, and Wang (2018),
the the eigenvalues of n−1KnX>BXB is bounded below and above except on an event with
probability going to zero. Therefore, the eigenvalues of nU11 and nK−1n U22 are bounded below
and above except on an event with probability going to zero. �

In the following, denote

Φ∗ = (Z,XB)K = (Z,
√
KnXB), (S.2)

where K = diag(Ip1 ,
√
KnIm) is a block diagonal matrix with m = p2|J |. Let V∗n = Φ∗>Φ∗.

LEMMA S.5 Under (A1) – (A6), except on an event with probability approaching to zero, there
exist positive constants C3 and C4 such that all the eigenvalues of n−1V∗ fall between C3 and
C4, and n−1V∗ is nonsingular.

Proof. Since V∗n is symmetric, and n−1Z>Z is non-singular, then n−1V∗ is congruent with
matrix

V
∗
n =

(
n−1Z>Z 0

0 n−1KnU
−1
22

)
,

since CV∗nC
> = V

∗
n, where

C =

(
I −

√
Kn(Z>Z)−1Z>XB

0 I

)
.

Then we can apply Lemma S.4 and obtain that all the eigenvalues of V
∗
n are bounded by two

positive constants with probability approaching 1. By the properties of congruent matrices, all
the eigenvalues of V∗n are bounded away from zero and infinity except on an event whose prob-
ability goes to zero. The desired result follows. �

LEMMA S.6 Under the Assumptions of Lemma S.5, except on an event whose probability tends
to zero, In −PZ are uniformly bounded in both row sums and column sums.

Proof. Note that under Assumption (A2), n−1Z>Z exists and nonsingular. Then by Lemma A.5
from Lee (2004), In −PZ satisfies the results. The desired result follows. �
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Next, let

θ̃ = V−122

n∑
i=1

[Xi ⊗B∗(Ui)] X
>
i β0(Ui), β̃k(u) = B∗(u)>θ̃k, k = 1, 2, . . . , p. (S.3)

LEMMA S.7 For β̃ = (β̃1, . . . , β̃p2)
> defined in (S.3), under the same Assumptions of Lemma

S.5, we have ‖β0 − β̃‖2L2
= OP (K

−(`+1)
n ).

Proof. For any k = 1, . . . , p2, there exists β∗k such that ‖β∗k − β0k‖∞ = O(|4|`+1|β0k|`+1,∞).
Define β∗ = (β∗1 , . . . , β

∗
p)>, where β∗k ∈ Srd(4). Let θ∗ = (θ∗>1 , · · · ,θ∗>p )> with θ∗k =

(θ∗k1, · · · , θ∗kJ)> be such that β∗k(u) = B∗(u)>θ∗k. Note that

θ∗ = V−1n,22
1

n

n∑
i=1

{Xi ⊗B∗(Ui)}X>i β
∗(Ui). (S.4)

By Lemma C.1 and Lemma C.8 from Mu et al. (2018), ‖θ̃ − θ∗‖ = OP (
√
Kn|4|`+1), thus,

‖β0 − β̃‖ � |4|‖θ̃ − θ∗‖ = OP (|4|`+1), i.e. ‖β0 − β̃‖2L2
= OP (K

−(`+1)
n ). �

We denote

µ0 = µc + µv = (Z>1 γ0, . . . ,Z
>
n γ0)

> + (X>1 β0(U1), . . . ,X
>
nβ0(Un))>, (S.5)

and let

γ̃µ = U11Z
>(In −PXB

)µ0, (S.6)

γ̃ε = U11Z
>(In −PXB

)ε. (S.7)

LEMMA S.8 Under Assumptions (A1) – (A6), we have ‖γ̃µ − γ0‖ = OP (|4|2(`+1)).

Proof. Denote Z = (Z1, . . . ,Zp1). We can write γ̃µ − γ0 as the following:

γ̃µ − γ0 = U11Z
>(In −PXB

)µv = nU11M,

where M = (M1, . . . ,Mp1)
>, and for l = 1, . . . , p1, Ml = n−1Z

>
l (In − PXB

)µv. Using
Lemma S.7, we have

(In −PXB
)µv =

 X>1 {β0(U1)− β̃(U1)}
...

X>n {β0(Un)− β̃(Un)}

 .

Let al be the coordinate mapping function that maps Zi to its l-th component, that is, al(Zi) =
Zil. Let g∗l (u) = (g∗l,1(u), . . . , g∗l,p2(u))> where g∗l,k ∈ L2(Ω) is the function that minimizes

E
[
{Zil −X>i gl(Ui)}

]2
= ‖Zil −X>i gl(Ui)‖2L2

,
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and also note that g∗l = arg min ‖al −X>g‖2L2
. That is, X>g∗l is the orthogonal projection of

al onto {X>g : gk ∈ L2}. Let Z∗il = X>i g∗l (Ui) and Z
∗
l = (Z∗1l, . . . , Z

∗
nl)
>, then

Ml =
1

n
(Z
>
l − Z

∗>
l )(In −PXB

)µv +
1

n
Z
∗>
l (In −PXB

)>(In −PXB
)µv

=
1

n

n∑
i=1

(Zil −A∗il)
p2∑
k=1

Xik(β0k − β̃k)(Ui)

+
1

n

n∑
i=1

{
p2∑
k=1

Xik(g
∗
l,k − g̃l,k)(Ui)

p2∑
k=1

Xik(β0k − β̃k)(Ui)

}
=I1 + I2.

Note that EI1 = 0, and by Slutsky’s theorem and Lemma S.7,

Var(I1) =
1

n2

n∑
i=1

E

{
(Zil − Z∗il)

p2∑
k=1

Xik(β0k − β̃k)(Ui)

}2

� OP (n−1|4|2(`+1))
{

E(Zil − Z∗il)2
}1/2

,

which implies that I1 = OP (n−1/2|4|`+1). By using Cauchy-Schwartz inequality,

|I2|2 ≤

n−1 n∑
i=1

{
p2∑
k=1

Xik(g
∗
l,k − g̃l,k)(Ui)

}2
n−1 n∑

i=1

{
p2∑
k=1

Xik(β0k − β̃k)(Ui)

}2


= OP (|4|4(`+1)) = oP (n−1).

Follow the same discussion for any l = 1, . . . , p1, the desired result follows. �

LEMMA S.9 Let θ̆ = U22X>B(In −PZ)µ0. Under Assumptions (A1) – (A6), ‖β̆k − β0k‖L2
=

OP (|4|`+1), where β̆k(u) = B∗(u)>θ̆k, k = 1, . . . , p2.

Proof. By Lemma S.2, for any k = 1, . . . , p2, there exists β∗k ∈ S such that ‖β0k − β∗k‖∞ =
OP (|4|`+1|β0k|`+1,∞), and θ∗ in (S.4) can be rewritten as

θ∗ = U22X>B(In −PZ)µ∗v, (S.8)

where µ∗v is defined in (S.5). Then, we have

‖θ̆ − θ∗‖ = U22X>B(In −PZ)(µv − µ∗v). (S.9)

By Lemma S.4,

‖U22XB(In −PZ)(µv − µ∗v)‖2 � K2
n

n2
‖X>B(In −PZ)(µv − µ∗v)‖2.

By Lemma S.6, In − PZ are uniformly bounded in both rows and columns. Note that the row

4
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sums of Q2Q
>
2 are all equal to 1. Let (c1, . . . , cn) = In −PZ, then we have

K2
n

n2
‖X>B(In −PZ)(µv − µ∗v)‖2

=
K2
n

n2

{
n∑
s=1

n∑
i=1

cis(β(Us)− β∗(Us))B(Ui)
>

}
Q2Q

>
2

{
n∑
s=1

n∑
i=1

cis(β(Us)− β∗(Us))B(Ui)

}

≤K
2
n

n2
c|4|2(`+1)

n∑
s=1

n∑
s′=1

n∑
i=1

n∑
i′=1

|cisci′s′B(Ui)
>B(Ui′)|

≤C2
K2
n

n2
|4|2(`+1)

n∑
i=1

n∑
i′=1

B(Ui)
>B(Ui′) = C2K

2
n|4|2(`+1)

∥∥∥∥∥ 1

n

n∑
i=1

B(Ui)

∥∥∥∥∥
2

= OP (|4|2`).

Plugging the above into (S.9), we obtain ‖β̆ − β0‖ � |4|‖θ̆ − θ∗‖ = OP (|4|`+1). �

LEMMA S.10 Under Assumptions (A1) – (A10),

n−1/2µ>0 (In −PΦ)µ0 = OP (n1/2|4|2(`+1) + n1/2|4|4(`+1)) = oP (1), (S.10)

n−1/2ε>(In −PΦ)µ0 = OP (|4|(`+1) + |4|2(`+1)) = oP (1), (S.11)

n−1/2(Gε)>(In −PΦ)µ0 = OP (|4|(`+1) + |4|2(`+1)) = oP (1). (S.12)

Proof. We first prove (S.10). Note that

(In −PΦ)µ0 = Z(γ0 − γ̃µ) +

 X>1 {β0(U1)− β̃(U1)}
...

X>n {β0(Un)− β̃(Un)}

 ,

where γ̃µ and β̃ are defined in (S.6) and (S.3). Therefore,

µ>0 (In −PΦ)µ0 =

n∑
i=1

(
γ0 − γ̃µ

(β0 − β̃)(Ui)

)>(
Zi
Xi

)(
Zi
Xi

)>( γ0 − γ̃µ
(β0 − β̃)(Ui)

)
.

Thus,

E
{
µ>0 (In −PΦ)µ0

}
=

n∑
i=1

E

[(
γ0 − γ̃µ

(β0 − β̃)(Ui)

)>
Σ(Ui)

(
γ0 − γ̃µ

(β0 − β̃)(Ui)

)]
,

where, by Assumption (A2), Σ(u) = E{(Z>i ,X>i )>(Z>i ,X
>
i )|Ui = u}, and the eigenvalues

of Σ(u) are bounded away from 0 and infinity. Therefore, by using Lemmas S.8 and S.9,

E
{
µ>0 (In −PΦ)µ0

}
�

n∑
i=1

E

[(
γ0 − γ̃µ

(β0 − β̃)(Ui)

)>(
γ0 − γ̃µ

(β0 − β̃)(Ui)

)]
� n‖γ0 − γ̃µ‖2 + n‖β0 − β̃‖2 = O(n|4|2(`+1) + n|4|4(`+1)).

Then (S.10) follows.
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Next we prove (S.11). Note that ε>(In−PΦ)µ0 =
∑n

i=1 εi{Z>i (γ0−γ̃µ)+X>i (β0−β̃)(Ui)}.
Thus, E[ε>(In −PΦ)µ0] = 0, and

n−1E[ε>(In −PΦ)µ0]
2 = n−1E

[
n∑
i=1

ε2i {Z>i (γ0 − γ̃µ) + X>i (β0 − β̃)(Ui)}2
]

= n−1σ20

n∑
i=1

E
{
µ>0 (In −PΦ)µ0

}
� O(|4|2(`+1) + |4|4(`+1)).

Then (S.11) follows. Finally, we can show (S.12) in a similar way. Note that

ε>G>(In −PΦ)µ0 =

n∑
i=1

εig
>
i (In −PΦ)µ0,

where gi is the ith column of G. It is easy to see that E[ε>G(In −PΦ)µ0] = 0. Let gij denote
the (i, j)th entry of G. Under Assumption (A2), we have

n−1E{ε>G(In −PΦ)µ0}2 = n−1E

n∑
i=1

ε2i {g>i (In −PΦ)µ0}2

=n−1σ20

n∑
i=1

n∑
s=1

n∑
s′=1

gsigs′iE

{(
γ0 − γ̃µ

(β0 − β̃)(Us)

)>(
Zs
Xs

)(
Zs′
Xs′

)>( γ0 − γ̃µ
(β0 − β̃)(Us′)

)}
.

≤n−1σ20
n∑
i=1

n∑
s=1

n∑
s′=1

|gsi||gs′i|[E{Z>s (γ0 − γ̃µ) + X>i (β0 − β̃)(Us)}2]

=n−1σ20

n∑
i=1

n∑
s=1

n∑
s′=1

|gsi||gs′i|O(|4|2(`+1) + |4|4(`+1)) = O(|4|2(`+1) + |4|4(`+1)),

since G are uniformly bounded in row sums and column sums by applying Lemma S.3. There-
fore (S.12) is satisfied. �

LEMMA S.11 Under Assumptions (A1) – (A10),

n−1µ>0 (In −PΦ)Gµ0 = oP (1), (S.13)

n−1ε>(In −P∗)Gµ0 = oP (1), (S.14)

n−1(Gε)>(In −P∗)Gµ0 = oP (1), (S.15)

where P∗ = PZ, PXB
or PΦ.

Proof. Applying Cauchy-Schwarz inequality, it is easy to obtain that

E[µ>0 G>(In −PΦ)µ0]

=

n∑
s=1

n∑
i=1

gsiE
[
{Z>i γ0 + X>i β0(Ui)}{Z>s (γ0 − γ̃µ) + X>s (β0 − β̃)(Us)}

]
≤

n∑
s=1

n∑
i=1

|gsi|[E{Z>i γ0 + X>i β0(Ui)}2]1/2[E{Z>s (γ0 − γ̃µ) + X>s (β0 − β̃)(Us)}2]1/2

6
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Therefore, by Lemma S.8,

E[µ>0 G>(In −PΦ)µ0] ≤ C
n∑
s=1

n∑
i=1

|gsi| × {O(|4|`+1 + |4|2(`+1) + |4|3(`+1)/2)}

=O{n(|4|`+1 + |4|2(`+1))}.

Similarly, we can obtain that

E[µ>0 G>(In −PΦ)µ0]
2

=
∑
i,i′

∑
s,s′

gsigsi′E
[
{Z>i γ0 + X>i β0(Ui)}{Z>s (γ0 − γ̃µ) + X>s (β0 − β̃)(Us)}

× {Z>i′ γ0 + X>i′β0(Ui′)}{Z>s′(γ0 − γ̃µ) + X>s′(β0 − β̃)(Us′)}
]

≤
∑
i,i′

∑
s,s′

|gsi||gsi′ |[E{Z>i γ0 + X>i β0(Ui)}2][E{Z>s (γ0 − γ̃µ) + X>s (β0 − β̃)(Us)}2]

=O{n2(|4|4(`+1) + |4|2(`+1))}.

Then result (S.13) is desired. Next we prove (S.14). Note that E{ε>(In−PXB
)Gµ0} = 0. Let

Σε = E[εε>|{Zi,Xi,Ui}, i = 1, . . . , n]. Under Assumption (A2), Σε = σ20In.

E{ε>(In −PXB
)Gµ0}2 = E{(Gµ0)

>(In −PXB
)εε>(In −PXB

)Gµ0}
=E{(Gµ0)

>(In −PXB
)Σε(In −PXB

)Gµ0} = σ20E{(Gµ0)
>(In −PXB

)Gµ0}
≤σ20E{(Gµ0)

>Gµ0} = O(n).

From the similar arguments, the above still holds for P∗ = PZ and PΦ, thus, (S.14) follows.
Finally, we prove (S.15). It is straightforward that E{n−1(Gε)>(In −P∗)Gµ0} = 0. When

P∗ = PΦ, we have

E{(Gε)>(In −P∗)Gµ0}2 = E{(Gµ0)
>(In −PΦ)Gεε>G>(In −PΦ)Gµ0}

=E{(Gµ0)
>(In −PΦ)GG>(In −PΦ)Gµ0} = E

n∑
i=1

{g>i (In −PΦ)Gµ0}2.

By Assumption (A8) and Lemma S.3, there exists a nonnegative constant M such that for any
i = 1, . . . , n,

∑n
i′=1 |gii′ | ≤M . Thus, ‖gig>i ‖ ≤ ‖gi‖‖gi‖ =

∑n
i′=1 g

2
ii′ ≤M2. Therefore,

{g>i (In −PΦ)Gµ0}2 = (Gµ0)
>(In −PΦ)gig

>
i (In −PΦ)Gµ0 ≤M(Gµ0)

>Gµ0,

and n−2E{n−1(Gε)>(In −P∗)Gµ0}2 ≤ n−1M2 = O(n−1).
The above also holds when P∗ = PZ and PXB

. The desired result in (S.15) follows. �

LEMMA S.12 Under Assumptions (A1) – (A10), when Kn log(n)/n1/2 → 0 as n→∞,

n−1/2ε>PΦε = oP (1), (S.16)

n−1/2ε>G>PΦε = oP (1), (S.17)

n−1/2ε>G>PΦGε = oP (1). (S.18)

7
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Proof. First, it is easy to obtain that

E
{
n−1/2ε>PΦε

}
= n−1/2E{tr(ε>PΦε)} = n−1/2E{tr(PΦεε

>)}

= n−1/2tr{E(PΦεε
>)} = n−1/2tr{EPΦEεε>} = n−1/2σ20E{tr(PΦ)} = o(1),

therefore, (S.16) holds. Let PΦ,i denote the ith column of PΦ, and gi denote the ith column of
G. Then, we have

E
{
n−1/2ε>G>PΦε

}
= n−1/2σ20E{tr(G>PΦ)} = n−1/2σ2E

{
n∑
i=1

g>i PΦ,i

}

= n−1/2E


n∑
i=1

n∑
j=1

gijPΦ,ij

 ≤ n−1/2σ20E


n∑
i=1

n∑
j=1

|gij ||PΦ,ij |


� n−1/2σ20

Kn

n

n∑
i=1

n∑
j=1

|gij | = o(1).

Next we examine the variance:

E
{
n−1/2ε>G>PΦε

}2
=n−1(µ4 − 3σ40)

n∑
i=1

E(g>i PΦ,i)
2 + n−1σ40[E{tr(G>PΦ)}2

+ Etr(G>PΦG) + Etr(G>PΦG>PΦ)].

Note that

n−1(µ4 − 3σ40)

n∑
i=1

E(g>i PΦ,i)
2 ≤ n−1(µ4 − 3σ40)E

n∑
i=1

P>Φ,iPΦ,i = o(1),

n−1σ40E{tr(G>PΦ)}2 ≤ n−1σ40E{
n∑
i=1

n∑
j=1

|gij |PΦ,ij |}2 = o(1),

n−1σ40Etr(G>PΦG) = n−1σ40

n∑
i=1

E(g>i PΦgi) = o(1),

and

n−1σ40Etr(G>PΦG>PΦ) � n−1σ40
n∑
i=1

n∑
i′=1

n∑
j=1

n∑
j′=1

gjj′gii′PΦ,ij′PΦ,ji′

≤ n−1σ40
K2
n

n2

n∑
i=1

n∑
i′=1

n∑
j=1

n∑
j′=1

|gjj′ ||gii′ | = o(1).

So (S.17) is proved. Similarly, we can prove (S.18). �

LEMMA S.13 Under Assumptions (A1) – (A11), if Cn is uniformly bounded both in row sums

8
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and column sums in absolute values, then except on an event whose probability goes to zero,∥∥∥n−1X>BCnµ0

∥∥∥2 = OP (|4|2), (S.19)∥∥∥n−1/2(Φ∗>Cnε)
∥∥∥2 = OP (|4|−2), (S.20)

where Φ∗ is in (S.2).

Proof. First we prove (S.19). Note that

X>BCnµ0 = {X1 ⊗B∗(U1), . . . ,Xn ⊗B∗(Un)}

(
n∑
i=1

cn,1iµ0i, . . . ,

n∑
i=1

cn,niµ0i

)>

=

n∑
i=1

Xi ⊗B∗(Ui)

n∑
i′=1

cn,ii′µ0,i′ ,

where X>i ⊗B∗(Ui)
> = {X>i ⊗B(Ui)

>}(Ip2 ⊗Q2). Then we have

n−2(X>BCnµ0)
>(X>BCnµ0)

=

[
n−1

n∑
i=1

{Xi ⊗B∗(Ui)}>
n∑

i′=1

cn,ii′µ0,i′

][
n−1

n∑
s=1

Xs ⊗B∗(Us)

n∑
s′=1

cn,ss′µ0,s′

]

≤C1n
−2

n∑
i=1

n∑
s=1

|{Xi ⊗B(Ui)}>{Xs ⊗B(Us)}|
n∑

i′=1

n∑
s′=1

|cn,ii′ ||cn,ss′ |

� 1

n

∑
i=1

B(Ui)
> 1

n

n∑
i′=1

B(Ui′) � OP (|4|2).

Next, we provide the proof of (S.20). By Lemma S.3, CnC
>
n and C>nCn are uniformly bounded

both in row sums and column sums. By Lemma A.10 from Lee (2004),

n−1/2(Φ∗>Cnε) =

(
n−1/2Z>Cnε

n−1/2
√
KnX>BCnε

)
, n−1/2Z>Cnε = OP (1).

Next, let qnm =
√
KnX>BCnm, where Cnm is the m-thcolumn of Cn. Then we can obtain

qnm =
√
Kn

n∑
i=1

Xi ⊗B∗(Ui)Cn,im

=
√
Kn

(∑
i

Cn,imXi1B(Ui)
>Q2, . . . ,

∑
i

Cn,imXip2B(Ui)
>Q2

)>
,

and Var(n−1/2
√
KnX>BCnε) = n−1σ2

∑n
m=1 qnmq

>
nm, where qnm are uniformly bounded.

Note that for any k, k′, i, i′, j, j′,

E{XikXi′k′Bj(Ui)Bj′(Ui′)} ≤ E{|Xik||Xi′k′ | ×Bj(Ui)Bj′(Ui′)} = O(|4|2),

9
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which implies qnj are uniformly bounded. By applying Chebyshev’s Inequality, the desired re-
sult follows. �

S.2. Asymptotic Results for Unpenalized Partially Linear Bivariate Spline Estimators
without Neighboring Effects

If α = 0, then we have

Yi =

p1∑
l=1

Z>il γ0l +

p2∑
k=1

Xikβ0(Ui) + εi. (S.21)

Thus, γ̂ − γ0 = (γ̃µ − γ0) + γ̃ε, where γ̃µ, γ̃ε are defined in (S.6) and (S.7).

LEMMA S.14 Under Assumptions (A1) – (A6), as n→∞,

[Var (γ̃ε|{(Zi,Xi,Ui), i = 1, . . . , n})]−1/2 γ̃ε → N(0, Ip1×p1).

Proof. For any b ∈ Rp1 with ‖b‖ = 1, denote that b>ε̃ =
∑n

i=1 ηiεi, where

η2i = n−2b>(nU11)(Zi −V12V
−1
22 XB,i)(Z

>
i −X>B,iV−122 V21)(nU11)b,

where XB,i = Xi ⊗B∗(Ui), and conditioning on {(Zi,Xi,Ui), i = 1, . . . , n}, ηiε′is are inde-
pendent. By Lemma S.5,

max
1≤i≤n

η2i ≤ Cn−2 max
1≤i≤n

{
‖Zi‖2 + ‖V12V

−1
22 XB,i‖

2
}
.

Note that for any i ∈ 1, . . . , n, Z>i Zi = OP (1) under Assumption (A2). Thus, ‖ZZ>‖F =

{
∑n

i=1

∑n
i′=1 |Z>i Zi′ |2}1/2 = O(n). Note that ‖ZZ>‖2 ≤ ‖ZZ>‖F ≤

√
p1‖ZZ>‖2. Then, we

have

‖V12V
−1
22 XB,i‖

2 = {Xi ⊗B∗(Ui)}>V−122 V21V12V
−1
22 {Xi ⊗B∗(Ui)}

≤ Cn{Xi ⊗B∗(Ui)}>V−122 X
>
BXBV−122 {Xi ⊗B∗(Ui)}

� n{Xi ⊗B∗(Ui)}>V−122 {Xi ⊗B∗(Ui)}
� Kn‖Xi ⊗B∗(Ui)‖2 � Kn � |4|−2.

For large n, with probability approaching 1,

max
1≤i≤n

‖V12V
−1
22 XB,i‖

2 = OP (|4|−2), max
1≤i≤n

η2i = OP (n−2|4|−2).

Thus,

σ20

n∑
i=1

η2i = Var
[
b>γ̃ε|{(Zi,Xi,Ui), i = 1, . . . , n}

]
= b>U11Z

>(In −PXB
)ZU11b

= n−1b>(nU11)

{
n−1

n∑
i=1

(Zi − Z∗i )(Zi − Z∗i )
>

}
(nU11)bσ

2
0,

10
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where Z∗i is the i-thcolumn of Z>PXB
. By Lemma S.5, with probability approaching 1,∑n

i=1 η
2
i ≥ c/n. So max1≤i≤n η

2
i /
∑n

i=1 η
2
i = OP (n−1|4|−2) = oP (1). Applying Lindeberg-

Feller Central Limit Theorem, we have(
σ20

n∑
i=1

η2i

)−1/2 n∑
i=1

ηiεi −→ N(0, 1).

�

LEMMA S.15 Under (A1) – (A6), for the covariance matrix Σγ = σ−2Ξ of the estimator γ,
Ξ is defined in (10), (nσ−20 Ξ)1/2(γ̂ − γ0) → N(0, Ip1×p1), where Σγ could be consistently
estimated by (nσ̂2)−1

∑n
i=1(Zi − Z∗i )(Zi − Z∗i )

>. That is,

Var (γ̃ε|{(Zi,Xi,Ui), i = 1, . . . , n}) = n−1Σγ + oP (1).

Proof. The proof is similar to Theorem 1 in Wang, Wang, Lai, and Gao (2020), thus omitted. �

LEMMA S.16 For Model (S.21), under Assumptions (A1) – (A6), for any k = 1, . . . , p2, the
spline estimator β̂k(·) is consistent and satisfies that ‖β̂k − β0k‖L2

= OP (n−1/2|4|+ |4|`+1).

Proof. By (S.1), if α = 0,

θ̂ = U22X>B(In −PZ)(µc + µv + ε)

= U22X>B(In −PZ)µv + U22X>B(In −PZ)ε ≡ θ̃µ + θ̃ε.

Then, we have the following decomposition:

θ̂ − θ∗ = θ̃µ − θ∗ + θ̃ε,

where θ∗ is defined in (S.8). Then, according to Lemma S.6 and S.13, n−1/2K1/2
n X>B(In −

PZ)ε = OP (1). Next, by Lemmas S.4 and S.5, we have

‖θ̃ε‖2 =
K2
n

n2
ε>(In −PZ)XB(nK−1n U22)(nK

−1
n U22)X>B(In −PZ)ε

� K2
n

n2
‖X>B(In −PZ)ε‖2 = OP (K2

n/n).

Thus, by Lemma S.9, we have

‖θ̂ − θ∗‖ ≤ ‖θ̃µ − θ∗‖+ ‖θ̃ε‖ = OP (|4|` +Kn/
√
n).

Therefore, Lemma S.1 implies that ‖β̂k − β0k‖L2
= OP (|4|/

√
n+ |4|`+1). �

S.3. Proof of Lemma A.1

Proof. By Lemma A.5 in Lee (2004) and Assumptions (A7) – (A9),

sup
α∈D

n−1tr[{T(α)T−1}>T(α)T−1] = O(1). (S.22)

11
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Therefore, σ2(α) = n−1σ20tr[{T(α)T−1}>T(α)T−1] is uniformly bounded for α ∈ D. Recall
l∗n(σ2, α) defined in (A.3) is the log-likelihood function of a standard SAR model:

Y = αWY + ε,

where ε ∼ N(0, σ2In). Suppose that σ20 and α0 are the true parameters for this SAR process,
then by Jensen’s inequality, we have

max
σ2

E(σ2
0 ,α0)[`

∗
n(σ2, α)] ≤ E(σ2

0 ,α0)l
∗
n(σ20, α0), for all α ∈ D

i.e., by ignoring the constant term, we have

−n
2

log σ2(α) + log |T(α)| ≤ −n
2

log σ20 + log |T|.

That is, for all α ∈ D

1

2
log σ2(α) ≥ 1

2
log σ20 +

1

n
(log |T| − log |T(α)|). (S.23)

For any α1, α2 ∈ D, by the mean value theorem, there exists an α between α1 and α2, such that

1

n
{log |T(α2)| − log |T(α1)|} =

1

n
tr{WT−1(α)}(α2 − α1).

Under Assumption (A8) and Lemma A.8 in Lee (2004), supα∈D
[
n−1tr{WT−1(α)}

]
=

O(ν−1n ). So 1
n log |T(α)| is uniformly equicontinous in α ∈ D. Thus by (S.23), log σ2(α) is

bounded from below. Combined with (S.22), σ2(α) is uniformly bounded away from 0. Recall
(A.2), by Assumptions (A7) – (A10) and Lemma S.10 and Lemma S.11,

σ̂∗2(α) = σ2(α) + n−1(α0 − α)2
[
E
{

Gµ>0 (In −PΦ)(Gµ0)
}]

+ o(1). (S.24)

So σ̂∗2(α) ≥ σ2(α) + o(1). Therefore, σ̂∗2(α) is continuous and uniformly bounded away from
zero. So {σ̂∗(α)}−2 is uniformly bounded. That will result in the uniform equicontinuity of
log σ̂∗2(α). Recall that n−1sn(α) = −1/2 log σ̂∗2(α) +n−1 log |T(α)|+ const. The uniformly
equicontinuity of n−1sn(α) holds. �

S.4. Proof of Lemma A.2

Proof. It is straight forward to obtain that:

1

n
`n(α)− 1

n
sn(α) = −1

2
[log σ̂2(α)− log σ̂∗2(α)].

Noting that T(α)T−1 = (In − αW)T−1 = In + (α0 − α)G, we have

(In −PΦ)T(α)Y = (In −PΦ)T(α)T−1TY

= (In −PΦ)[In + (α0 − α)G](µ0 + ε)

= (α0 − α)(In −PΦ)Gµ0 + (In −PΦ)T(α)T−1ε+ (In −PΦ)µ0,

12
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Then σ̂2(α) could be written as

σ̂2(α) =
1

n
‖(In −PΦ)T(α)Y‖2

=
1

n
(α0 − α)2(Gµ0)

>(In −PΦ)(Gµ0) +
2

n
(α0 − α)(Gµ0)

>(In −PΦ)T(α)T−1ε

+
1

n
ε>(T−1)>T(α)(In −PΦ)T(α)T−1ε+

1

n
µ>0 (In −PΦ)µ0

+
2

n
µ>0 (In −PΦ)T(α)T−1ε+

2(α0 − α)

n
µ>0 (In −PΦ)Gµ0. (S.25)

By Lemmas S.10 and S.11,

σ̂2(α) =
1

n
(α0 − α)2(Gµ0)

>(In −PΦ)(Gµ0) +
2

n
(α0 − α)(Gµ0)

>(In −PΦ)T(α)T−1ε

+
1

n
ε>(T−1)>T(α)(In −PΦ)T(α)T−1ε

+
2

n
µ>0 (In −PΦ)T(α)T−1ε+ oP (1).

According to (S.24), we have

σ̂2(α)−σ̂∗2(α) =
1

n
(α0 − α)2(Gµ0)

>(In −PΦ)(Gµ0)

− (α0 − α)2

n

[
E
{

Gµ>0 (In −PΦ)(Gµ0)
}]

+
2

n
(α0 − α)(Gµ0)

>(In −PΦ)T(α)T−1ε

+
1

n
ε>(T−1)>T(α)T(α)T−1ε− 1

n
ε>(T−1)>T(α)>PΦT(α)T−1ε

− σ20
n

tr{(T−1)>T(α)>T(α)T−1}+
2

n
µ>0 (In −PΦ)T(α)T−1ε+ oP (1).

By Lemma A.12 in Lee (2004),

sup
α∈D

∣∣∣∣ 1n(α0 − α)2(Gµ0)
>(In −PΦ)(Gµ0)−

(α0 − α)2

n

[
E
{

Gµ>0 (In −PΦ)(Gµ0)
}]∣∣∣∣ = oP (1),

because α appears simply as a quadratic factor in the left handed side. Similarly we have

sup
α∈D

∣∣∣∣ 1nε>(T−1)>T(α)>T(α)T−1ε− 1

n
E{ε>(T−1)>T(α)>T(α)T−1ε}

∣∣∣∣ = oP (1). (S.26)

Note that

E{ε>(T−1)>T(α)>T(α)T−1ε} = σ20tr{(T−1)>T(α)>T(α)T−1},

thus,

sup
α∈D

{
1

n
ε>(T−1)>T(α)>T(α)T−1ε− σ2(α)

}
= oP (1). (S.27)

13
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Note that

(α0 − α)(Gµ0)
>(In −PΦ)T(α)T−1ε = (α0 − α)ε>{In + (α0 − α)G}(In −PΦ)Gµ0

= (α0 − α)ε>(In −PΦ)Gµ0 + (α0 − α)2(Gε)>(In −PZ)Gµ0,

where α appears as linear and quadratic in the above. Thus, by Lemmas S.10 and S.11, we have

sup
α∈D

{
2

n
(α0 − α)(Gµ0)

>(In −PΦ)T(α)T−1ε

}
= oP (1). (S.28)

Similarly, we can obtain that

sup
α∈D

{
2

n
µ>0 (In −PΦ)T(α)T−1ε

}
= sup

α∈D

{
2

n
µ>0 (In −PΦ)(In + (α0 − α)G)ε

}
= oP (1).

(S.29)
Recall Φ∗ defined in (S.2), then we can obtain thatPΦ∗ = PΦ. Then by Lemma S.5 and Lemma
S.13, noting that lim

n→∞
n−1Kn = 0, T(α),T are matrices with off-diagonal elements non-

positive, so by using the properties of Metzler matrix, all the elements of T−1 and αWT−1 are
non-negative.

1

n
ε>(T−1)>T(α)>PΦT(α)T−1ε =

1

n
ε>(T−1)>T(α)>PΦ∗T(α)T−1ε

=
1

n2
{Φ∗>(T−1 − αG)ε}>

(
Φ∗>Φ∗

n

)−1
{Φ∗>(T−1 − αG)ε}

� 1

n

{Φ∗>(T−1 − αG)ε}√
n

> {Φ∗>(T−1 − αG)ε}√
n

= OP (Kn/n),

and

sup
α∈D

{
1

n
ε>(T−1)>T(α)>PΦT(α)T−1ε

}
= oP (1). (S.30)

By (S.26) to (S.30), σ̂2(α) − σ̂∗2(α) = oP (1) uniformly in α ∈ D, then we can use the mean
value theorem,

sup
α∈D
{| log σ̂2(α)− log σ̂∗2(α)|} = sup

α∈D

1

σ̌2(α)
|σ̂2(α)− σ̂∗2(α)| = oP (1),

where σ̌2(α) is between σ̂2(α) and σ̂∗2n (α). Therefore, supα∈D n
−1 |`n(α)− sn(α)| = oP (1).

�

S.5. Additional Simulation Studies

In this section, we conduct additional simulation studies to investigate the proposed weight esti-
mation algorithms presented in Section 4.1 of the main paper.

We consider the horseshoe domain described in Section 5.1 in the paper, and randomly select
n = 200, 500, 1000, 2000, 5000 sample locations from the domain uniformly. To show the

14
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Table S.1. Convergence results of Algorithm 1.

n S = 5 S = 15 S = 30 S = 50 S = 70

200 δw 0.0347 0.0202 0.0135 0.0109 0.0105
Time (seconds) 17 44 86 136 144

500 δw 0.0383 0.0263 0.0208 0.0167 0.0152
Time (seconds) 20 50 100 162 220

1000 δw 0.0270 0.0194 0.0154 0.0133 0.0127
Time (seconds) 86 224 387 690 923

2000 δw 0.0156 0.0122 0.0100 0.0088 0.0081
Time (seconds) 382 1021 1942 3423 4711

5000∗ δw 0.0069 0.0063 0.0063 0.0061 0.0061
Time (seconds) 6320 13805 21827 36378 50121

“∗” indicates that the results are based on 10 replications.

performance of the proposed Algorithm 1, we let wij = exp(−10dij)/
∑

k 6=i exp(−10dik), and
calculate the following measure:

δw = max
i 6=j
|w(1)
ij − w

∗
ij |,

where w(1)
ij is the weight calculated based on the estimated distance (d(1)ij ) by Algorithm 1, and

w∗ij is the weight calculated based on the geodesic distance (d∗ij) calculated using the approach
proposed by Miller and Wood (2014). We run 100 replications for each of the setting with
n = 200, 500, 1000, 2000, and 10 replications for n = 5000 due to the huge amount of
computing power needed by the approach in Miller and Wood (2014).

Table S.1 reports the average δw values over replications, and the average computing time
(seconds per replication) on a regular PC with processor Core i7 @3.3GHz CPU and 16.00GB
RAM. From Table S.1, when the number of iteration steps, S, is increasing, we can clearly see
the convergence of the results. When S = 50, the value of δw is close to be a constant. So in the
real application, we suggest take S = 30 ∼ 50 for small sample size and S = 10 ∼ 30 when
sample size n > 2000.

Next, we examine the performance of Algorithm 2. For that purpose, we randomly select
n = 1000, 2000, 5000, 10000 sample locations from the domain uniformly, and calculate the
maximum of the difference between the two weights as follows:

δw = max
i 6=j
|w(2)
ij − w

(∗)
ij |,

where w(2)
ij is the weight calculated based on the estimated distance (d(2)ij ) by Algorithm 2, and

w∗ij is the weight calculated based on the geodesic distance (d∗ij) calculated using the approach
proposed by Miller and Wood (2014). To show the effect of triangulation, we consider four
different triangulations; see41–44 in Figure S.1.

Table S.2 shows the average δw values over replications, and the average computing time
(seconds per replication). We run 100 replications for each of the settings with n = 1000, 2000,
and 10 replications for n = 5000 due to the huge amount of computing power needed by the
approach in Miller and Wood (2014). For n = 10000, we only report the computing time of
Algorithm 2, because the approach in Miller and Wood (2014) cannot be implemented due to
its huge memory requirement. The columns 41–44 represent the results obtained based on
the distance calculated from 41–44, respectively. From Tables S.1 and S.2, one sees that for
n = 1000 and 2000, the results based on Algorithm 2 are less accurate than those based on

15
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(a)41 (87 triangles) (b)42 (238 triangles) (c)43 (736 triangles) (d)44 (1613 triangles)
Figure S.1. Triangulations considered in Algorithm 2.

Table S.2. Performance of Algorithm 2 based on different triangulations.

n 41 42 43 44

1000 δw 0.0297 0.0286 – –
Time (seconds) 52 52 – –

2000 δw 0.0226 0.0218 0.0166 –
Time (seconds) 53 53 111 –

5000∗ δw 0.0138 0.0136 0.0116 0.0081
Time (seconds) 64 67 125 657

10000∗ δw – – – –
Time (seconds) 135 137 206 745

“∗” indicates that the results are based on 10 replications.

Algorithm 1. However, when n = 5000, the results based on Algorithms 1 and 2 are quite
comparable. Overall, Algorithm 2 is much faster than Algorithm 1 when n = 5000. Remarkably,
Algorithm 2 with n = 10000 is faster than Algorithm 1 with n = 2000, and much faster than
Algorithm 1 with n = 5000.

From Table S.2, we find that results are more accurate when the triangulation becomes finer,
but the computing is also more expensive for fine triangulations. To reduce the computing burden
for large n, we recommend using the triangulations with the number of triangles less than n/3.

S.6. Extra Simulation Results

In this section, we provide additional results from the simulation studies presented in Section 5
of the main paper. Figures S.2–S.3 depict the contour plots for the estimated coefficient functions
for a typical simulation run in Simulation Study 1 when n = 500, 1000, respectively. Figures
S.4 shows the contour plots for the estimated coefficient functions for a typical simulation run
in Simulation Study 2 when n = 500.
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β1(·) β2(·) β3(·)

True coefficient functions

BPST(41)

BPST(42)

Kernel(hcov)

Figure S.2. Simulation Study 1: contour plots for the true and estimated coefficient functions when n = 500. BPST(4j ): bivariate
penalized spline estimator based on triangulation 4j , j = 1, 2, 3; Kernel(hcov): local smoothing method (Sun et al. 2014) with
bandwidth hcov.
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on complicated domains by bivariate penalized splines over triangulations’, Statistica Sinica.
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β1(·) β2(·) β3(·)

True coefficient functions

BPST(41)

BPST(42)

Kernel(hcov)

Figure S.3. Simulation Study 1: contour plots for the true and estimated coefficient functions when n = 1000. BPST(4j ):
bivariate penalized spline estimator based on triangulation4j , j = 1, 2, 3; Kernel(hcov): local smoothing method (Sun et al. 2014)
with bandwidth hcov..
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β̂1(·) β̂2(·)

BPST(41), n = 500

BPST(42), n = 500

BPST(43), n = 500

Kernel(hcov), n = 500

Figure S.4. Simulation Study 2: the estimated contour plots for coefficient functions. BPST(4j ): bivariate penalized spline esti-
mator based on triangulation4j , j = 1, 2, 3; Kernel(hcov): local smoothing method (Sun et al. 2014) with bandwidth hcov.
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