
Supplementary Information: Diffusional Transfer Function for the

Scanning Electrical Mobility Spectrometer (SEMS)

Yuanlong Huang, John H. Seinfeld, and Richard C. Flagan∗

California Institute of Technology, Pasadena, CA 21195, USA

Correspondence to: flagan@caltech.edu

2020-04-20

1 Streamline Approach in Evaluating Static DMA Transfer Function

In this section, we review the method that Knutson and Whitby (1975) (KW) and Stolzenburg (1988) applied to

derive the non-diffusional and diffusional static DMA transfer functions, respectively.

The conceptual scheme of the DMA is shown in Figure 1 in the main manuscript. We present a similar to that

of Stolzenburg (1988) to account for particle diffusion in the scanning DMA in this manuscript.

Knutson and Whitby (1975) developed an elegant model for the transmission of non-diffusive particles in terms

of the fluid flow streamfunction, ψ, which is defined such that

rur =
∂ψ

∂x
, rux = −∂ψ

∂r
(S1)

where r and x are the radial and axial coordinates, and u is the fluid velocity, and the electric flux function, φ, which,

for the steady-state DMA, can be related to the electric field through

rEr =
∂φ

∂x
, rEx = −∂φ

∂r
(S2)

where E is the electric field. Non-diffusive, charged particles follow trajectories of constant particle stream function,

Γ, i.e.,

Γ = ψ + Zφ
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which is related to the particle velocity, v, via

rvr =
∂Γ

∂r
, rvz = −∂Γ

∂z
(S3)

Particles that do not diffuse are advected by the gas and migrate under the action of the electric field, maintaining

a constant value of Γ along their trajectories. Thus,

Γe − Γi = ∆Γ = 0 = ∆ψ + Z∆φ

along the particle trajectory. Thus, the mobility that corresponds to particles crossing a range of fluid streamlines,

∆ψ, and of electric flux function, ∆φ, is

Z = −∆ψ

∆φ
(S4)

Applying the KW definition of the characteristic trajectory of the classified particles within the static DMA as that

which enters the classification region at the center of mass of the incoming aerosol sample, and exits at the center of

mass of the outgoing classified aerosol flow, we define

Z∗ = −∆ψ∗

∆φ

This result applies generally for a static DMA, and is not dependent upon the specific geometry.

For a high aspect ratio (large length relative to distance between electrodes) cylindrical DMA (CDMA), the

flow may be approximated as flowing parallel to the coaxial, cylindrical electrodes, in which case, ur = 0, and

ψ(r, x) = ψ(r) (Figure 1). Multiplying Eq. (S1) by 2π and integrating from radial position r to the outer radius,

R2, where the aerosol enters the DMA, we find

2πψ(r) =

ˆ R2

r

2πruz(r)dr = Q(r) (S5)

which is the volumetric flow rate between the radial position and the outer electrode. The aerosol flow rate is Qa, so

the value of the streamfunction at the center of mass of that flow, i.e., at the radial position r∗ where Q(r∗i ) = Qa
2 , is

ψ∗i = Qa
4π ; that at the center of mass of the classified aerosol outlet is ψ∗e = 2Qex+Qc

4π = Qsh+Qex+Qa
4π , where Qsh, Qex,

and Qc are the sheath, exhaust, and classified sample flow rates, respectively. Thus,

∆ψ∗ =
Qsh +Qex

4π
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The electric field in an ideal, constant voltage, cylindrical DMA is

E(r) = − Ve

r ln R2

R1

assuming the central rod voltage is negative, so

∆φ∗ =

ˆ L

0

− Vedx
ln R2

R1

= − VeL

ln R2

R1

and the mobility of the particle following the characteristic trajectory becomes

Z∗ =
Qsh +Qex

4πLVe
ln
R2

R1
(S6)

where L is the effective coaxial length of the DMA. While the voltage is kept constant during the classification, we

have explicitly noted that the voltage is that at the instant when the particle leaves the classification region, to be

consistent with the definition here in the case of scanning DMA.

Stolzenburg (1988) estimated the form of the transfer function for diffusive particles by the stream function

method. Define s as the coordinate along the length of the trajectory, and y as the local coordinate that is orthogonal

to the trajectory. Brownian diffusion leads to a mean-square increment in displacement from this kinematic (non-

diffusive) trajectory in a time increment, dt, as

dσ2
y = 2Ddt (S7)

where D is the particle diffusivity. The local velocity of the particle is the time derivative of the vector from the

origin of a suitable fixed coordinate system, i.e., ~ρ, to the particle position, which can be decomposed to the local

components in the (s, y) coordinate system, such that

~v =
d~ρ

dt
= vs

∂~ρ

∂s
+ vy

∂~ρ

∂y

For small displacements, we may approximate vs and vy by Taylor series about the non-diffusive trajectory,

vs ≈ vs|y=0 +
∂vs
∂y

∣∣∣∣
y=0

y

vy ≈ vy|y=0 +
∂vy
∂y

∣∣∣∣
y=0

y

Neglecting cross-stream shear, ∂vs
∂y

∣∣∣
y=0

= 0, and vs ≈ vs|y=0. By definition of our local coordinate system, vy|y=0.
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Further assuming that ∂vy
∂y

∣∣∣
y=0

= 0, we have

vs ≈ vs|y=0 ≈ |v|

vy ≈ vy|y=0 ≈ 0

which is strictly valid only for high aspect ratio DMAs, i.e., those for which L/(R2 − R1) � 1. This model further

neglects distortions to particle concentration profiles due to the presence of walls, such that particles are allowed to

deviate from the classified aerosol outlet flow by diffusing through the walls.

We are not concerned with the spatial deviations of particles, but rather with the extent to which they deviate

across the flow from the inlet particle stream function, Γi. Error propagation shows the incremental change in the

stream function variance to be

dσ2
Γ =

(
∂Γ

∂y

)2

dσ2
y

Following Stolzenburg (1988), it can be shown that, at y = 0, and with the assumptions described above,

∂Γ

∂y
= rv

so, with Eq. (S7),

dσ2
Γ = 2v2r2Ddt

For a high aspect ratio CDMA, such as that originally described by Knutson and Whitby (1975) and commer-

cialized as the TSI Model 3081 long column DMA, and relatively large particles that are classified at voltages in

excess of a few tens of volts, neglecting the losses to the classification region walls, as is implicit in this model, is

reasonable because particles are sufficiently far from the walls through most of their transit through the DMA. For

highly diffusive particles, which are classified at low voltage, diffusional losses may become important. Scaling σ2
Γ

with respect to (∆ψ∗)
2 yields a dimensionless transfer function broadening parameter that can be related to an

integral along the characteristic trajectory as

σ̃2 ≡ σ2
Γ

(∆ψ∗)
2 =

2D
(∆ψ∗)

2

ˆ
Γ∗
v2r2dt (S8)

Defining a new radial variable ω =
(
r
R2

)2

and a new radial parameter γ =
(
R1

R2

)2

, and invoking the flow rate
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ratios of Knutson and Whitby (1975) provides new parameters

β =
Qa +Qc

Qsh +Qex
(S9)

δ =
Qc −Qa

Qc +Qa
(S10)

Casting the integral in EQ. (S8) in nondimensional form, the variance becomes

σ̃2 =

(
4π

Qsh +Qex

)2

2DŪ2R2
2tm

ˆ
Γ∗
ṽ2ωdτ,

where tm is the mean gas residence time

tm =
2πR2

2L(1− γ)

(Qsh +Qex +Qa +Qc)
(S11)

τ = t
tm

, and Ū = L
tm

. σ̃2 can be expressed in terms of dimensionless variables as

σ̃2 = 4

(
1 + β

1− γ

)
1−√γ
Pe∗mig

ζ

ˆ
Γ∗
ṽ2ωdτ (S12)

Then the migration Péclet number of a particle of diffusivity D∗ in a CDMA is defined as

Pe∗mig =
v∗E2

(R2 −R1)

D∗

ζ = D
D∗ accounts for the difference of the diffusivity of the particle in question from that of a particle of mobility

Z∗, and v∗E2
= Z∗E(R2, Ve) = Qsh+Qex

4πLR2
is the migration velocity of a non-diffusive particle traveling along the

characteristic trajectory that exits the classification region at time te (or dimensionless time τe). The mobility is

related to the diffusivity through

Z =
ne

kT
D,

where k is the Boltzmann constant, and T is the temperature, so that ζ = D
D∗ = Z

Z∗ .

The integral of Eq. (S12) is evaluated by noting that

v2(r, t) = u(r, t)2 + v∗E2
(t)2R

2
2

r2
,

so ˆ
Γ∗

(ṽ(ω, τ))
2
ωdτ =

ˆ
Γ∗

(ṽE2
(τ))

2
dτ +

ˆ
Γ∗

(ũ(ω(τ), τ))
2
ωdτ = Ir + Iz (S13)
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where the two integrals are denoted as Ir and Iz, and ṽE2(τ) is the electrophoretic migration velocity of a particle

at ω = 1. The two integrals, which correspond to the components of the particle motion in the coaxial and radial

directions, respectively, can be evaluated for either the steady-state DMA, or one in which the voltage changes with

time given the characteristic trajectory for a given DMA and voltage profile. These results may be combined to

express the dimensionless variance as

σ̃2 =
GDMA

Pe∗mig
ζ,

where

GDMA = 4

(
1 + β

1− γ

)
(1−√γ) (Iz + Ir)

Thus, the Stolzenburg (1988) analysis makes it possible to evaluate σ̃2, provided the center of mass of an ensemble

of particles of a given mobility follows a consistent kinematic trajectory through the classification region of the DMA.

The original analysis was performed for the static (constant voltage) DMA; for size distribution measurements, this

mode of operation corresponds to the so-called differential mobility particle sizer (DMPS). Other modes of operation

that yield consistent trajectories are also amenable to this analysis as we shall show below. The key hypothesis

underlying this transfer function estimation is that particles deviate from the non-diffusive trajectory that begins at

ψi and ends at ψe as if there were no walls present in the DMA. This leads to a delta function distribution about

the non-diffusive trajectory and a Gaussian distribution about the diffusive trajectory. To be transmitted from the

incoming aerosol flow to the outgoing aerosol flow, 0 ≤ ψi ≤ Qa
2π and Qsh

2π ≤ ψe ≤
Qtotal

2π , the transfer function is then

Ω(Z,Z∗) =

ˆ Qa
2π

0

[ˆ Qsh+Qex+Qa+Qc
4π

Qsh
2π

ftrans(ψe, ψi)dψe

]
finlet(ψi)dψi (S14)

where finlet(ψi) = 2π
Qa

is the inlet probability function, and ftrans(ψe, ψi) = δD(ψe − ψi + Z∆φ) for the non-diffusive

trajectory, where δD(x) is the Dirac delta function, and ftrans(ψe, ψi) = 1√
2πσΓ

exp
[
− (ψe−ψi+Z∆φ)2

2σ2
Γ

]
for the diffusive

trajectory. For the steady-state DMA, all particles experience the same ∆φ, so integrating first over ψe, and then

over ψi yields the transfer function in dimensionless form,

Ωnd(ζ) =
1

2β(1− δ)

[
|ζ − (1− β)|+ |ζ − (1 + β)| − |ζ − (1− βδ)| − |ζ − (1 + βδ)|

]
(S15)

for the non-diffusive case, and

Ωd(ζ) =
σ̃√

2β(1− δ)

[
E
(
ζ − (1− β)√

2σ̃

)
+ E

(
ζ − (1 + β)√

2σ̃

)
− E

(
ζ − (1− βδ)√

2σ̃

)
− E

(
ζ − (1 + βδ)√

2σ̃

)]
(S16)
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for the diffusive case, where

E(x) = xerf(x) +
e−x

2

√
π

and erf(x) is the error function.

For the scanning DMA, one must account for variation of ∆φ for particles that enter the DMA at different times.

The instantaneous variation of φ with x for the SEMS is

∆φ =

ˆ xe

xi

r
Vi

r ln R2

R1

e±
t
ts dx =

ˆ te

ti

Vi

ln R2

R1

e±
t
ts
dx

dt
dt =

ˆ te

ti

Vi

ln R2

R1

e±
t
ts Ū ũ(ω(t))dt

so ∆φ cannot be assumed to be constant during scanning. Nonetheless, the values of ∆φ for any (ψi, ψe) pair can

be computed numerically, enabling numerical evaluation of the transfer function. While this approach lacks the

analytical solution attained for the steady-state DMA, it does afford an efficient approach for determination of the

scanning DMA transfer function. Since the integral above involves a variable of time, which cannot be resolved with

the streamline method, we show in the main manuscript that starting from dynamic trajectories one can derive the

same conclusion as the streamline method and at the same time can be applied in the scanning case.

2 Estimation of σ̃

As shown in Section 1, the variance of streamline, σ2
Γ, is scaled by

(
Qsh +Qex

4π

)2

as σ̃2 in Eq. (S12), which is the

same as the dimensionless variance of flow fraction. In this section, we will show the derivation of the integral part

in Eq. (S12) for both the static and scanning cases, and show that the integral of the scanning case is identical to

that of the static case when the scanning time τs →∞.

From Eq. (S12), σ̃2 can be written in two forms:

σ̃2 = 4

(
1 + β

1− γ

)
1−√γ
Pe∗mig

ζ

ˆ ωe

ωi

ṽ2ωdτ = 4

(
1 + β

1− γ

)2 1−√γ
Pe∗mig

λ

ˆ θt

0

ṽ2ωdθ (S17)

where λ = ζ 1−γ
1+β τs, θt = τe−τi

τs
and θ = τe−τ

τs
. The expression on the right hand side will simplify the calculation for

the scanning case.

2.1 Static DMA

To simplify the calculation, we use the σ̃∗ at the centroid streamline as the key calculation, the same strategy as

that adopted by Stolzenburg (1988), which is within the precision since the diffusion range is small relative to ψin

and ψout. To derive σ̃2 in the context of this manuscript, first we can transform the integral variable from τ to ω.
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From Eq. (11) in the main manuscript, we have dτ = − 1

ζ∗
1 + β

1− γ
dω, thus the mid-term in Eq. (S17) becomes

σ̃2 = 4

(
1 + β

1− γ

)2 1−√γ
Pe∗mig

ζ

ˆ ω∗i

ω∗e

(
ṽ∗2r + ũ2(ω)

)
ωdω = 4

(
1 + β

1− γ

)2 1−√γ
Pe∗mig

ζ (Ir + Iz) (S18)

where we have used the fact that ζ∗ = 1.

Since

v∗r =

(
dr

dt

)∗
= Z∗E = ζ∗

(
Qsh +Qex

4πLV
ln
R2

R1

) −V

R2 ln
R2

R1

 R2

r
= −ζ∗Qsh +Qex

4πLR2

R2

r
(S19)

where we have used the definition of Z∗ in Eq. (S6), so
v∗r
Ū

= ṽ∗r = ζ∗
Qsh +Qex

4πR2L

R2

r

/
Qsh +Qex +Qa +Qc

2π(R2
2 −R2

1)
=

ζ∗

2

1− γ
1 + β

R2

L

R2

r
and

uz
Ū

= ũ(ω). Then we have

Ir =

ˆ ω∗i

ω∗e

ζ∗2

4

(
1− γ
1 + β

)2(
R2

L

)2
ω

ω
dω =

1

4

(
1− γ
1 + β

)2(
R2

L

)2

(ω∗i − ω∗e) (S20)

where we have used the fact that ζ∗ = 1, and

Iz =

ˆ ω∗i

ω∗e

ũ2(ω)ωdω (S21)

where ũ(ω) = ln γ(1−ω)−(1−γ) lnω
1+γ

2 ln γ+1−γ .

Note that Stolzenburg (1988) uses a different integral range of ω, which is from γ to 1, not the same range from

ω∗e to ω∗i (the centroid point). The results from Eqs. (S20) and (S21) will be the same as Stolzenburg’s expression if

ω∗i and ω∗e are replaced by 1 and γ).

Instead of using the same σ̃∗ for all the flow fractions (or streamlines), we can calculate the σ̃ for every pair of

(ωi, ωe). Starting from the right-hand-side of Eq. (S17) and dθ =
1

λ
dω in Eq. (11) in the main manuscript, we get

σ̃2 = 4

(
1 + β

1− γ

)2 1−√γ
Pe∗mig

ˆ ωi

ωe

ṽ2ωdω (S22)

Thus for every pair of (ωi, ωe), there will be a dependent σ̃, i.e. Ir =
λ2

4τ2
s

(
R2

L

)2

(ωi − ωe) and Iz =

ˆ ωi

ωe

ũ2(ω)ωdω.

2.2 Scanning DMA

Here, we use Ve as the reference static DMA working voltage. First, we still apply the centroid point method to

assess if at the limit τs → ∞, the scanning method will approximate the static result. From Eq. (7) in the main
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manuscript, the scanning v†r is

v†r =

(
dr

dt

)†
= −ζ† 1

tm

1− γ
1 + β

e−θ
R2

2

2r
(S23)

so
v†r
Ū

= ṽ†r = −ζ† 1

tm

1− γ
1 + β

e−θ
R2

2

2r

/
L

tm
=
ζ†

2

1− γ
1 + β

R2

L

R2

r
e−θ and

uz
Ū

= ũ(ω).

From Eq. (S17), we have

Ir =

ˆ θ†t

0

ζ†2

4

(
1− γ
1 + β

)2(
R2

L

)2
ω

ω
e−2θdθ =

1

4

(
1− γ
1 + β

)2(
R2

L

)2(
1

2

)(
1− e−2θ†t

)
(S24)

We note that as τs → ∞ and substituting θ†t =
ω∗i − ω∗e
λ∗

into Eq. (S24) gives the same σ̃2 as Eq. (S20) does,

and Iz is the same expression as Eq. (S21). If we want to calculate σ for every pair of (ωi, ωe), then Ir =

λ2

4τ2
s

(
R2

L

)2(
1

2

)(
e1−2θt

)
and Iz =

ˆ θt

0

ũ2(ω)ωdθ.

3 Arrival-Time of Monodisperse Particles

In this section, we show the results of the time that particles have experienced inside the scanning DMA. Particles of

the same mobility are injected continuously and uniformly into the inlet. The arrival time instance τa of the particle

that enters the scanning DMA at the position ωi = 1 and ends at ωe = ωc (lower left corner of Fig. S1-A) is set to its

transit time τt, thus the entering time instance of that particle is τi = 0. The entering times τi of all other particles

that can penetrate the scanning DMA are referred to that particle, so the contour lines in Fig. S1-A represent the

particles that enter the DMA at the same time instant τi but at different position and successfully get through the

DMA. Fig. S1-B shows the transit time of each particle, which is the same as in Fig. 5B in the main manuscript,

indicating that the transit time is an inherent property of the trajectories in the scanning DMA, independent of the

reference time. The summation of τi and τt is the arrival time of the particles, which can be used to calculate the

arrival-time transfer function (ATF). The contour line distribution in Fig. S1-C is similar to that in Fig. 4. The

calculation of the ATF is a 2D integral along the contour line, yielding a trapezoid-shaped ATF (Fig. S1-D), the

same as the derived instantaneous transfer function in the main manuscript but different from those in Collins et al.

(2004) and Dubey and Dhaniyala (2008), which could be a result of the choice of particle injection interval at the

inlet and counting time interval at the outlet in the numerical simulation.
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Figure S1: Contour plots of the entering time τi (at which time particles of the same mobility entering the DMA can
transit the DMA, Panel A), the transit time τt (which time the particles have experienced inside the DMA, Panel
B), and the arrival-time τt + τi (the overall time that the particles have spent since the continuous injection at time
τi = 0, Panel C) for the scanning DMA (β = 1

10 , δ = 0, and τs = 1). Panel D: Arrival-time transfer function. See
Section 3 for details.
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