# Supporting information

# Molecular dynamics simulations reveal the mechanism of the interactions between the

### inhibitors and SIRT2 at atom level

Xiaoyu Wang<sup>1,2</sup>, Menghua Song<sup>1</sup>, Shuang Zhao<sup>1</sup>, Huiyu Li<sup>1\*</sup> Qingjie Zhao<sup>2\*</sup>, and Jingshan Shen<sup>2</sup>

1. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China

2. Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai 201203, China

\*Correspondence to: huiyuli@shiep.edu.cn zhaoqingjie@simm.ac.cn

#### **Supplementary Experimental Section**

#### 1H NMR assignment of TPN0\_C7.

The 1H NMR (400 MHz, DMSO-d6)  $\delta$  10.03 (s, 1H), 7.60 (t, J = 7.6 Hz, 3H), 7.50 – 7.13 (m, 9H), 7.12 – 6.98 (m, 1H), 5.04 (s, 2H), 4.23 – 3.98 (m, 1H), 3.33 (d, J = 13.2 Hz, 4H), 1.77 – 1.56 (m, 2H), 1.54 – 1.39 (m, 4H), 1.37 – 1.08 (m, 10H), 0.85 (t, 3H). ESI-MS (m/z) = 513.56 [M+H] +

#### **Supplementary Tables**

Table S1. Chemical structure, IC<sub>50</sub>, binding energy of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives compounds.

| Compound | Structural formula                      | IC <sub>50</sub> | Binding energy<br>(kcal/mol) |
|----------|-----------------------------------------|------------------|------------------------------|
| 1a       | C S S N S N S N S N S N S N S N S N S N | 1.32µM           | -8.16                        |

| 12f | CF3 O S N                                                                                                  | 0.85µM | -8.73  |
|-----|------------------------------------------------------------------------------------------------------------|--------|--------|
| 12g | OCH3 O S N                                                                                                 | 0.70μΜ | -8.21  |
| 121 |                                                                                                            | NA     | -9.03  |
| 28d |                                                                                                            | NA     | -9.27  |
| 28e | S N N N N N N N N N N N N N N N N N N N                                                                    | 42nM   | -10.11 |
| 28f | O<br>S<br>N<br>O<br>H<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | NA     | -8.7   |

| Compound | Structural formula                                                                                                   | IC50(µM) | Binding energy<br>(kcal/mol) |
|----------|----------------------------------------------------------------------------------------------------------------------|----------|------------------------------|
| TPN0_C7  | $ \begin{array}{c}                                     $                                                             | 1.52     | -8.01                        |
| TPN0_C12 | $ \begin{array}{c}                                     $                                                             | 0.069    | -6.56                        |
| TPN15050 | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>C <sub>12</sub> H <sub>25</sub>                                              | NI       | -7.14                        |
| TPN15049 | $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                  | NI       | -9.18                        |
| TPN15063 | $N$ $H$ $C_{12}H_{25}$ $H$ $H$ $C_{12}H_{25}$ $H$ $H$ $H$ $H$ $C_{12}H_{25}$ $H$ | 30.58    | -7.81                        |
| TPN15096 | S<br>N<br>H<br>H<br>H<br>C <sub>12</sub> H <sub>25</sub>                                                             | 24.804   | -7.23                        |
| TPN15082 | HN N C <sub>12</sub> H <sub>25</sub>                                                                                 | NI       | -5.61                        |

Table S2. Chemical structure,  $IC_{50}$ , binding energy of compounds characterized with thiourea group and a long alkyl chain.

| Residue name | Binding energy (kJ/mol) | Contact probability (%) |  |
|--------------|-------------------------|-------------------------|--|
| PHE96        | -4.17                   | 71.67                   |  |
| PHE119       | -7.85                   | 99.99                   |  |
| PHE131       | -0.91                   | 95.33                   |  |
| LEU134       | -1.29                   | 86.72                   |  |
| ALA135       | -1.08                   | 86.59                   |  |
| LEU138       | -1.91                   | 99.62                   |  |
| ILE169       | -4.57                   | 99.99                   |  |
| PHE190       | -1.83                   | 95.91                   |  |
| ILE232       | -3.58                   | 99.97                   |  |
| VAL233       | -6.74                   | 84.93                   |  |
| PHE234       | -0.97                   | 86.39                   |  |
| PHE235       | -11.12                  | 99.21                   |  |
| LEU239       | -6.48                   | 64.72                   |  |

Table S3. The contact probability (%) and binding energy (kJ/mol) between the residues of SIRT2 and TPN0\_C7.

# **Supplementary Figures**



Figure S1. Chemical structure and IC<sub>50</sub> of reported SIRT2 inhibitors.



Figure S2. Time evolution of C $\alpha$  RMSD and H-bond numbers of the SIRT2 in SIRT2 system (A) (C) and SIRT2+TPN0\_C7 system (B) (D).



Figure S3. The representation of Phe235 as a gate keeper of hydrophobic pocket. (A) The SIRT2+TPN0\_C7 system without Phe235. (B) The SIRT2+TPN0\_C7 with Phe235. SIRT2 is shown in surface mode, TPN0\_C7 is shown in green and stick mode.