Supporting Information for

Repurposing strategies on pyridazinone-based series by pharmacophore- and structure-driven screening

G. Floresta, ${ }^{\mathrm{a}}$ L. Crocetti, ${ }^{\mathrm{b}}$ M. P. Giovannoni, ${ }^{\text {b }}$ P. Biagini, ${ }^{\text {b }}$ and A. Cilibrizzi ${ }^{\mathrm{a}, *}$

${ }^{a}$ Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
${ }^{b}$ NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (Fi), Italy

Content:

1. Chemistry (Scheme S1-S12) 2
2. Experimental Section 11
3. Experimental Details - Molecular modelling 29
4. References 81

1. Chemistry

Analogues 1a,b and 2a,b were prepared from the 4,5-dichloro-3($2 H$)-pyridazinone 22, commercially available (Scheme S1). N-2-benzyl derivatives 23a,b were synthesised by treatment with 3- or 4methoxybenzyl bromide in the presence of potassium carbonate and tetrabutylammonium bromide. The compounds 1a,b were then obtained in two steps. The first reaction was a nucleophilic substitution leading to the selective displacement of the chlorine at C-5 of the pyridazinone ring of $\mathbf{2 3 a}, \mathbf{b}$, using sodium methoxide in anhydrous methanol. The second step was the coupling of 24a,b with 4-butoxyphenylboronic acid using tetrakis(triphenylphosphine)-palladium(0) catalyst under standard Suzuki conditions, to give the final 4-arylated-5-methoxy-pyridazinones 1a,b in good yields. To synthesise analogues $\mathbf{2 a , b}$, it was not possible to obtain selective monoarylation through classical Suzuki reaction. Differently, a selective coupling of 4-butoxyphenylboronic acid on C-5 of the pyridazinone ring was achieved using trans-dichlorobis-(triethylphosphine)palladium (II) as catalyst and in the presence of $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$.

Scheme S1. Reagents and conditions: i) 3 or 4-methoxybenzyl chloride (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), $\mathrm{Bu}_{4} \mathrm{NBr}$ (0.1 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}, 5 \mathrm{~h}$, reflux; ii) Na^{0} (2 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{OH}, 1 \mathrm{~h}$, rt; iii) 4butoxyphenylboronic acid (3 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.03 equiv), $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ (1 equiv), toluene, 8 h , reflux; iv) 4-butoxyphenylboronic acid (0.5 equiv), $\mathrm{PdCl}_{2}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}$ (0.1 equiv), $2 \mathrm{M} \mathrm{Na} 2 \mathrm{NO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ (1 equiv), DMF, 6-12 h, rt.

In Scheme $\mathbf{S 2}$ is depicted the synthesis of compounds $\mathbf{3 a}, \mathbf{b}$. The pyridazinone scaffold $\mathbf{2 5}$ was converted into 26 through an alkylation with ethyl bromoacetate in standard condition. Intermediate

26 was subjected to alkaline hydrolysis with NaOH (27). The following amide bond formation on 27 using ethyl chloroformate and 4-bromoaniline through the mixed-anhydride method afforded compounds 3a,b.

Scheme S2. Reagents and conditions: i) ethyl bromoacetate (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}, 3 \mathrm{~h}$, reflux; ii) $\mathrm{NaOH} 6 \mathrm{~N}, 2 \mathrm{~h}, 80^{\circ} \mathrm{C}$; iii) ethyl chloroformate (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv), suitable aniline (2 equiv), anhydrous THF, $12 \mathrm{~h},-5^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$.

The pyridazinone analogues $\mathbf{4 a , b}, \mathbf{5 a , b}$ and $\mathbf{6 a , b}(\mathbf{S c h e m e} \mathbf{S 3})$ were synthesised starting from the isoxazolo[3,4-d]pyridazinone $\mathbf{2 8}^{23}$, which was firstly alkylated with the appropriate benzyl halide to give intermediates 29a, $\mathbf{b}^{18,24}$. Oxidative ring cleavage of the intermediates 29a,b with CAN in a mixture of nitric and acetic acids afforded 5-acetyl-4-nitropyridazinones $\mathbf{4 a}, \mathbf{b}^{24}$ in moderate yields, through the selective opening of the five-member ring. Treatment of $\mathbf{4 a}, \mathbf{b}$ with HCl or HBr in acetone afforded the new 4 -chloro ($\mathbf{5 a}, \mathbf{b}$) and 4-bromo ($\mathbf{6 a}, \mathbf{b}$) analogues in good yields, as the 4 -nitro substituent behaves as an efficient leaving group, being easily replaced in mild conditions by halogen ions.

Scheme S3. Reagents and conditions: i) R-benzyl bromide (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), anhydrous DMF, $1 \mathrm{~h}, 9{ }^{\circ} \mathrm{C}$; ii) CAN (8.8 equiv), $50 \% \mathrm{AcOH}, 65 \% \mathrm{HNO}_{3}, 1 \mathrm{~h}, 55^{\circ} \mathrm{C}$; iii) 6 M HCl , acetone, $5 \mathrm{~h}, 100$ ${ }^{\circ} \mathrm{C}$; iv) $47 \% \mathrm{HBr}$, acetone $2-3 \mathrm{~h}, 90^{\circ} \mathrm{C}$.

For the synthesis of compound 7 (Scheme S4) the starting material was the isoxazolo[4,3$d]$ pyridazinone $\mathbf{3 0}^{25}$ (a structural isomer of 28). This was alkylated to give intermediate $\mathbf{3 1}$ which, in turn, was converted into the final 4 -acetyl-5-amino derivative 7 by reductive cleavage using ammonium formate as hydrogen source.

Scheme S4. Reagents and conditions: i) benzyl bromide (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), anhydrous DMF, $40 \mathrm{~min}, 9{ }^{\circ} \mathrm{C}$; ii) ammonium formate (4.3 equiv), $10 \% \mathrm{Pd} / \mathrm{C}$ (catalytic), ethanol, 30 min , reflux.

To synthesise the analogue 8 (Scheme S5), pyridazinone 32 was reacted with the commercially available 3-cyanobenzaldehyde through Knovenagel condensation. In this step, the basic reaction conditions determined the simultaneous hydration of the nitrile group to carboxylic acid (33). The intermediate $\mathbf{3 3}$ was alkylated with ethyl bromoacetate to give 34, which afforded the bi-carboxylic
acid 35 after treatment with 6 N NaOH at $60^{\circ} \mathrm{C}$. Compound $\mathbf{8}$ was obtained through the mixedanhydride method using ethyl chloroformate and 4-bromoaniline.

Scheme S5. Reagents and conditions: i) 3-cyanobenzaldehyde (2 equiv), KOH 5\% (w/v) in anhydrous $\mathrm{EtOH}, 4 \mathrm{~h}$, reflux; ii) ethyl bromoacetate (1.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}, 2 \mathrm{~h}$, reflux; iii) $6 \mathrm{~N} \mathrm{NaOH}, 2 \mathrm{~h}, 60^{\circ} \mathrm{C}$; iv) ethyl chloroformate (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv), 4-bromoaniline (2 equiv), anhydrous THF, $12 \mathrm{~h},-5^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$.

The synthetic pathway affording the analogue 9 is depicted in Scheme S6. To synthesise the biarylamine derivative $\mathbf{3 7}$, compound $\mathbf{3 6}^{26}$ was coupled with a two-fold excess of 4methoxyphenylboronic acid in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$. After standard hydrolysis of the ester group, $\mathbf{3 8}$ was processed to usual amidation reaction to afford the final compound $\mathbf{9}$.

Scheme S6. Reagents and conditions: i) 4-methoxyphenylboronic acid (2 equiv), $\mathrm{Cu}(\mathrm{OAc})_{2}$ (1.5 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}, \mathrm{rt}$; ii) $6 \mathrm{~N} \mathrm{NaOH}, 1.5 \mathrm{~h}, 80^{\circ} \mathrm{C}$; iii) ethyl chloroformate (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv), 4-bromoaniline (2 equiv), anhydrous THF, $12 \mathrm{~h},-5^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$.

To obtain the final compounds $\mathbf{1 0 a - g}, \mathbf{1 1}$ and $\mathbf{1 2}$ (see Scheme $\mathbf{S 7}$), the pyridazinones $\mathbf{3 2 , 3 9}{ }^{26}$ were reacted with the appropriate (hetero)arylaldehyde through Knovenagel condensation (intermediates 33 and 40a-g). The subsequent alkylation with bromoethane and potassium carbonate in anhydrous acetonitrile led to the final compounds 10a-g. The dehydration with POCl_{3} at reflux of products 10a and $\mathbf{1 0 c}$ afford the final compounds $\mathbf{1 1}$ and $\mathbf{1 2}$.

Comp.	\mathbf{R}	$\mathbf{R 1}_{1}$	Comp.	R	$\mathbf{R 1}_{1}$
40a/10a	Ph		40e/10e	Ph	
40b/10b	Ph		40f/10f	CH_{3}	
40c/10c	Ph		$40 \mathrm{~g} / 10 \mathrm{~g}$	CH_{3}	
40d/10d	Ph				

Scheme S7. Reagents and conditions: i) appropriate (hetero)arylaldehyde (1 equiv), $\mathrm{KOH} 5 \%$ (w/v) in anhydrous EtOH , 4 h , reflux; ii) bromoethane (2 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}, 4-6 \mathrm{~h}$, reflux; iii) $\mathrm{POCl}_{3}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

In the Scheme $\mathbf{S 8}$ is reported the synthetic pathway to obtain the compounds 13a-c. Starting from 4,6-diphenyl-isoxazol[3,4-d]pyridazin-7(6H)-one $\left(41^{27}\right)$, the reaction with the appropriate amine (for products 13a,b) or cyclohexanol (for 13c) in 1,4-dioxane, carried out in closed tube at $90^{\circ} \mathrm{C}$, induced an opening of the isoxazole nucleus followed by the formation of the amide, or ester, at position 5 of the pyridazinone scaffold (13a-c).

Scheme S8. Reagents and conditions: i) Suitable amine or alchol (3.5 equiv), 1,4-dioxane, $90^{\circ} \mathrm{C}, 2-3 \mathrm{~h}$.

For the synthesis of compound 14a-c and 15a-l (Scheme S9), the starting materials were the appropriate isoxazolo[4,3-d]pyridazinones 43a-g ${ }^{27-29}$. The isoxazolopyridazinone 43e is obtained for alkylation reaction of $\mathbf{4 2}^{30}$ with bromopropane and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone at reflux. The formation of the styryl derivatives $\mathbf{4 4 a}-\mathrm{m}\left(\mathbf{4 4 a}^{31}\right)$ was performed by using the appropriate (hetero)arylaldehyde and MeONa in methanol. The opening of the isoxazol ring (for compounds 44a, 44b and 44m) with molybdenumhexacarbonyl in $\mathrm{CH}_{3} \mathrm{CN}$ at reflux gave the acryloyl derivatives 14a-c and afterwards the products 14a,b were reduced with ammonium formate and Pd / C in ethanol to obtain the final compounds 15a,b, respectively. Indeed, the same reduction (ammonium formate and Pd / C) starting from the other styryl derivatives $\mathbf{4 4}$ furnished directly the final compounds $\mathbf{1 5 c} \mathbf{- l}$ through a reduced opening.

15a-I

$\mathbf{4 3}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R} \mathbf{6}$
\mathbf{a}	CH_{3}	Ph
\mathbf{b}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph
\mathbf{c}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph
\mathbf{d}	$\mathrm{CH}_{\left(\mathrm{CH}_{3}\right)_{2}}$	Ph
\mathbf{e}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{cC} \mathrm{CH}_{11}$
\mathbf{f}	Ph	Ph
\mathbf{g}	CH_{3}	$4-\mathrm{F}-\mathrm{Ph}$

Comp.	\mathbf{R}_{2}	\mathbf{R}_{6}	R
44a/14a/15a	CH_{3}	Ph	Ph
44b/14b/15b	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Ph
44c/15c	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Ph
44d/15d	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Ph	Ph
44e/15e	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{cC}_{6} \mathrm{H}_{11}$	Ph
44f/15f	Ph	Ph	Ph
44g/15g	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Naphtalene
44h/15h	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Thiophene
44i/15i	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Naphtalene
441/151	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Ph	Pyridine
44m/14c	CH_{3}	4-F-Ph	Ph

Scheme S9. Reagents and Conditions: i) bromopropane (5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), acetone, reflux, 5-6 h; ii) suitable (hetero)arylaldehyde (2.5 equiv), MeONa (1.2 equiv), anhydrous MeOH , reflux, 2-20 min; iii) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$ (gt), $\mathrm{Mo}(\mathrm{CO})_{6}\left(1.3\right.$ equiv), reflux, 3 h ; iv) $\mathrm{HCOONH}_{4}\left(2.5-3\right.$ equiv), Pd / C (cat.), EtOH abs., $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

The Scheme S10 shows the synthetic procedure for pyridazinone derivatives 16a,b and 17a-c, starting from the precursors $\mathbf{4 3} \mathbf{f}^{27}$ and $\mathbf{4 6 b}$, the latter obtained by a cyclization reaction of compound 45^{32} with polyphosphoric acid and ethanol under heat. The reduction and opening of isoxazolo[3,4d]pyridazinone nucleus with ammonium formate and Pd / C afforded the compounds $\mathbf{4 7 a}, \mathbf{b}\left(\mathbf{4 7} \mathbf{a}^{27}\right)$. Afterward, the deacetylation of $\mathbf{4 7 a}, \mathbf{b}$ with HBr at heat gave the final compounds $\mathbf{1 6 a}, \mathbf{b}$ which were subsequently treated with the opportune anhydride in pyridine to obtain the compounds 17a-c.

Scheme S10. Reagents and Conditions: i) Phenylhydrazine (2 equiv), PPA (excess), EtOH abs., $80-90^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and 30 min; ii) HCOONH_{4} (2.5 equiv), Pd/C (cat.), EtOH abs., $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii) $\mathrm{HBr} 48 \%$ (28.5 equiv), $130^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iv) suitable anhydride (33.5 equiv), pyridine, sealed tube, $140^{\circ} \mathrm{C}, 3-5 \mathrm{~h}$.

The derivatives 18, $\mathbf{1 9}$ and $\mathbf{2 0}$ were prepared from the 4-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one 48^{27} (Scheme S11). The treatment of 48 with tert-butylamine in anhydrous 1,4-dioxane in a sealed tube gave the product 49 and the subsequent alkylation with benzyl chloride in the presence of potassium carbonate in acetone yielded the desired compound 18 . Indeed, the reaction of $\mathbf{4 8}$ with benzyl alcohol in presence of triethylamine gave the product 19 which was alkylated in the same conditions reported above to obtain the N-2-benzyl derivative $\mathbf{2 0}$.

Scheme S11. Reagents and Conditions: i) tert-Butylamine (3 equiv), anhydrous 1,4-dioxane, $80-90^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii) Benzyl chloride (1.2 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), anhydrous acetone, reflux, 2 h ; iii) Benzyl alcohol (10 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv), sealed tube, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$.

In Scheme S12 is depicted the synthesis of compounds 21a-e. Starting from the diphenylpyridazin$1(6 \mathrm{H})$-acetic acid $\mathbf{5 0 a}, \mathbf{b}\left(\mathbf{5 0 a}^{33}\right.$ and $\left.\mathbf{5 0} \mathrm{b}^{34}\right)$, derivatives 21a-e are obtained through the mixedanhydride method using ethyl chloroformate and the appropriate amine (propylamine, isopropylamine or cyclopentylamine).

Scheme S12. Reagents and Conditions: i) ethyl chloroformate (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3.5 equiv), suitable amine (2 equiv), anhydrous THF, $12 \mathrm{~h},-5^{\circ} \mathrm{C} \rightarrow$ r.t.

2. Experimental Section

2.1. General remarks

Reagents and starting materials were obtained from commercial sources. Extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvents were removed under reduced pressure. All reactions were monitored by thin layer chromatography (TLC) using commercial plates pre-coated with Merck silica gel 60 F-254. Visualisation was performed by UV fluorescence ($\lambda_{\max }=254 \mathrm{~nm}$) or by staining with iodine or potassium permanganate. Chromatographic separations were performed on a silica gel column by gravity (Kieselgel 40, 0.063-0.200 mm; Merck) or flash chromatography (Kieselgel 40, 0.040-0.063 mm ; Merck). Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. When reactions were performed in anhydrous conditions, the mixtures were maintained under nitrogen atmosphere. Compounds were named following IUPAC rules as applied by Beilstein-Institut AutoNom 2000 (4.01.305) or CA Index Name. The identity and purity of intermediates and final compounds was ascertained through TLC chromatography, NMR and mass spectrometry. ${ }^{1}$ H NMR spectra were recorded with Avance 400 instruments (Bruker Biospin Version 002 with SGU). Chemical shifts (δ) are reported in ppm to the nearest 0.01 ppm , using the solvent as internal standard. Coupling constants (J values) are given in Hz and were calculated using 'TopSpin 1.3 ' software rounded to the nearest 0.1 Hz . Data are reported as follows: chemical shift, multiplicity [exch, exchange; br, broad; s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sext, sextet; sept, septet; m, multiplet; or as a combination of these (e.g. dd, dt etc.)], integration, assignment and coupling constant(s). Mass spectra (m / z) were recorded on ESI-TOF mass spectrometer (Bruker

Micro TOF) and reported mass values are within the error limits of $\pm 5 \mathrm{ppm}$ mass units. All melting points were determined on a microscope hot stage Büchi apparatus and are uncorrected.

2.2. Chemistry

General Procedure for 23a,b. $\mathrm{K}_{2} \mathrm{CO}_{3}(6.06 \mathrm{mmol})$ and tetrabutylammonium bromide $(0.30 \mathrm{mmol})$ were added to a stirred solution of 4,5-dichloro-3(2H)-pyridazinone $22(3.03 \mathrm{mmol})$ in anhydrous acetonitrile (3 mL). 3- or 4-methoxybenzyl chloride (4.54 mmol) was added to the mixture and the reaction was carried out at reflux for 5 h . The mixture was then allowed to cool down and the solvent was evaporated in vacuo. Ice-cold water was added to the residue. After 1 h stirring in ice-bath, compounds 11a,b were filtered off and recrystallised from ethanol.

4,5-Dichloro-2-(4-methoxybenzyl)pyridazin-3(2H)-one (23a). Yield $=81 \% ; \mathrm{mp}=116-117{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz})$, 7.42 (d, 2H, Ar, J = 8.6 Hz), 7.79 (s, 1H, pyridaz).

4,5-Dichloro-2-(3-methoxybenzyl)pyridazin-3(2H)-one (23b). Yield $=60 \%$; $\mathrm{mp}=80-82^{\circ} \mathrm{C}(\mathrm{EtOH})$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, J=5.6 \mathrm{~Hz}, J=2.6$ $\mathrm{Hz}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J=3.6 \mathrm{~Hz}), 7.80(\mathrm{~s}, 1 \mathrm{H}$, pyridaz).

General Procedure for 24a,b. Compounds 23a or 23b (0.88 mmol) was added to a stirred solution of $\mathrm{Na}^{0}(1.76 \mathrm{mmol})$ in 3 mL of anhydrous methanol. The reaction mixture was stirred for 1 h at room temperature. After removal of the solvent in vacuo, ice-cold water was added to the residue and the precipitate was filtered off by suction and purified by crystallisation from ethanol.

4-Chloro-5-methoxy-2-(4-methoxybenzyl)pyridazin-3(2H)-one (24a). Yield $=53 \% ; \mathrm{mp}=135-137$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ pyridaz.), $5.31(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz}), 7.80(\mathrm{~s}, 1 \mathrm{H}$, pyridaz).

4-Chloro-5-methoxy-2-(3-methoxybenzyl)pyridazin-3(2H)-one (24b). Yield $=60 \% ; \mathrm{mp}=80-82{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ pyridaz.), $5.34(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 6.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, J=6.2 \mathrm{~Hz}, J=1.89 \mathrm{~Hz}), 6.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=7.3 \mathrm{~Hz}), 7.26$ (t, 1H, Ar, J=7.9 Hz), 7.83 (s, 1H, pyridaz).

General Procedure for 1a,b. $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(1.42 \mathrm{mmol}, 2 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added to the suspension of $\mathbf{2 4 a}$ or 24b $(0.71 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ [tetrakis (triphenylphosphine)palladium(0)] (0.02 mmol) and 4butoxyphenylboronic acid $(1.07 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$. The mixture was stirred at reflux for 2 h . Extra 4-butoxyphenylboronic acid (1.07 mmol) was added and the reaction was refluxed for
additional 6 h . The solvent was evaporated under vacuum and the suspension was diluted with icecold water. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the residue was purified by flash column chromatography using cyclohexane/ethyl acetate $3: 1$ as eluent.

4-(4-Butoxyphenyl)-5-methoxy-2-(4-methoxybenzyl)pyridazin-3(2H)-one (1a). Yield $=82 \%$; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.51\left(\mathrm{sext}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6\right.$ Hz), 1.79 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{~J}=6.9 \mathrm{~Hz}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right.$), 3.89 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ pyridaz.), $4.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}, J=6.5 \mathrm{~Hz}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J$ $=8.8 \mathrm{~Hz}), 7.48(\mathrm{q}, 4 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.89(\mathrm{~s}, 1 \mathrm{H}$, pyridaz. $)$.

4-(4-Butoxyphenyl)-5-methoxy-2-(3-methoxybenzyl)pyridazin-3(2H)-one (lb). Yield = 28%; colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right.$), $1.51\left(\mathrm{sext}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4\right.$ Hz), 1.79 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, J=6.9 \mathrm{~Hz}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ pyridaz.), $4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}, J=6.5 \mathrm{~Hz}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.84(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, J=6.0 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}), 6.94$ (d, 2H, Ar, $J=8.7 \mathrm{~Hz}$), 7.02 (s, 1H, Ar), 7.06 (d, 1H, Ar, $J=7.6 \mathrm{~Hz}$), 7.26 (t, 1H, Ar, $J=8.0 \mathrm{~Hz}$), 7.51 (d, 2H, Ar, J = 8.7 Hz), 7.91 (s, 1H, pyridaz).

General Procedure for 2a,b. $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(0.53 \mathrm{mmol}, 2 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added to a suspension of 23a or 23b (0.53 mmol), $\mathrm{PdCl}_{2}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}$ [trans-dichlorobis(triethylphosphine)palladium(II)] (0.05 $\mathrm{mmol})$ and 4-butoxyphenylboronic acid (0.26 mmol) in DMF (2 mL). The mixture was stirred at room temperature for 12 h , diluted with ice-cold water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the residue was purified by flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for 2a) and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$ 99:1:0.1 (for 2b) as eluents.

5-(4-Butoxyphenyl)-4-chloro-2-(4-methoxybenzyl)pyridazin-3(2H)-one (2a). Yield $=22 \% ; \mathrm{mp}=$ $84-85{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.53\left(\mathrm{sext}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J\right.$ $=7.6 \mathrm{~Hz}$), 1.82 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, J=6.8 \mathrm{~Hz}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}, J=6.5\right.$ $\mathrm{Hz}), 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz}), 7.48$ (dd, 4H, Ar, $J=5.9 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}), 7.78(\mathrm{~s}, 1 \mathrm{H}$, pyridaz $)$.

5-(4-Butoxyphenyl)-4-chloro-2-(3-methoxybenzyl)pyridazin-3(2H)-one (2b). Yield $=14 \% ; \mathrm{mp}=$ $73-75{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.53\left(\mathrm{sext}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J\right.$ $=7.5 \mathrm{~Hz}$), 1.82 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}, J=6.5\right.$ $\mathrm{Hz}), 5.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, J=5.7 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.8 \mathrm{~Hz}), 7.07$ (s, 1H,Ar), $7.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.29(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.7 \mathrm{~Hz})$, 7.79 (s, 1H, pyridaz).

Ethyl-2-[3-cyclohexyl-6-oxopyridazin-1(6H)-yl]acetate (26). A mixture of 25 (2.27 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.54 mmol) and ethyl bromoacetate (3.41 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was refluxed under stirring for 3 h . The mixture was then concentrated in vacuo, diluted with cold water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The organic layer was evaporated and intermediate $\mathbf{2 6}$ was used in the following reaction without further purification. Yield $\sim 100 \%$; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28-1.46\left(\mathrm{~m}, 8 \mathrm{H},\left(2 \times \mathrm{CH}_{2}+\right.\right.$ $\mathrm{CH}-\mathrm{H})$ cyclohexyl $+\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.71-1.86 (m, $5 \mathrm{H}, 2 \times \mathrm{CH}_{2}+\mathrm{CH}-H$ cyclohexyl), 2.51-2.60 (m, 1H, CH , cyclohexyl), 4.23 (dt, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=4.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}$), $4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.90(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{Ar}, J=9.0 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=9.6 \mathrm{~Hz})$.

2-[3-Cyclohexyl-6-oxopyridazin-1(6H)-yl]acetic acid (27). A suspension of derivative 26 (0.91 mmol) in $6 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was then diluted with cold water and acidified with 6 N HCl . Product 27 was collected by filtration and recrystallised from ethanol. Yield $=82 \% ; \mathrm{mp}=195-197{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25-1.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{H}$ cyclohexyl), 1.37-1.46 (m, 4H, $2 \times \mathrm{CH}_{2}$ cyclohexyl), 1.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-H$ cyclohexyl), 1.79-1.93 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ cyclohexyl), 2.50-2.60 (m, 1H, CH cyclohexyl), $4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}$, $J=9.5 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=9.6 \mathrm{~Hz})$.

General procedure for 3a,b. $\mathrm{Et}_{3} \mathrm{~N}(2.06 \mathrm{mmol})$ was added to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ and stirred solution of intermediate $27(0.59 \mathrm{mmol})$ in anhydrous tetrahydrofuran (3 mL). After 30 min , the mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and ethyl chloroformate (0.65 mmol) was added. After 1 h , the appropriately substituted arylamine (1.18 mmol) was added. The reaction was carried out at room temperature for 12 h . The mixture was then concentrated in vacuo, diluted with cold water (10-15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The solvent was evaporated to afford final compounds 3a,b, which were purified by column chromatography using cyclohexane/ethyl acetate $1: 1$ (for compound 3a) and cyclohexane/ethyl acetate 1:2 (for compound 3b) as eluents.

N-(4-Fluorophenyl)-2-[3-cyclohexyl-6-oxopyridazin-1(6H)-yl]acetamide (3a). Yield $=98 \% ; \mathrm{mp}=$ $149-151{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21-1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-H$ cyclohexyl), 1.39-1.48(m, 4H, 2 x CH_{2} cyclohexyl), 1.77 (d, $1 \mathrm{H}, \mathrm{CH}-H$ cyclohexyl, $J=12.6 \mathrm{~Hz}$), $1.85-1.93\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$ cyclohexyl), 2.56-2.63 (m, 1H, CH cyclohexyl), 4.96 (s, 2H, $\mathrm{NCH}_{2} \mathrm{CO}$), 6.94-7.02 (m, 3H, Ar), 7.27 (d, 1H, Ar, $J=9.7 \mathrm{~Hz}$), 7.46-7.51 (m, 2H, Ar), 9.10 (exch br s, 1H, NH).

N-(1,3-Benzodioxol-5-yl)-2-[3-cyclohexyl-6-oxopyridazin-1(6H)-yl]acetamide (3b). Yield =99\%; $\mathrm{mp}=185-187{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-H$ cyclohexyl), 1.30-1.48(m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ cyclohexyl), 1.76 (d, 1H, CH- H cyclohexyl, $J=12.8 \mathrm{~Hz}$), 1.85-1.93 (m, 4H, $2 \times \mathrm{CH}_{2}$ cyclohexyl), 2.59-2.61 (m, 1H, CH cyclohexyl), 4.93 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 5.94 (s, 2H, $\mathrm{OCH}_{2} \mathrm{O}$), 6.72
$(\mathrm{d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 6.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Ar}, J=6.3 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}), 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=9.5 \mathrm{~Hz}), 7.25-$ 7.28 (m, 2H, Ar), 8.86 (exch br s, 1H, NH).

General procedure for 5a,b. A mixture of $\mathbf{4 a}^{24}$ or $\mathbf{4 b}{ }^{24}(0.20 \mathrm{mmol})$, acetone (2 mL) and $6 \mathrm{M} \mathrm{HCl}(4$ mL) was warmed in a sealed tube at $100^{\circ} \mathrm{C}$ for 5 h . The solvent was removed in vacuo and the residue was treated with cold water. The precipitate was purified by recrystallisation from ethanol to give pure $\mathbf{5 a}$ and $\mathbf{5 b}$ as colourless crystals or yellowish crystals, respectively.

5-Acetyl-2-benzyl-4-chloro-6-phenylpyridazin-3(2H)-one (5a). Yield $=45 \% ; \mathrm{mp}=143-146{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.30-7.60\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

5-Acetyl-4-chloro-2-(3-cyanobenzyl) -6-phenylpyridazin-3(2H)-one (5b). Yield $=45 \% ; \mathrm{mp}=141$ $143{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.30-7.60(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{C}_{6} \mathrm{H}_{5}$).

General procedure for $\mathbf{6 a}, \boldsymbol{b}$. A mixture of $\mathbf{4 a}^{24}$ or $\mathbf{4} \mathbf{b}^{24}(0.09 \mathrm{mmol})$ acetone $(1 \mathrm{~mL})$ and $47 \% \mathrm{HBr}(1$ mL) was warmed in a sealed tube at $90^{\circ} \mathrm{C}$ for 2-3 h . After concentration in vacuo, ice-cold water was added and the was collected by suction. Recrystallisation from ethanol gave 6a as colourless solid. Purification through column chromatography (eluent: toluene/ethyl acetate 8:2) afforded pure $\mathbf{6 b}$ as colourless crystals.

5-Acetyl-2-benzyl-4-bromo-6-phenylpyridazin-3(2H)-one (6a). Yield $=61 \% ; \mathrm{mp}=140-143{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.30-7.60\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

5-Acetyl-4-bromo-2-(3-cyanobenzyl) -6-phenylpyridazin-3(2H)-one (6b). Yield $=85 \% ; \mathrm{mp}=150-$ $153{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.40-7.85(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{C}_{6} \mathrm{H}_{5}$).

5-Benzyl- 3-methyl-7-phenylisoxazolo[4,3-d]pyridazin-4(5H)-one (31). A mixture of compound $\mathbf{3 0}^{24}(0.45 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.90 \mathrm{mmol})$, benzyl bromide (0.70 mmol) and anhydrous DMF (1.2 mL) was warmed at $90^{\circ} \mathrm{C}$ for 40 min . After cooling and treatment with ice cold water, the precipitate was collected by suction. Recrystallisation from ethanol gave pure compound 31 as colourless crystals. Yield $=73 \% ; \mathrm{mp}=128-130{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.30-7.60 (m, 10H, $2 \times \mathrm{C}_{6} \mathrm{H}_{5}$).

4-Acetyl-5-amino-2-benzyl-6-phenylisoxazolo-3(2H)-one (7). A suspension of intermediate 31 (0.22 $\mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(0.05 \mathrm{mmol})$ and ammonium formate $(0.95 \mathrm{mmol})$ in ethanol $(1 \mathrm{~mL})$ was refluxed for 30 min . After cooling, methylene chloride (15 mL) was added and the precipitate was filtered off.

Evaporation in vacuo afforded the crude product which was recrystallised from ethanol to give pure 7 as colourless crystals. Yield $=59 \% ; \mathrm{mp}=153-155{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 5.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.25-7.60\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

3-[(6-Methyl-3-oxo-2,3-dihydropyridazin-4-yl)methyl[benzoic acid (33). Compound 32 (1.78 mmol) and 3-cyanobenzaldehyde (3.56 mmol) were added to 6 mL of KOH in absolute $\mathrm{EtOH}(5 \%$, w / v). The mixture was refluxed under stirring for 4 h . After cooling, the suspension was concentrated in vacuo, diluted with ice-cold water (10 mL) and acidified with 2 N HCl . After 1 h stirring in icebath, the precipitate was filtered off and purified by crystallisation from ethanol. Yield $=70 \%$; $\mathrm{mp}=$ $164-166{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right) \delta 2.18\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH})_{2}\right), 7.06(\mathrm{~s}, 1 \mathrm{H}$, pyridaz), 7.33 (d, $2 \mathrm{H}, \mathrm{Ar}, J=8.2 \mathrm{~Hz}$), $7.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.1 \mathrm{~Hz}$), 12.72 (exch br s, $1 \mathrm{H}, \mathrm{OH}$). IR $\left(\mathrm{cm}^{-1}\right): 3300(\mathrm{NH}), 3200(\mathrm{OH}), 1649(\mathrm{CO}), 1608(\mathrm{CO})$.

3-\{[2-(2-Ethoxy-2-oxoethyl)-6-methyl-3-oxo-2,3-dihydropyridazin-4-yl]methyl\}benzoic acid (34). A mixture of compound $33(1.56 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.12 \mathrm{mmol})$ and ethyl bromoacetate (2.34 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ was refluxed under stirring for 2 h . The mixture was then concentrated in vacuo and diluted with cold water. After 1 h stirring in ice-bath, the yellow precipitate was filtered off by suction and purified by recrystallisation from ethanol. Yield $=78 \% ; \mathrm{mp}=174-176{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{2}\right)$, $4.26\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.70(\mathrm{~s}, 1 \mathrm{H}$, pyridaz), $7.34(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=$ $7.7 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.7 \mathrm{~Hz})$.

3-\{[2-(Carboxymethyl)-6-methyl-3-oxo-2,3-dihydropyridazin-4-yl]methyl\} benzoic acid (35). A suspension of the intermediate $\mathbf{3 4}(1.22 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with ice-cold water (3 mL), acidified with 6 N HCl and the final product $\mathbf{3 5}$ was then filtered off by suction and recrystallised from ethanol. Yield $=76 \% ; \mathrm{mp}=225-227^{\circ} \mathrm{C}(\mathrm{EtOH})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.22\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCCH}_{2}\right), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 7.15(\mathrm{~s}, 1 \mathrm{H}$, pyridaz), 7.39 (d, $2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}$), $7.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}$), 13.01 (exch br s, $2 \mathrm{H}, 2 \times \mathrm{OH}$).

N-(4-Bromophenyl)-3-\{2-[(4-bromophenylcarbamoyl)methyl]-6-methyl-3-oxo-2,3-dihydro-pyridazin-4-ylmethylfbenzamide (8). $\mathrm{Et}_{3} \mathrm{~N}(3.26 \mathrm{mmol})$ was added to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ and stirred solution of compound $35(0.93 \mathrm{mmol})$ in anhydrous tetrahydrofuran $(7 \mathrm{~mL})$. After 30 min , the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ and ethyl chloroformate (1.02 mmol) was added. After $1 \mathrm{~h}, 4$-bromo aniline (1.86 mmol) was added. The reaction was carried out at room temperature for 12 h . The mixture was then concentrated in vacuo, diluted with cold water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). After removal of the solvent, the residue was purified by column chromatography using
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{4} \mathrm{OH} 9.5: 0.5: 0.05$ as eluent. The pure sample of $\mathbf{8}$ was obtained from a further purification through a silica gel preparative TLC (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{4} \mathrm{OH} 9.5: 0.5: 0.05$). Yield $=10 \% ; \mathrm{mp}=226-228{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.31\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 4.00(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CHCCH}_{2}\right), 4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.83(\mathrm{~s}, 1 \mathrm{H}$, pyridaz), $7.40(\mathrm{t}, 6 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{Ar}, J=8.7 \mathrm{~Hz}), 7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.9 \mathrm{~Hz}), 7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.7 \mathrm{~Hz}), 8.67($ exch br s, $1 \mathrm{H}, \mathrm{NH})$. MS (ESI) calcd. For $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}$, 610.30. Found: $m / z 609[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}, 611.2[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl-2-\{5-[bis(4-methoxyphenyl)amino]-3-methyl-6-oxopyridazin-1(6H)-yl\}acetate (37). $\mathrm{Et}_{3} \mathrm{~N}$ (0.64 mmol) was added to a suspension of compound $\mathbf{3 6}^{25}(0.57 \mathrm{mmol})$, copper acetate $(0.85 \mathrm{mmol})$ and 4-methoxyphenylboronic acid (1.14 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was stirred at room temperature for 14 h and extracted with 15% aqueous ammonia ($3 \times 10 \mathrm{~mL}$). The organic layer was washed with 10 mL of water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by flash column chromatography using cyclohexane/ethyl acetate $1: 3$ as eluent. Yield $=$ 21%; colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 3.81$ (s, $6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$), $4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 4.83 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 6.32 (s, 1H, pyridaz), $6.86(\mathrm{dd}, 4 \mathrm{H}, \mathrm{Ar}, J=3.4 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}), 6.99(\mathrm{dd}, 4 \mathrm{H}, \mathrm{Ar}, J=4.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz})$.

2-\{5-[Bis-(4-methoxyphenyl)amino]-3-methyl-6-oxopyridazin-1(6H)-yl\}acetic acid (38). A

 suspension of the intermediate $37(0.12 \mathrm{mmol}), 6 \mathrm{NaOH}(10 \mathrm{~mL})$ and $\mathrm{EtOH}(3 \mathrm{~mL})$ was stirred at rt 12 h . After removal of the solvent under vacuum, the mixture was diluted with ice-cold water and acidified with 6 N HCl . After 1 h stirring in ice-bath, the product 38 was collected by filtration and recrystallised from ethanol. Yield $=84 \% ; \mathrm{mp}=192-193{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.20(\mathrm{~s}, 3 \mathrm{H}$, $3-\mathrm{CH}_{3}$), $3.82\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.34(\mathrm{~s}, 1 \mathrm{H}$, pyridaz), $6.86(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}, J=$ $8.8 \mathrm{~Hz}), 6.99(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}, J=8.8 \mathrm{~Hz})$.
N-(4-Bromophenyl)-2-\{5-[bis(4-methoxyphenyl)amino]-3-methyl-6-oxopyridazin-1(6H)-

yljacetamide (9). $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{mmol})$ was added to a cooled $\left(-5^{\circ} \mathrm{C}\right)$ and stirred solution of compound $38(0.10 \mathrm{mmol})$ in anhydrous tetrahydrofuran $(4 \mathrm{~mL})$. After 30 min , the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ and ethyl chloroformate $(0.11 \mathrm{mmol})$ was added. After 1 h 4 -bromo aniline $(0.20 \mathrm{mmol})$ was added and the reaction was carried out at room temperature for 12 h . The mixture was then concentrated in vacuo, diluted with cold water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The solvent was evaporated to afford final compound 9 , which was purified by flash column chromatography using cyclohexane/ethyl acetate $1: 1$ as eluent. Yield $=55 \% ; \mathrm{mp}=244-245{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23$ ($\mathrm{s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}$), $3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right)$, 6.39 (s, 1H,pyridaz), 6.84 (dd, 4H, Ar, $J=4.6 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}$), 6.99 (dd, 4H, Ar, $J=2.2 \mathrm{~Hz}, J=3.4$ Hz), 7.25-7.38 (m, 4H, Ar), 9.00 (exch br s, 1H, NH).

General procedure for compounds 40a-g. Compounds $40 \mathrm{a}-\mathrm{g}$ were obtained using the same procedure (Knovenagel condensation) and treatment followed for the synthesis of intermediate 33, using the appropriate (hetero)arylaldehyde and starting from compound 39. The products were recovered by vacuum filtration and purified by crystallization from diethyl ether (for 40a) or ethanol (for 40b-g).

4-((3-Oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)benzamide (40a). Yield =57\%; mp =263$266^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 7.30$ (exch br s, $1 \mathrm{H}, \mathrm{CONH}-\mathrm{H}$), 7.407.55 (m, 5H, Ar), 7.80-7.85 (m, 4H, Ar), 7.91 (exch br s, 1H, CONH-H), 7.93 (s, 1H, pyridaz.), 13.17 (exch br s, 1H, NH).

6-Phenyl-4-(4-(pyrimidin-5-yl)benzyl)pyridazin-3(2H)-one (40b). Yield $=82 \% ; \mathrm{mp}=242-244{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 3.95$ (s, 2H, CH $2-\mathrm{Ph}$), 7.42-7.55 (m, 5H, Ar), 7.76 (d, 2H, Ar, $J=$ $8.0 \mathrm{~Hz}), 7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz}), 8.00(\mathrm{~s}, 1 \mathrm{H}$, pyridaz.), $9.13(\mathrm{~s}, 2 \mathrm{H}$, pyrimidine), $9.17(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine), 13.18 (exch br s, 1H, NH).

4-(6-((3-Oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)pyridin-2-yl)benzamide (40c). Yield = 65 $\% ; \mathrm{mp}=243-247^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) \delta 4.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 7.36(\mathrm{~d}, 1 \mathrm{H}$, pyridine, $\mathrm{J}=$ 7.2 Hz), 7.42 (exch br s, 1H, CONH-H), 7.43-7.53 (m, 3H, Ar), 7.84-7.92 (m, 4H, $2 \mathrm{H} \mathrm{Ar}+2 \mathrm{H}$ pyridine), 7.95 (d, 2H, Ar, $J=8.4 \mathrm{~Hz}$), 8.04 (exch br s, 1H, CONH-H), 8.05 (s, 1H, pyridaz.), 8.13 (d, 2H, Ar, $J=8.4 \mathrm{~Hz}$), 13.21 (exch br s, 1H, NH).

4-(3-(Cyclopentyloxy)-4-methoxybenzyl)-6-phenylpyridazin-3(2H)-one (40d). Yield $=65 \% ; \mathrm{mp}=$ 243-247 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.55-1.68(\mathrm{~m}, 2 \mathrm{H}$, cyclopent.), $1.80-2.00(\mathrm{~m}, 6 \mathrm{H}$, cyclopent.), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 4.77-4.82(\mathrm{~m}, 1 \mathrm{H}$, cyclopent.), 6.80-6.90 (m, $3 \mathrm{H}, \mathrm{Ar}$), 7.33 (s, 1H, pyridaz.), 7.43-7.48 (m, 3H, Ar), 7.65-7.70 (m, 2H, Ar), 11.02 (exch br s, 1H, $\mathrm{NH})$.

6-Phenyl-4-(3-(pyridin-2-yl)benzyl)pyridazin-3(2H)-one (40e). Yield $=51 \% ; \mathrm{mp}=199-200{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 3.94$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 7.33 (dd, 1 H , pyridine, $J=4.8 \mathrm{~Hz}$ and $J=7.2$ $\mathrm{Hz}), 7.41-7.51(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}$, pyridine, $J=7.6 \mathrm{~Hz}), 7.93(\mathrm{~d}$, 1 H , pyridine, $J=8.0 \mathrm{~Hz}$), $7.96(\mathrm{~s}, 1 \mathrm{H}$, pyridaz. $), 8.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 8.65(\mathrm{~m}, 1 \mathrm{H}$, pyridine $)$, 13.18 (exch br s, 1H, NH).

4-(3-(Cyclopentyloxy)-4-methoxybenzyl)-6-methylpyridazin-3(2H)-one (40f). Yield $=17 \% ; \mathrm{mp}=$ $155-157{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.85-2.00\left(\mathrm{~m}, 8 \mathrm{H}\right.$, cyclopent.), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.84$ (s,
$\left.2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.75-4.80 (m, 1H, cyclopent.), 6.69 (s, 1 H , pyridaz.), 6.75-6.80 (m, 2H, Ar), 6.85-6.90 (m, 1H, Ar), 11.20 (exch br s, 1H, NH).

6-Methyl-4-(3-(pyrimidin-5-yl)benzyl)pyridazin-3(2H)-one (40g). Yield $=54 \% ; \mathrm{mp}=244-246{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 2.19$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.83 (s, 2H, CH2-Ph), 7.13 (s, 1H, pyridaz.), 7.45 (d, $2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}$), $7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 9.14(\mathrm{~s}, 2 \mathrm{H}$, pyrimidine), $9.18(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine), 12.73 (exch br s, $1 \mathrm{H}, \mathrm{NH}$).

General procedure for compounds 10a-g. A mixture of intermediates 40a-g (0.58 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.17 mmol), ethyl bromide (0.88 mmol) and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was stirred at reflux for 4-6 hours about. After cooling, the solvent was evaporated and ice-cold water was added. The formed precipitate was recovered by vacuum filtration and the final compounds $\mathbf{1 0 a}-\mathbf{g}$ were purified by crystallization from ethanol.

4-((2-Ethyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)benzamide (10a). Yield $=33 \% ; \mathrm{mp}$ $=215-218^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $)^{2} \delta 1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 3.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 4.18\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 7.30 (exch br s, $\left.1 \mathrm{H}, \mathrm{CONH}-H\right), 7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz})$, $7.45-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz}), 7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.92(\mathrm{~s}, 2 \mathrm{H}, 1 \mathrm{H}$ CONH-H + 1H pyridaz.).

2-Ethyl-6-phenyl-4-(4-(pyrimidin-5-yl)benzyl)pyridazin-3(2H)-one (10b). Yield $=38 \% ; \mathrm{mp}=150-$ $151{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 3.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.18$ (q, 2H, $C H_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), $7.45-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J$ $=7.2 \mathrm{~Hz}), 8.00(\mathrm{~s}, 1 \mathrm{H}$, pyridaz. $), 9.13(\mathrm{~s}, 2 \mathrm{H}$, pyrimidine $), 9.17(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine $)$.

4-(6-((2-Ethyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)pyridin-2-yl)benzamide (10c). Yield $=49 \% ; \mathrm{mp}=207-208{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right), 4.28-$ 4.38 (m, 4H, 2H - CH_{2}-pyridine $+2 \mathrm{H} \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 5.78 (exch br s, $1 \mathrm{H}, \mathrm{CONH}-\mathrm{H}$), 6.25 (exch br s, $1 \mathrm{H}, \mathrm{CONH}-H$), $7.39-7.51(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}$ pyridaz.), 7.69 (d, 1 H , pyridine, $J=7.6 \mathrm{~Hz}$), 7.75$7.85(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} \mathrm{Ar}+2 \mathrm{H}$ pyridine $), 7.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz})$.

4-(3-(Cyclopentyloxy)-4-methoxybenzyl)-2-ethyl-6-phenylpyridazin-3(2H)-one (10d). Yield $=20$ $\%$; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.48\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.53-1.68(\mathrm{~m}, 2 \mathrm{H}$, cyclopent.), 1.78$2.02\left(\mathrm{~m}, 6 \mathrm{H}\right.$, cyclopent.), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2\right.$ Hz), 4.75-4.80 (m, 1H, cyclopent.), 6.78-6.90 (m, 3H, Ar), 7.22 (s, 1H, pyridaz.), 7.40-7.45 (m, 3H, Ar), 7.69 (d, 2H, Ar, $J=8.0 \mathrm{~Hz}$).

2-Ethyl-6-phenyl-4-(3-(pyridin-2-yl)benzyl)pyridazin-3(2H)-one (10e). Yield $=68 \%$; mp = 134-136 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.19(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}$), $7.34(\mathrm{~m}, 1 \mathrm{H}$, pyridine), $7.41-7.57(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Ar}, J=7.2$ $\mathrm{Hz}), 7.92(\mathrm{~s}, 1 \mathrm{H}$, pyridine), $7.95(\mathrm{~s}, 1 \mathrm{H}$, pyridaz.), $8.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 8.65(\mathrm{~m}, 1 \mathrm{H}$, pyridine $)$.

4-(3-(Cyclopentyloxy)-4-methoxybenzyl)-2-ethyl-6-methylpyridazin-3(2H)-one (10f). Yield $=66$ \%; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 1.55-1.65 (m, 2H, cyclopent.), 1.801.98 (m, 6H, cyclopent.), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Ph}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.21(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), 4.75-4.80 (m, 1 H , cyclopent.), $6.61(\mathrm{~s}, 1 \mathrm{H}$, pyridaz.), $6.75-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $6.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz})$.

2-Ethyl-6-methyl-4-(3-(pyrimidin-5-yl)benzyl)pyridazin-3(2H)-one (10g). Yield $=44 \% ; \mathrm{mp}=148$ $150{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.73(\mathrm{~s}, 1 \mathrm{H}$, pyridaz.), $7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz})$, $7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 8.96(\mathrm{~s}, 2 \mathrm{H}$, pyrimidine $), 9.21(\mathrm{~s}, 1 \mathrm{H}$, pyrimidine) .

General procedure for compounds 11 and 12. A suspension of intermediate 10a or 10 c (0.54 mmol) in 5 mL of POCl_{3} was stirred at $60-70{ }^{\circ} \mathrm{C}$ for 2 h about. After cooling, ice-cold water (20 mL) was slowly added, and the precipitate was filtered under vacuum and washed with abundant cold-water to obtain the desired compounds $\mathbf{1 1}$ and $\mathbf{1 2}$, which were recrystallized from ethanol.

4-((2-Ethyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)benzonitrile (11). Yield $=59 \% ; \mathrm{mp}$ $=129-130{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 4.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, $4.33\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 7.34(\mathrm{~s}, 1 \mathrm{H}$, pyridaz.), $7.40-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=$ $8.4 \mathrm{~Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=6.8 \mathrm{~Hz})$. IR $v\left(\mathrm{~cm}^{-1}\right): 2221(\mathrm{CN}), 1655(\mathrm{CO})$.

4-(6-((2-Ethyl-3-oxo-6-phenyl-2,3-dihydropyridazin-4-yl)methyl)pyridin-2-yl)benzonitrile

Yield $=52 \% ; \mathrm{mp}=146-148{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 4.26$ (s, $2 \mathrm{H},-\mathrm{CH}_{2}$-pyridine), $4.34\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 7.40-7.50 (m, $4 \mathrm{H}, 3 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}$ pyridaz.), 7.65-7.70 (m, 2H, pyridine), 7.76-7.82 (m, 5H, $4 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}$ pyridine), $8.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz})$. IR $v\left(\mathrm{~cm}^{-1}\right): 2223(\mathrm{CN}), 1650(\mathrm{CO})$.

General procedure for compounds 13a-c. 0.35 mmol of 4,6-diphenyl-isoxazol[3,4-d]pyridazin$7(6 \mathrm{H})$-one 41^{27} was dissolved in 0.5 mL of 1,4 -dioxane in a sealed tube. 1.22 mmol of suitable amine or alcohol was added and the reaction was stirred at $90^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ (for compound $\mathbf{1 3 c}$ some drops of $\mathrm{Et}_{3} \mathrm{~N}$ were added). After cooling, the solvent was evaporated and ice-cold water was added. The
formed precipitate was filtered off to obtaine the desired compounds 13a-c which were recrystallized from ethanol.

5-Amino-6-oxo-1,3-diphenyl-N-propyl-1,6-dihydropyridazine-4-carboxamide (13a). Yield =58\%; $\mathrm{mp}=162-164{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 0.62\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right.$), 1.21 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), $3.00\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right.$), 6.62 (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.38-7.44 (m, 4H, Ar), 7.50-7.55 (m, 4H, Ar), $7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 8.12(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=5.6$ Hz).

4-Amino-2,6-diphenyl-5-(piperidine-1-carbonyl)pyridazin-3(2H)-one (13b). Yield $=31 \% ; \mathrm{mp}=$ 199-201 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.15-1.20(\mathrm{~m}, 1 \mathrm{H}$, piperidine $), 1.25-1.30(\mathrm{~m}, 1 \mathrm{H}$, piperidine $)$, 1.30-1.40 ($\mathrm{m}, 2 \mathrm{H}$, piperidine), 1.40-1.55 ($\mathrm{m}, 2 \mathrm{H}$, piperidine), 2.75-2.85 ($\mathrm{m}, 1 \mathrm{H}$, piperidine), 3.05$32.15\left(\mathrm{~m}, 1 \mathrm{H}\right.$, piperidine), $3.50-3.55\left(\mathrm{~m}, 2 \mathrm{H}\right.$, piperidine), 5.69 (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.38-7.45 (m, $4 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J=7.8 \mathrm{~Hz}), 7.60-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz})$.

Cyclohexyl 5-amino-6-oxo-1,3-diphenyl-1,6-dihydropyridazine-4-carboxylate (13c). Yield $=30 \%$; $\mathrm{mp}=129-131{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90-1.15(\mathrm{~m}, 3 \mathrm{H}$, cyclohexane), 1.15-1.30(m, 3H,cyclohexane), 1.40-1.50 (m, 3H, cyclohexane), 1.55-1.60 (m, 2H, cyclohexane), 4.71-4.76 (m, 1 H , cyclohexane), 7.36-7.42 (m, 6H, Ar), 7.43-7.50 (m, 2H, Ar), 7.69-7.74 (m, 2H, Ar).

4-Cyclohexyl-3-methyl-6-propylisoxazolo[3,4-d]pyridazin-7(6H)-one (43e). A mixture of compound $\mathbf{4 2}^{31}(0.45 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.90 \mathrm{mmol})$, bromopropane (2.25 mmol , added twice) and anhydrous acetone (2 mL) was warmed at $90^{\circ} \mathrm{C}$ for 5 h . After cooling, the solvent was evaporated and ice cold-water was added. The suspension was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried on sodium sulfate and evaporated to obtain the desired compound which was purified by column chromatography to remove the excess of bromopropane using cyclohexane/ethyl acetate $3: 1$ as eluent. Yield $=70 \% ; \mathrm{mp}=160-162{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right)$, 1.35-1.45 (m, $6 \mathrm{H}, \mathrm{cC}_{6} \mathrm{H}_{11}$), 1.80 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), 1.88-1.99 (m, 4H, $\left.\mathrm{cC}_{6} \mathrm{H}_{11}\right), 2.83$ (s, $3 \mathrm{H}, 3-\mathrm{CH}_{3}$), $4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$).

General procedure for compounds 44b-m. To a solution of intermediates 43b-g ${ }^{27-29}$ (0.60 mmol) in 1.25 mL of anhydrous $\mathrm{MeOH}, 1.5 \mathrm{mmol}$ of appropriate (hetero)arylaldehyde and a solution of $\mathrm{MeONa}\left(0.65 \mathrm{mmol}\right.$ of Na^{0} in 1 mL of MeOH$)$ were added. The mixture was stirred at reflux for 220 min about. After cooling, the precipitate was filtered off to obtain the styril derivatives 44b-m.
(E)-4-Phenyl-6-propyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44b). Yield $=57 \% ; \mathrm{mp}=154-$ $156{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.02\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 1.91 (sest, 2 H ,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 4.22\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz})$, 7.32-7.39 (m, 5H, Ar), 7.59-7.65 (m, 5H, Ar), 8.30 (d, 1H, $C H=C H, J=16.4 H z)$.
(E)-6-Butyl-4-phenyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44c). Yield $=55 \% ; \mathrm{mp}=90-92$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 1.45 (sest, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), 1.86 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), $4.24\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=C H, J=16.4 \mathrm{~Hz}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.55-7.70(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar}), 7.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz})$.
(E)-6-Isopropyl-4-phenyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44d). Yield $=51 \% ; \mathrm{mp}=$ $187-189{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.4 \mathrm{~Hz}\right), 5.40(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz}), 7.30-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.50-7.65(\mathrm{~m}, 7 \mathrm{H}, 5 \mathrm{H} \mathrm{Ar}+$ $1 \mathrm{H}-\mathrm{CH}=\mathrm{CH})$.
(E)-4-Cyclohexyl-6-propyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44e). Yield $=60 \% ; \mathrm{mp}=$ $156-158{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.35-1.55(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{cC}_{6} \mathrm{H}_{11}\right), 1.80\left(\right.$ sest, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.95-2.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{cC}_{6} \mathrm{H}_{11}\right), 4.12(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 7.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz}), 7.45-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.60-7.65(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=C H, J=16 \mathrm{~Hz})$.
(E)-4,6-Diphenyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44f). Yield $=58 \% ; \mathrm{mp}=224-225$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz}), 7.35-7.70(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}), 7.81-$ $7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.40(\mathrm{~d}, 1 \mathrm{H}, C H=\mathrm{CH}, J=16.4 \mathrm{~Hz})$.
(E)-6-Ethyl-3-(2-(naphthalen-2-yl)vinyl)-4-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one (44g). Yield $=58 \% ; \mathrm{mp}=198-200{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.48\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 4.34$ (q, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}$), $6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4 \mathrm{~Hz}), 7.45-7.70(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 7.91(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{Ar}, J=6.8 \mathrm{~Hz}), 8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.8 \mathrm{~Hz}), 8.51(\mathrm{~d}, 1 \mathrm{H}, C H=\mathrm{CH}, J=16.4 \mathrm{~Hz})$.
(E)-4-Phenyl-6-propyl-3-(2-(thiophen-2-yl) vinyl)isoxazolo[3,4-d]pyridazin-7(6H)-one (44h). Yield $=74 \% ; \mathrm{mp}=145-147{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.03\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.94$ (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), $4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), $6.05(\mathrm{~d}, 1 \mathrm{H}$, thiophene, J $=16 \mathrm{~Hz}), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=C H, J=16.4 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}$, thiophene, $J=16 \mathrm{~Hz}), 7.45(\mathrm{~m}, 1 \mathrm{H}$, thiophene), $7.50-7.65(\mathrm{~m}, 6 \mathrm{H}, 5 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}-\mathrm{CH}=\mathrm{CH}-)$.

(E)-3-(2-(Naphthalen-2-yl) vinyl)-4-phenyl-6-propylisoxazolo[3,4-d]pyridazin-7(6H)-one

Yield $=42 \% ; \mathrm{mp}=182-185^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right)$, 1.92 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), $4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$,
$J=16 \mathrm{~Hz}), 7.45-7.70(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}), 7.88-7.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 8.50(\mathrm{~d}, 1 \mathrm{H}$, $C H=\mathrm{CH}, J=16 \mathrm{~Hz})$.
(E)-4-Phenyl-6-propyl-3-(2-(pyridin-4-yl)vinyl)isoxazolo[3,4-d]pyridazin-7(6H)-one (44l). Yield = $45 \% ; \mathrm{mp}=87-89{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}\right.$), 1.89 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), $4.16\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 7.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=16.4$ $\mathrm{Hz}), 7.30-7.70(\mathrm{~m}, 9 \mathrm{H}, 8 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}-\mathrm{CH}=\mathrm{CH}-), 8.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz})$.
(E)-4-(4-Fluorophenyl)-6-methyl-3-styrylisoxazolo[3,4-d]pyridazin-7(6H)-one (44m). Yield = 52 $\% ; \mathrm{mp}=216-218{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, \mathrm{J}=$ 16.4 Hz), $7.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 7.37-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.62-7.69(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}-$ CH=CH-).

General procedure for compounds $\mathbf{1 4 a}$-c. To a solution of styryl derivatives $\mathbf{4 4} \mathbf{a}^{\mathbf{3 1}} \mathbf{, 4 4 b}$ or $\mathbf{4 4 m}$ (0.34 mmol) in $\mathrm{CH}_{3} \mathrm{CN}, 0.45 \mathrm{mmol}$ of molybdenumhexacarbonyl and 3-4 drops of $\mathrm{H}_{2} \mathrm{O}$ were added. The mixture reaction was warmed at $80^{\circ} \mathrm{C}$ for 3 h . After cooling, the solvent was removed in vacuo, the residue was recovered with ethyl acetate and the organic phase was washed with a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH}$ 1:1 ($3 \times 10 \mathrm{~mL}$). After evaporation of the solvent, the final compounds 14a-c were purified by column chromatography using cyclohexane/ethyl acetate $3: 1$ as eluent.

4-Amino-5-cinnamoyl-2-methyl-6-phenylpyridazin-3(2H)-one (14a). Yield $=65 \% ; \mathrm{mp}=135-137$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=15.6 \mathrm{~Hz}), 7.03(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}$), 7.23-7.32 (m, 3H, Ar), 7.40-7.50 (m, 4H, $3 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}-\mathrm{CH}=\mathrm{CH}-), 7.54(\mathrm{~d}, 2 \mathrm{H}$, Ar, $J=7.6 \mathrm{~Hz}$).

4-Amino-5-cinnamoyl-6-phenyl-2-propylpyridazin-3(2H)-one (14b). Yield $=66 \% ; \mathrm{mp}=122-124$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.93$ (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, $J=7.2 \mathrm{~Hz}), 4.21\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, J=15.6 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{Ar}, J=7.2 \mathrm{~Hz}$), 7.20-7.30 (m, 3H, Ar), 7.38-7.47 (m, 4H, 3H Ar $+1 \mathrm{H}-\mathrm{CH}=\mathrm{CH}-$), 7.53 (d, 2H, Ar, J $=7.6 \mathrm{~Hz}$).

4-Amino-5-cinnamoyl-6-(4-fluorophenyl)-2-methylpyridazin-3(2H)-one (14c). Yield $=58 \%$; $\mathrm{mp}=$ $152-154{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}, \mathrm{J}=15.6 \mathrm{~Hz})$, 6.86 (d, 2H, Ar, $J=6.8 \mathrm{~Hz}$), 7.07-7.20 (m, 3H, Ar), 7.25-7.35 (m, 4H, Ar), 7.49 (d, 1H, CH=CH, J $=15.6 \mathrm{~Hz}$).

General procedure for compounds 15a-l. A suspension of intermediates $\mathbf{1 4 a}, \mathbf{b}$ or $\mathbf{4 4 c} \mathbf{- l}$ (0.15 $\mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(0.05 \mathrm{mmol})$ and ammonium formate $(0.4 \mathrm{mmol})$ in absolute ethanol $(1.5 \mathrm{~mL})$ was
refluxed for 2 h . After cooling, the ethanol was evaporated and methylene chloride (15 mL) was added. The precipitate was removed by filtration and the solvent was recovered and evaporated to afford the desired compounds which were purified by crystallization from ethanol.

4-Amino-2-methyl-6-phenyl-5-(3-phenylpropanoyl)pyridazin-3(2H)-one (15a). Yield $=60 \%$; mp = $121-123{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.32\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.6 \mathrm{~Hz}\right), 2.70(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.6 \mathrm{~Hz}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.09-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.43-7.48 (m, 5H, Ar).

4-Amino-6-phenyl-5-(3-phenylpropanoyl)-2-propylpyridazin-3(2H)-one (15b). Yield $=75 \%$; $\mathrm{mp}=$ $103-105{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right.$), 1.88 (sest, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}$), $2.31\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}\right.$), $2.70\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J\right.$ $=7.4 \mathrm{~Hz}), 4.15\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 6.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz}), 7.09-7.17(\mathrm{~m}, 3 \mathrm{H}$, Ar), 7.42-7.50 (m, 5H, Ar).

4-Amino-2-butyl-6-phenyl-5-(3-phenylpropanoyl)pyridazin-3(2H)-one (15c). Yield $=58 \% ; \mathrm{mp}=$ $80-82{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 1.43 (sest, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}$), 1.85 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}$), 2.33 (t, $2 \mathrm{H}, \mathrm{CO}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}$), $2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.6 \mathrm{~Hz}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J\right.$ $=7.4 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=6.8 \mathrm{~Hz}), 7.10-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.44-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$.

4-Amino-2-isopropyl-6-phenyl-5-(3-phenylpropanoyl)pyridazin-3(2H)-one (15d). Yield =55\%; $\mathrm{mp}=90-93{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.4 \mathrm{~Hz}\right), 2.33(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}$), $2.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}\right), 5.20-5.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 6.80 (d, 2H, Ar, J = 6.8 Hz), 7.10-7.15 (m, 2H, Ar), 7.20-7.25 (m, 1H, Ar), 7.40-7.50 (m, 5H, Ar).

4-Amino-6-cyclohexyl-5-(3-phenylpropanoyl)-2-propylpyridazin-3(2H)-one (15e). Yield $=60 \%$; $\mathrm{mp}=114-116{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}\right), 1.25-1.35(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{cC}_{6} \mathrm{H}_{11}\right), 1.55-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{cC}_{6} \mathrm{H}_{11}\right), 1.76-1.90\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+6 \mathrm{H}_{6} \mathrm{CH}_{11}\right), 3.05-3.10$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}$), $4.07\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right.$), 7.20-7.25 (m, 3H, Ar), 7.30-7.35 (m, 2H, Ar).

4-Amino-2,6-diphenyl-5-(3-phenylpropanoyl)pyridazin-3(2H)-one (15f). Yield $=52 \%$; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=8.0 \mathrm{~Hz}\right), 2.76\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=8.0 \mathrm{~Hz}\right)$, 6.88 (d, 2H, Ar, $J=7.2 \mathrm{~Hz}$), 7.15-7.20 (m, 1H, Ar), 7.40-7.60 (m, 10H, Ar), 7.71 (d, 2H, Ar, $J=7.2$ Hz).

4-Amino-2-ethyl-5-(3-(naphthalen-1-yl)propanoyl)-6-phenylpyridazin-3(2H)-one (15g). Yield = 55%; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 2.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=\right.$ $8.0 \mathrm{~Hz}), 3.19\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=8.0 \mathrm{~Hz}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.97(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{Ar}, J=6.8 \mathrm{~Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.35-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.55-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.80(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz})$.

4-Amino-6-phenyl-2-propyl-5-(3-(thiophen-2-yl)propanoyl)pyridazin-3(2H)-one (15h). Yield $=50$ $\% ; \mathrm{mp}=103-105{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.88-1.93$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}\right.$), $2.95\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=\right.$ $7.2 \mathrm{~Hz}), 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.49(\mathrm{ds}, 1 \mathrm{H}$, thiophene, $J=3.2 \mathrm{~Hz}), 6.80(\mathrm{dd}, 1 \mathrm{H}$, thiophene, J $=5.2 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}$, thiophene, $J=4.8 \mathrm{~Hz}), 7.40-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar})$.

4-Amino-5-(3-(naphthalen-1-yl)propanoyl)-6-phenyl-2-propylpyridazin-3(2H)-one (15i). Yield = 80%; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right.$), 1.85 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J$ $=7.4 \mathrm{~Hz}), 2.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.8 \mathrm{~Hz}\right), 3.19\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.8 \mathrm{~Hz}\right), 4.14$ $\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J=7.4 \mathrm{~Hz}), 7.40-$ $7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.4 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0$ Hz).

4-Amino-6-phenyl-2-propyl-5-(3-(pyridin-4-yl)propanoyl)pyridazin-3(2H)-one (15l). Yield =50\%; oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right.$), 1.89 (sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2$ $\mathrm{Hz}), 2.39\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}\right), 2.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Ph}, J=7.2 \mathrm{~Hz}\right), 4.16(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}\right), 7.21(\mathrm{~d}, 2 \mathrm{H}$, pyridine, $J=5.6 \mathrm{~Hz}), 7.41-7.51(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 8.53(\mathrm{~d}, 2 \mathrm{H}$, pyridine, $J=5.2 \mathrm{~Hz}$).

4-(4-Fluorophenyl)-3-methyl-6-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one (46b). A suspension of intermediate $\mathbf{4 5}^{32}(2.89 \mathrm{mmol})$, phenyl hydrazine (5.8 mmol) and an excess of PPA (7 g) in 2.5 mL of absolute ethanol was heated at $80-90{ }^{\circ} \mathrm{C}$ for 1 h and 30 min . After cooling, the ethanol was evaporated and ice-cold water (15 mL) was added. The precipitate was recovered by filtration to obtain a yellow solid which resulted to be pure at the TLC. Yield $=60 \% ; \mathrm{mp}=175-178{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.22-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.39-7.45(\mathrm{~m}, 2 \mathrm{H} \mathrm{Ar}), 7.49-7.60(\mathrm{~m}$, 4H, Ar).

5-Acetyl-4-amino-6-(4-fluorophenyl)-2-phenylpyridazin-3(2H)-one (47b). Compound 47b was obtained following the same procedure used for the synthesis of compounds $\mathbf{1 5 a} \mathbf{- I}$. After cooling, the precipitate was removed by gravity filtration and the organic phase was recovered and evaporated to obtain a white-yellow solid which resulted tob e pure at the TLC. Yield $=76 \% ; \mathrm{mp}=160-163{ }^{\circ} \mathrm{C}$
(EtOH). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.17(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J=8.0$ $\mathrm{Hz}), 7.48-7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz})$. $\mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): 3398-3283\left(\mathrm{NH}_{2}\right), 1646(\mathrm{CO})$, 1595 (CO).

General procedure for compounds 16a,b. In a sealed tube, 0.62 mmol of intermediates $\mathbf{4 7 a , b}$ (47a ${ }^{27}$) and 17.68 mmol of $\mathrm{HBr} 48 \%$ were heated at $130{ }^{\circ} \mathrm{C}$ for 2 h . After cooling, the mixture was transferred to a balloon, diluted with ice-cold water (15 mL) and basified with NaOH 6 N . The suspension was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$), dried on sodium sulfate and evaporated to obtain the desired compounds which were purified by crystallization from ethanol.

4-Amino-2,6-diphenylpyridazin-3(2H)-one (16a). Yield $=69 \% ; \mathrm{mp}=216-218^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.75\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazinone), $7.45-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.72-7.80(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) . \mathrm{IR} v\left(\mathrm{~cm}^{-1}\right)$: 3429-3315 (NH_{2}), $1615(\mathrm{CO})$.

4-Amino-6-(4-fluorophenyl)-2-phenylpyridazin-3(2H)-one (16b). Yield $=71 \% ; \mathrm{mp}=167-169{ }^{\circ} \mathrm{C}$ $(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{~s}, 1 \mathrm{H}$, pyridazinone $), 7.13(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J=8.6 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}$, $J=8.0 \mathrm{~Hz}), 7.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$. IR v $\left(\mathrm{cm}^{-1}\right): 3458-3317\left(\mathrm{NH}_{2}\right), 1612(\mathrm{CO})$.

General procedure for compounds 17a-c. A mixture of $\mathbf{1 6 a}, \mathbf{b}(0.18 \mathrm{mmol})$, suitable anhydride (6.03 mmol) and 1.5 mL of pyridine was warmed in a sealed tube at $140^{\circ} \mathrm{C}$ for $3-5 \mathrm{~h}$. After cooling, the mixture was transferred to a balloon and ice-cold water (15 mL) was added. The mixture was stirred for 1 h about in order to hydrolyze the excess of anhydride. The precipitate formed was recovered by vacuum filtration to obtain the desired compounds $\mathbf{1 7 a} \mathbf{- c}$ which were purified by crystallization from ethanol.

N-(3-Oxo-2,6-diphenyl-2,3-dihydropyridazin-4-yl)pentanamide (17a). Yield $=50 \% ; \mathrm{mp}=120-123$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}\right.$), 1.46 (sest, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), 1.77 (quin, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.6 \mathrm{~Hz}$), $2.53(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}$), 7.43-7.60 (m, 6H, Ar), $7.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.90(\mathrm{dd}, 2 \mathrm{H}, \mathrm{Ar}$, $J=1.8 \mathrm{~Hz}$ and $J=7.4 \mathrm{~Hz}$), 8.74 (exch br s, 1H, NH), 8.77 ($\mathrm{s}, 1 \mathrm{H}$, pyridazinone).

N-(3-Oxo-2,6-diphenyl-2,3-dihydropyridazin-4-yl)isobutyramide (17b). Yield $=55 \% ; \mathrm{mp}=167-$ $168{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.8 \mathrm{~Hz}\right.$), $2.71\left(\right.$ quin, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $J=6.8 \mathrm{~Hz}), 7.43-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.54(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J=7.2 \mathrm{~Hz}), 7.73(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.91$ (d, $2 \mathrm{H}, \mathrm{Ar}, J=6.8 \mathrm{~Hz}$), 8.78 ($\mathrm{s}, 1 \mathrm{H}$, pyridazinone), 8.82 (exch br s, $1 \mathrm{H}, \mathrm{NH}$).

N-(6-(4-Fluorophenyl)-3-oxo-2-phenyl-2,3-dihydropyridazin-4-yl)isobutyramide (17c). Yield $=48$ $\% ; \mathrm{mp}=169-170{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.32\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.8 \mathrm{~Hz}\right), 2.70$ (quin, $\left.\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.8 \mathrm{~Hz}\right)_{, ~ 7.15(t, 2 H} \mathrm{Ar}, J=8.4 \mathrm{~Hz}\right), 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J=7.4 \mathrm{~Hz}), 7.54(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}$, $J=7.8 \mathrm{~Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=8.0 \mathrm{~Hz}), 7.86-7.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 8.74(\mathrm{~s}, 1 \mathrm{H}$, pyridazinone), 8.82 (exch br s, 1H, NH). LC-MS: $352.18[\mathrm{M}+\mathrm{H}]^{+}$.

5-Amino-N-(tert-butyl)-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxamide (49). A mixture of compound $48^{27}(0.94 \mathrm{mmol})$ and tert-butylamine (2.85 mmol) in 2 mL of anhydrous 1,4-dioxane was warmed in a sealed tube at $80-90^{\circ} \mathrm{C}$ for 2 h . After cooling, the mixture was transferred to a balloon and the solvent was evaporated. Ice-cold water $(15 \mathrm{~mL})$ was added and the light brown precipitate was filtered off by suction to obtain the desired compound 49. Yield $=45 \% ; \mathrm{mp}=229-233{ }^{\circ} \mathrm{C}$ (EtOH). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.22$ (exch br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.37-7.45 (m, 5 H , Ar), 12.79 (exch br s, 1H, NH pyrid.).

General procedure for compounds 18 and 20. A mixture of compounds 49 (for 18) or 19 (for 20) (0.24 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.50 \mathrm{mmol})$, benzyl chloride (0.30 mmol), and anhydrous acetone (1.5 mL) was stirred at reflux for 2 h . After cooling, the solvent was evaporated and ice-cold water (10 mL) was added. The suspension was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$), dried on sodium sulfate and evaporated to obtain the desired compounds which were purified by crystallization from ethanol for 18) or methanol (for 20).

5-Amino-1-benzyl-N-(tert-butyl)-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxamide
Yield $=54 \% ; \mathrm{mp}=168-169{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.81$ (exch br s, $1 \mathrm{H}, \mathrm{NHCO}$), 5.37 (s, 2H, $\mathrm{CH}_{2}-\mathrm{Ph}$), 7.30-7.38 (m, 3H, Ar), 7.45-7.55 (m, 7H, Ar). LC-MS: 377.27 $[\mathrm{M}+\mathrm{H}]^{+}$.

Benzyl 5-amino-1-benzyl-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylate (20). Yield $=47 \%$; $\mathrm{mp}=115-116{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $6.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.17-7.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.27-7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 7.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6$ Hz).

Benzyl 5-amino-6-oxo-3-phenyl-1,6-dihydropyridazine-4-carboxylate (19). To a suspension of intermediate $\mathbf{4 8}^{27}(1.41 \mathrm{mmol})$ in 1.5 mL of benzyl alcohol (14.5 mmol) in a sealed tube, 3.59 mmol of $\mathrm{Et}_{3} \mathrm{~N}$ was added. The mixture reaction was warmed at $80^{\circ} \mathrm{C}$ for 3 h . After cooling in ice-bath, ethanol was added, a light yellow precipitate was formed and it was filtered off by suction to obtain the desired compound. Yield $=35 \% ; \mathrm{mp}=218-220^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 5.00(\mathrm{~s}, 2 \mathrm{H}$,
$\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ph}\right), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}, J=7.6 \mathrm{~Hz}), 7.20-7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 7.40$ (exch br s, 2H, NH2), 12.91 (exch br s, 1H, NH). IR $v\left(\mathrm{~cm}^{-1}\right): 3451-3327\left(\mathrm{NH}_{2}\right), 1687(\mathrm{CO}), 1658(\mathrm{CO})$.

General procedure for compounds 21a-e. $\mathrm{Et}_{3} \mathrm{~N}(1.14 \mathrm{mmol})$ was added to a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ and stirred solution of intermediate $\mathbf{5 0 a}, \mathbf{b}^{33,34}(0.33 \mathrm{mmol})$ in anhydrous tetrahydrofuran $(2 \mathrm{~mL})$. After 30 min , the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ and ethyl chloroformate (0.36 mmol) was added. After 1 h , the suitable amine (0.69 mmol) was added. The reaction was carried out at room temperature for 12 h . The mixture was then concentrated in vacuo, diluted with cold water (10-15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic phase was dried on sodium sulphate and the solvent was evaporated to afford final compounds 21a-e which were purified by flash column chromatography using cyclohexane/ethyl acetate 1:1 (for 21a-c) or 2:1 (for 21d,e) as eluents.

2-(6-Oxo-3,4-diphenylpyridazin-1(6H)-yl)-N-propylacetamide (21a). Yield $=35 \% ; \mathrm{mp}=136-137$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.57\left(\right.$ sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, $J=7.2 \mathrm{~Hz}), 3.28\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 4.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CO}), 6.47$ (exch br s, 1 H , NHCO), 7.00-7.40 (m, 11H, 10H Ar + 1H pyridazinone).

N-Isopropyl-2-(6-oxo-3,4-diphenylpyridazin-1(6H)-yl)acetamide (21b). Yield $=44 \% ; \mathrm{mp}=138$ $139{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.8 \mathrm{~Hz}\right), 4.12\left(\right.$ sest, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $J=6.8 \mathrm{~Hz}), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.22$ (exch br s, $1 \mathrm{H}, \mathrm{NHCO}$), 7.00 ($\mathrm{s}, 1 \mathrm{H}$, pyridazinone), 7.057.17 (m, 4H, Ar), 7.30-7.40 (m, 6H, Ar).

N-Cyclopentyl-2-(6-oxo-3,4-diphenylpyridazin-1(6H)-yl)acetamide (21c). Yield $=65 \% ; \mathrm{mp}=148-$ $150{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{cC}_{5} \mathrm{H}_{9}\right), 1.53-1.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{cC}_{5} \mathrm{H}_{9}\right), 1.95-2.08$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{cC}_{5} \mathrm{H}_{9}$), 4.20-4.30 (m, 1H, CH cC $5 \mathrm{H}_{9}$), 4.89 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}$), 6.50 (exch br s, $1 \mathrm{H}, \mathrm{NHCO}$), 7.00 ($\mathrm{s}, 1 \mathrm{H}$, pyridazinone), 7.05-7.18 (m, 5H, Ar), 7.20-7.40 (m, 5H, Ar).

2-(6-Oxo-3,5-diphenylpyridazin-1(6H)-yl)-N-propylacetamide (21d). Yield $=22 \% ; \mathrm{mp}=168-169$ ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.4 \mathrm{~Hz}\right), 1.57\left(\right.$ sest, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, $J=7.4 \mathrm{~Hz}$), $3.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right.$), $5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH} \mathrm{CO}_{2} \mathrm{CO}\right.$), 6.48 (exch br s, 1 H , NHCO), 7.48-7.55 (m, 6H,5H Ar + 1H pyridazinone), 7.84-7.90 (m, 5H, Ar).

N-Isopropyl-2-(6-oxo-3,5-diphenylpyridazin-1(6H)-yl)acetamide (21e). Yield $=34 \% ; \mathrm{mp}=198$ $200{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J=6.8 \mathrm{~Hz}\right), 4.12\left(\right.$ sest, $1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $J=6.8 \mathrm{~Hz}), 4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 6.26$ (exch br s, $1 \mathrm{H}, N H \mathrm{CO}$), $7.46-7.51(\mathrm{~m}, 6 \mathrm{H}, 5 \mathrm{H} \mathrm{Ar}+1 \mathrm{H}$ pyridazinone), 7.84-7.90 (m, 5H, Ar).

3. Experimental Details - Molecular modelling

Table S1. PharmMapper result for molecule 1a.

	$\begin{aligned} & \hline \text { PDB } \\ & \text { ID } \\ & \hline \end{aligned}$	Target Name	Fit Score	Normalize d Fit Score
1	1LFG	Lactotransferrin	2.98	0.9935
2	2GWF	Ubiquitin carboxyl-terminal hydrolase 8	2.977	0.9923
3	4LUR	NONE	2.961	0.9871
4	3CR3	PTS-dependent dihydroxyacetone kinase, ADP-binding subunit dhaL	2.929	0.9764
5	1NU9	Prothrombin	3.845	0.769
6	1RF8	Eukaryotic translation initiation factor 4E	2.996	0.7491
7	2CST	Aspartate aminotransferase, cytoplasmic	2.992	0.748
8	1ZR4	Transposon gamma-delta resolvase	2.992	0.7479
9	2AJ7	Flagellar assembly factor fliW	2.991	0.7477
	1MK			
10	M	Transcriptional regulator, IclR family	2.981	0.7452
11	2GFP	Multidrug resistance protein D	2.98	0.7451
12	2 V 0 V	Nuclear receptor subfamily 1 group D member 2	2.977	0.7443
13	1IS2	Acyl-coenzyme A oxidase 1, peroxisomal	2.976	0.7439
14	2 C 9 O	RuvB-like 1	2.975	0.7437
15	2PJW	Class E vacuolar protein-sorting machinery protein HSE1	2.963	0.7407
16	2E8X	Geranylgeranyl pyrophosphate synthetase	2.951	0.7377
17	2AD9	Polypyrimidine tract-binding protein 1	2.949	0.7372
18	1SSE	AP-1-like transcription factor YAP1	2.945	0.7362
19	1S7Q	$\mathrm{H}-2$ class I histocompatibility antigen, K-B alpha chain	2.945	0.7362
20	1R6R	Genome polyprotein	2.944	0.7359
21	1W36	Exodeoxyribonuclease V gamma chain	2.937	0.7344
22	1UJV	Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2	2.937	0.7342
23	1W1G	3-phosphoinositide-dependent protein kinase 1	2.937	0.7342
24	2E02	Cysteine proteinase 1, mitochondrial	2.932	0.7329
25	1CLZ	Ig gamma-3 chain C region	2.932	0.7329
26	1QZ2	FK506-binding protein 4	2.925	0.7313
27	1IG8	Hexokinase-2	2.923	0.7308
28	2P0W	Histone acetyltransferase type B catalytic subunit	2.921	0.7302
29	2B6E	Putative esterase HI1161	2.915	0.7289
30	1PC8	Beta-galactoside-specific lectin 4	2.91	0.7274
31	1UKF	Cysteine protease avirulence protein avrPphB	4	0.6667
32	1S40	Cell division control protein 13	3.915	0.6525
33	3FQD	5-3 exoribonuclease 2	3.133	0.6266
34	2ZU6	Eukaryotic initiation factor 4A-I	3.745	0.6241
35	1HM9	Bifunctional protein glmU	3.12	0.624
36	1X65	Cold shock domain-containing protein E1	3.7	0.6167
37	1XJV	Protection of telomeres protein 1	3.067	0.6133
38	2VH3	Ranasmurfin	3	0.6

39	1PHN	C-phycocyanin alpha chain	3	0.6
40	1WIN	Flotillin-2	3	0.6
41	1ZVS	Beta-2-microglobulin	3	0.6
42	2P0R	Calpain-9	2.998	0.5996
43	1DUS	Protein MJ0882	3.597	0.5995
44	2FV4	Kinetochore protein SPC25	2.993	0.5987
45	1BUO	Zinc finger and BTB domain-containing protein 16	2.993	0.5985
46	2I15	Uncharacterized protein MG296 homolog	2.99	0.5981
47	1JN5	NTF2-related export protein 1	2.988	0.5975
48	1FNC	Ferredoxin--NADP reductase, chloroplastic	2.987	0.5974
49	1LSH	Vitellogenin	2.985	0.5971
50	1GHS	Glucan endo-1,3-beta-glucosidase GII	2.982	0.5964

Table S2. PharmMapper result for molecule 2a.

	PDB		Fit Score	Normalize d Fit Score
1	ID	Target Name	2.996	0.9986
2		NONE	Acidic leucine-rich nuclear phosphoprotein 32 family	
2JQD	member A	2.994	0.9981	
3	2IRP	Methylthioribulose-1-phosphate dehydratase	2.994	0.998
4	1T0T	UPF0447 protein GK3416	2.994	0.9979
5	2NQ2	Probable ABC transporter permease protein HI1471	2.994	0.9979
6	1CQA	Profilin	2.993	0.9975
7	2VRW	Ras-related C3 botulinum toxin substrate 1	2.992	0.9975
8	1IJE	Elongation factor 1-alpha	2.992	0.9975
9	2HDP	E3 ubiquitin-protein ligase Mdm2	2.992	0.9975
10	1GK5	Pro-epidermal growth factor	2.992	0.9974
11	2KDD	Borealin	2.992	0.9973
12	3CE6	Adenosylhomocysteinase	2.991	0.9969
13	2DGR	RNA-binding protein MEX3D	2.99	0.9966
14	1M3S	3-hexulose-6-phosphate isomerase	2.99	0.9965
15	1O96	Electron transfer flavoprotein subunit beta	2.989	0.9965
		Class E vacuolar protein-sorting machinery protein		
16	2PJW	HSE1	2.989	0.9963
17	3EPY	Acyl-CoA-binding domain-containing protein 7	2.989	0.9962
18	1O7D	Lysosomal alpha-mannosidase	2.989	0.9962
19	1S68	RNA ligase 2	2.988	0.996
20	1VLI	Spore coat polysaccharide biosynthesis protein spsE	2.988	0.9959
21	3DZ7	S-adenosylmethionine decarboxylase proenzyme	2.987	0.9956
22	2GWF	Ubiquitin carboxyl-terminal hydrolase 8	2.986	0.9954
23	1V5V	Probable aminomethyltransferase	2.986	0.9953
24	2ASF	Uncharacterized protein Rv2074/MT2134	2.986	0.9952
25	1Z0D	Ras-related protein Rab-5C	2.985	0.9951
26	1O9Y	Type III secretion protein hrcQb	2.985	0.9949
27	2NPU	FKBP12-rapamycin complex-associated protein	2.984	0.9948
28	3DUZ	Major envelope glycoprotein	2.984	0.9947
29	2A7S	Probable propionyl-CoA carboxylase beta chain 5	2.984	0.9945

30	2I15	Uncharacterized protein MG296 homolog	2.983	0.9945
31	1QWG	Phosphosulfolactate synthase	2.983	0.9943
32	1U2W	Cadmium efflux system accessory protein	2.983	0.9943
33	2PIH	Uncharacterized protein ymcA	2.983	0.9942
34	1J1E	Troponin C, slow skeletal and cardiac muscles	2.981	0.9936
35	2D6F	Glutamyl-tRNA(Gln) amidotransferase subunit D	2.981	0.9935
36	1QZT	Phosphate acetyltransferase	2.98	0.9934
37	1F3B	Glutathione S-transferase A1	2.98	0.9932
38	3HZQ	Large-conductance mechanosensitive channel	2.979	0.993
39	2ZIW	Crossover junction endonuclease MUS81	2.979	0.993
40	1UKK	Osmotically inducible protein C	2.975	0.9917
41	1GGZ	Calmodulin-like protein 3	2.973	0.9912
42	1D4M	Genome polyprotein	2.973	0.9908
43	2ZSM	Glutamate-1-semialdehyde 2,1-aminomutase	2.972	0.9908
44	1BDG	Hexokinase	2.971	0.9904
45	2CWX	Ribulose bisphosphate carboxylase	2.965	0.9884
46	2I1Y	Receptor-type tyrosine-protein phosphatase-like N	2.965	0.9884
47	1XPP	DNA-directed RNA polymerase subunit L	2.965	0.9883
48	2P67	LAO/AO transport system kinase	2.964	0.9881
49	2UUU	Alkyldihydroxyacetonephosphate synthase	2.963	0.9876
50	1GT5	Odorant-binding protein	2.962	0.9874

Table S3. PharmMapper result for molecule 3a.

	PDB		Fit Score	Normalize d Fit Score
	ID	Target Name	2.993	0.7482
1	3MYB	NONE	2.985	0.7463
2	3B3D	Uncharacterized oxidoreductase ytbE	2.98	0.745
3	2NVB	NADP-dependent alcohol dehydrogenase	2.966	0.7416
4	1UWK	Urocanate hydratase		
		Membrane-associated guanylate kinase, WW and PDZ		
5	1UJV	domain-containing protein 2	2.963	0.7407
6	1EYB	Homogentisate 1,2-dioxygenase	0.7371	
7	2NZ2	Argininosuccinate synthase	2.948	0.737
8	2EBZ	Regulator of G-protein signaling 12	2.947	0.7369
		2-hydroxy-6-oxononadienedioate/2-hydroxy-6-		
9	1U2E	oxononatrienedioate hydrolase	2.93	0.7325
		Thymocyte selection-associated high mobility group box		
10	2CO9	protein TOX	2.92	0.7301
11	1A0J	Trypsin-3	2.919	0.7298
12	2GNX	UPF0536 protein C12orf66 homolog	0.7297	
13	2DBR	Glyoxylate reductase	2.917	0.7293
14	1GYP	Glyceraldehyde-3-phosphate dehydrogenase, glycosomal	2.91	0.7275
15	2ZPA	Uncharacterized protein ypfI	2.909	0.7272
16	2ZW9	Leucine carboxyl methyltransferase 2	2.907	0.7268
17	2PFC	Uncharacterized protein Rv0098/MT0107	2.906	0.7266
		Protein farnesyltransferase/geranylgeranyltransferase type-		
18	3DRA	1 subunit alpha	2.903	0.7259

		Mitochondrial import inner membrane translocase subunit		
19	3DXR	TIM9	2.896	0.7241
20	1UYR	Acetyl-CoA carboxylase	2.895	0.7238
21	3FFV	Protein syd	2.883	0.7208
22	2YRV	AT-rich interactive domain-containing protein 4A	2.883	0.7208
23	1JL2	Ribonuclease HI	2.882	0.7205
24	2CWX	Ribulose bisphosphate carboxylase	2.876	0.719
25	1TFC	Estrogen-related receptor gamma	2.869	0.7173
26	1W07	Acyl-coenzyme A oxidase 1, peroxisomal	2.868	0.717
27	2AQT	Superoxide dismutase [$\mathrm{Cu}-\mathrm{Zn}$]	2.86	0.715
		Induced myeloid leukemia cell differentiation protein Mcl-		
28	2ROD	1 homolog	2.845	0.7112
29	2RGV	Peroxide operon regulator	2.841	0.7102
30	2COP	Acyl-CoA-binding domain-containing protein 6	2.839	0.7096
31	1KA9	Imidazole glycerol phosphate synthase subunit hisF	2.838	0.7096
32	1D2E	Elongation factor Tu, mitochondrial	2.837	0.7092
33	1PN0	Phenol 2-monooxygenase	2.828	0.7071
34	1B93	Methylglyoxal synthase	2.827	0.7067
35	2QG3	UPF0130 protein AF_2059	2.814	0.7035
36	2VRE	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.813	0.7032
37	2199	Mu-crystallin homolog	2.804	0.7009
38	2P0W	Histone acetyltransferase type B catalytic subunit	2.799	0.6997
39	1I3A	Ribonuclease HII	2.797	0.6992
	1WY			
40	M	Transgelin-2	2.796	0.699
41	2JZ6	50S ribosomal protein L28	2.787	0.6968
42	1KZF	Acyl-homoserine-lactone synthase	2.78	0.6951
43	1JQK	Carbon monoxide dehydrogenase	2.77	0.6925
44	2CST	Aspartate aminotransferase, cytoplasmic	2.769	0.6924
45	1U94	Protein recA	2.758	0.6894
		Zinc finger A20 and AN1 domain-containing stress-		
46	1WFH	associated protein 4	2.75	0.6875
47	$\begin{aligned} & \text { 3D3L } \\ & \text { 2Yw } \end{aligned}$	Arachidonate 12-lipoxygenase, 12S-type	3.183	0.6366
48	W	Aspartate carbamoyltransferase regulatory chain	2.991	0.5983
49	1URJ	Major DNA-binding protein	2.985	0.597
50	1B7A	Phosphatidylethanolamine-binding protein 1	2.984	0.5968

Table S4. PharmMapper result for molecule 5a.

	PDB		Fit Score	Normalize d Fit Score
ID	Target Name	2.961	0.9871	
1	1VBI	Dehydrogenase	2.996	0.7489
2	3D31	NONE		
	1YA		2.991	0.7478
3	A	Aspartate aminotransferase, cytoplasmic	2.991	0.7477
4	1J3N	Transferase		

2DQ				
5	N	Glutamyl-tRNA(Gln) amidotransferase subunit A	2.973	0.7432
6	3BHY	Death-associated protein kinase 3	2.971	0.7427
7	3HKI	Prothrombin	2.933	0.7332
8	1D06	Sensor protein fixL	2.905	0.7262
9	2OWI	Regulator of G-protein signaling 18	2.899	0.7246
10	3CA8	Protein ydcF	2.894	0.7234
11	2VLD	UPF0286 protein PYRAB01260	2.887	0.7218
Protein farnesyltransferase/geranylgeranyltransferase				
13	3B8C	ATPase 2, plasma membrane-type	2.849	0.7123
14	2NRO	Molybdopterin biosynthesis protein moeA	2.832	0.7079
15	2CR7	Paired amphipathic helix protein Sin3b	2.824	0.7061
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,				
17	3CPR	Dihydrodipicolinate synthase	2.81	0.7026
18	2 I 15	Uncharacterized protein MG296 homolog	2.795	0.6988
19	1JQK	Carbon monoxide dehydrogenase	2.794	0.6986
20	2PUJ	2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase	2.786	0.6965
21	1PC8	Beta-galactoside-specific lectin 4	2.765	0.6914
22	2GQF	Uncharacterized protein HI0933	2.709	0.6771
23	1NF0	Triosephosphate isomerase	2.704	0.676
2GN				
24	X	UPF0536 protein C12orf66 homolog	2.695	0.6738
25	1LJ0	Cytochrome b5 type B	2.684	0.6709
26	1K7A	Protein C-ets-1	2.653	0.6632
27	2JWE	Tight junction protein $\mathrm{ZO}-1$	2.609	0.6522
28	2QFD	Probable ATP-dependent RNA helicase DDX58	2.608	0.6519
29	1 U 94	Protein recA	2.607	0.6518
30	2JZ6	50S ribosomal protein L28	2.556	0.639
31	3FFV	Protein syd	2.529	0.6323
32	1PN0	Phenol 2-monooxygenase	2.437	0.6093
33	2Q2E	Type II DNA topoisomerase VI subunit A	2.431	0.6077
	3FM			
34	O	Nuclear pore complex protein Nup214	2.42	0.6049
35	2AQT	Superoxide dismutase [Cu-Zn]	2.4	0.6
36	1 GGZ	Calmodulin-like protein 3	2.998	0.5997
37	2BTY	Acetylglutamate kinase	2.998	0.5996
38	1NA6	Type-2 restriction enzyme EcoRII	2.995	0.5989
39	1FI6	RalBP1-associated Eps domain-containing protein 1	2.995	0.5989
40	3EAP	Rho GTPase-activating protein 11A	2.994	0.5989
41	2AY0	Bifunctional protein putA	2.994	0.5988
42	1SNL	Nucleobindin-1	2.993	0.5987
43	1RKS	Ribokinase	2.989	0.5979
44	1UFI	Major centromere autoantigen B	2.983	0.5965
45	2HJS	USG-1 protein homolog	2.975	0.595
46	1XCB	Redox-sensing transcriptional repressor rex	2.97	0.594
47	1IVX	Phenylethylamine oxidase	2.969	0.5938
48	3G9K	Capsule biosynthesis protein capD	2.965	0.5931

	2VW			2.961
49	T	2-keto-3-deoxy-L-rhamnonate aldolase	0.5922	
	2HH			
50	K	Reaction center protein H chain	2.958	0.5917

Table S5. PharmMapper result for molecule 7.

	$\begin{aligned} & \hline \text { PDB } \\ & \text { ID } \\ & \hline \end{aligned}$	Target Name	Fit Score	Normalize d Fit Score
1	4I1P	NONE	3.171	0.7929
2	2CST	Aspartate aminotransferase, cytoplasmic	2.981	0.7454
3	3FMO	Nuclear pore complex protein Nup214	2.903	0.7257
	3DRA	Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha	2.862	0.7154
5	1JQK	Carbon monoxide dehydrogenase	2.858	0.7145
6	1PP9	Cytochrome b-c1 complex subunit 1, mitochondrial Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,	2.752	0.688
7	2VRE	mitochondrial	2.741	0.6852
8	2GQF	Uncharacterized protein HI0933	2.702	0.6754
9	1QGK	Importin subunit beta-1	2.658	0.6645
10	1PN0	Phenol 2-monooxygenase	2.619	0.6548
11	1XQ1	Tropinone reductase homolog At1g07440	2.538	0.6346
12	2C6S	Penton protein	2.425	0.6062
	2CW			
13	X	Ribulose bisphosphate carboxylase	2.367	0.5918
14	1QRJ	Gag-Pro-Pol polyprotein	2.361	0.5901
15	1GPM	GMP synthase [glutamine-hydrolyzing]	2.943	0.5886
16	1UYR	Acetyl-CoA carboxylase	2.301	0.5754
17	2P1Q	SKP1-like protein 1A	2.866	0.5732
18	1 YIV	Myelin P2 protein	4.559	0.5699
19	1FRV	Periplasmic [NiFe] hydrogenase small subunit	2.268	0.5671
20	1SGJ	Citrate lyase beta subunit-like protein	2.267	0.5666
21	2PA6	Enolase	2.266	0.5664
22	1YPF	GMP reductase	2.811	0.5621
23	1Y1U	Signal transducer and activator of transcription 5A	2.81	0.5621
24	1R6U	Tryptophanyl-tRNA synthetase, cytoplasmic	2.235	0.5587
25	1I3R	$\mathrm{H}-2$ class II histocompatibility antigen, E-K alpha chain	2.788	0.5576
26	2P0R	Calpain-9	2.744	0.5488
27	2E55	Uracil phosphoribosyltransferase	3.289	0.5482
28	1SPU	Primary amine oxidase	3.247	0.5411
29	2QFD	Probable ATP-dependent RNA helicase DDX58	2.162	0.5405
30	10XY	Hemocyanin II	3.225	0.5375
31	1HRO	Cytochrome c2	3.211	0.5352
32	1W9C	Exportin-1	2.14	0.5351
33	1B35	Genome polyprotein	2.125	0.5313
	1MD	UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate		
34	Z	aminotransferase	2.101	0.5254
35	1RP8	Alpha-amylase type A isozyme	4.19	0.5238
36	1VLU	Gamma-glutamyl phosphate reductase	2.614	0.5229

		Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine		
37	3ESW	amidase	2.608	0.5216
38	1PUJ	Ribosome biogenesis GTPase A	3.112	0.5186
39	3G2F	Bone morphogenetic protein receptor type-2	2.584	0.5169
40	1IS2	Acyl-coenzyme A oxidase 1, peroxisomal	3.098	0.5163
41	1AHS	Core protein VP7	3.097	0.5161
	1QL			
42	M	Methenyltetrahydromethanopterin cyclohydrolase	2.559	0.5118
43	1Y79	Peptidyl-dipeptidase dcp	2.559	0.5117
44	1V5V	Probable aminomethyltransferase	2.033	0.5083
45	1X62	PDZ and LIM domain protein 1	2.535	0.5071
46	1J4A	D-lactate dehydrogenase	2.534	0.5068
47	2UUU	Alkyldihydroxyacetonephosphate synthase	2.022	0.5055
48	1RVV	6,7-dimethyl-8-ribityllumazine synthase	2.523	0.5046
49	1SNL	Nucleobindin-1	2.48	0.496
50	1XDO	Polyphosphate kinase	2.479	0.4958

Table S6. PharmMapper result for molecule 8.

	PDB		Fit Score	Normalize d Fit Score
1	ID	Target Name	3.118	0.7794
2	2C9O	RuvB-like 1	3.824	0.7647
3	4DK8	Axin-1	3.796	0.7593
4	3F3K	NONE	3.404	0.6808
5	Uncharacterized protein YKR043C	3.393	0.6785	
6	1RES	Dihydropinosylvin synthase	3.383	0.6766
7	2BTY	Methionyl-tRNA synthetase	3.285	0.657
8	AD3L	Arachidglanatate kinase	3.204	0.6408
9	3CLH	3-dehydroquinate synthasenase, 12S-type	3.128	0.6256
10	2R0N	Glutaryl-CoA dehydrogenase, mitochondrial	3.128	0.6256
11	2HMA	tRNA-specific 2-thiouridylase mnmA	3.727	0.6212
12	1H4R	Merlin	3.712	0.6186
13	1U08	Aminotransferase ybdL	3.072	0.6144
14	1X65	Cold shock domain-containing protein E1	3.681	0.6135
15	2KA5	Putative anti-sigma factor antagonist TM_1081	3.651	0.6084
16	3C7G	Arabinoxylan arabinofuranohydrolase	3.628	0.6047
17	1LRW	Methanol dehydrogenase subunit 1	3.62	0.6033
18	2BTU	Phosphoribosylformylglycinamidine cyclo-ligase	3.618	0.603
19	1TU9	Hypothetical protein	3.611	0.6019
20	1HJ1	Estrogen receptor beta	3.603	0.6005
21	1S40	Cell division control protein 13	3.554	0.5923
22	2IN5	Uncharacterized lipoprotein gfcB	3.546	0.5909
23	1UKF	Cysteine protease avirulence protein avrPphB	3.534	0.589
		Regulator of transcription; stringent starvation protein		3.51
24	1YY7	A	0.5851	
25	1LWD	Isocitrate dehydrogenase [NADP], mitochondrial	3.501	0.5836
26	2A7S	Probable propionyl-CoA carboxylase beta chain 5	3.495	0.5826

27	2P4B	Sigma-E factor regulatory protein rseB	3.476	0.5794
28	3DL2	Ubiquitin-conjugating enzyme E2 variant 3	3.469	0.5781
		Phosphatidylinositol-5-phosphate 4-kinase type-2		
29	2GK9	gamma	3.468	0.578
30	2GU0	Non-structural protein 2	3.444	0.574
31	1N7	Holliday junction ATP-dependent DNA helicase ruvB	3.442	0.5737
32	3DH4	Sodium/glucose cotransporter	3.424	0.5707
33	1MJ3	Enoyl-CoA hydratase, mitochondrial	3.407	0.5678
34	2RLI	Protein SCO2 homolog, mitochondrial	3.395	0.5658
35	1K1G	Splicing factor 1	3.392	0.5653
36	1V1F	Calcineurin B-like protein 4	3.368	0.5613
37	1MA1	Superoxide dismutase [Fe]	3.363	0.5605
38	2E74	Cytochrome b6	3.352	0.5586
39	1S0W	Beta-lactamase TEM	3.348	0.558
40	2HCB	Chromosomal replication initiator protein dnaA	3.899	0.557
41	1OVQ	Putative Holliday junction resolvase	3.335	0.5559
42	2CSH	Zinc finger and BTB domain-containing protein 43	3.89	0.5558
43	2IF2	Dephospho-CoA kinase	3.322	0.5537
44	2QTZ	Methionine synthase reductase, mitochondrial	3.308	0.5514
45	1P6P	Fatty acid-binding protein, liver	3.845	0.5493
		5-methylthioadenosine/S-adenosylhomocysteine		
46	3DP9	nucleosidase	3.287	0.5479
47	2C7Y	3-ketoacyl-CoA thiolase 2, peroxisomal	3.824	0.5462
48	2RC7	Glutamate [NMDA] receptor subunit 3A	3.273	0.5455
49	2Z2N	Virginiamycin B lyase	3.815	0.545
50	1CO6	Cytochrome c2	3.269	0.5449

Table S7. PharmMapper result for molecule 9.

	PDB		Fit Score	Normalize d Fit Score
	ID	Target Name	3.57	0.8926
1	4UAK	NONE	3.444	0.861
2	1FFT	Ubiquinol oxidase subunit 1	3.306	0.8265
3	2NRO	Molybdopterin biosynthesis protein moeA	3.266	0.8165
4	1R1T	Transcriptional repressor smtB	3.204	0.8011
5	2OWI	Regulator of G-protein signaling 18	3.943	0.7885
6	3FQD	5-3 exoribonuclease 2	3.087	0.7718
7	1YED	Ig gamma-1 chain C region secreted form	3.762	0.7525
8	2F8N	Histone H3.2	3.751	0.7502
9	1XES	Dihydropinosylvin synthase	3.75	0.7501
10	1DK8	Axin-1	4.472	0.7453
11	1X65	Cold shock domain-containing protein E1		
	2YW		3.689	0.7378
12	W	Aspartate carbamoyltransferase regulatory chain	3.665	0.7331
13	2ES0	Regulator of G-protein signaling 6	3.639	0.7278
14	3EXA	tRNA Delta(2)-isopentenylpyrophosphate transferase	3.62	0.724
15	1N6B	Cytochrome P450 2C5	3.618	0.7236
16	1XJV	Protection of telomeres protein 1		

17	2R0N	Glutaryl-CoA dehydrogenase, mitochondrial	3.593	0.7185
18	2AXX	Cytochrome b5	3.57	0.714
19	1R8U	Cbp/p300-interacting transactivator 2	3.555	0.7109
20	1VF5	Cytochrome b6	3.549	0.7097
21	1M1J	Fibrinogen alpha chain	3.544	0.7088
22	1S99	Putative HMP/thiamine-binding protein ykoF	3.515	0.7031
23	1RQG	Methionyl-tRNA synthetase	3.484	0.6967
24	2P0T	UPF0307 protein PSPTO_4464	3.482	0.6965
25	1GGT	Coagulation factor XIII A chain	3.473	0.6946
26	3D3L	Arachidonate 12-lipoxygenase, 12S-type	3.428	0.6856
27	2H08	Ribose-phosphate pyrophosphokinase 1	3.408	0.6815
28	1SFK	Genome polyprotein	3.364	0.6728
29	1ZTE	Superoxide dismutase [Mn], mitochondrial	3.304	0.6608
30	3F3K	Uncharacterized protein YKR043C	3.284	0.6569
31	2VOJ	Alanine dehydrogenase	3.246	0.6493
32	1WEX	Heterogeneous nuclear ribonucleoprotein L-like	3.24	0.6479
		Succinate dehydrogenase [ubiquinone] flavoprotein	3.235	0.6469
33	2FBW	subunit, mitochondrial	3.864	0.6441
34	1S40	Cell division control protein 13	3.221	0.6441
35	1L0V	Fumarate reductase flavoprotein subunit	3.212	0.6425
36	1B0A	Bifunctional protein folD	3.212	0.6425
37	2GFP	Multidrug resistance protein D	3.845	0.6408
38	3EPY	Acyl-CoA-binding domain-containing protein 7	3.841	0.6401
39	2JUL	Calsenilin	4.477	0.6395
40	2CTQ	DnaJ homolog subfamily C member 12	3.833	0.6389
41	2QKD	Zinc finger protein ZPR1	3.16	0.6321
42	2QBY	Cell division control protein 6 homolog 1		
		Putative multidrug export ATP-binding/permease protein	3.773	0.6289
43	2HYD	SAV1866	3.142	0.6283
44	3DF0	Calpain-2 catalytic subunit	3.14	0.6279
		Short-chain specific acyl-CoA dehydrogenase,	3.131	0.6262
45	2VIG	mitochondrial	3.123	0.6247
46	3IBV	Exportin-T	3.745	0.6242
47	1NSH	Protein S100-A11	3.121	0.6241
48	2GK9	Phosphatidylinositol-5-phosphate 4-kinase type-2 gamma	0.6232	
49	1YF6	Reaction center protein H chain		
50	2AYN	Ubiquitin carboxyl-terminal hydrolase 14	3.16	

Table S8. PharmMapper result for molecule 10b.

	PDB	Fit	Normalize	
ID	Target Name	Score d Fit Score		
1	1VBI	Dehydrogenase	2.944	0.9812
2	3REO	NONE	2.941	0.9805
3	1UKK	Osmotically inducible protein C	2.926	0.9752
4	2GWF	Ubiquitin carboxyl-terminal hydrolase 8	2.912	0.9707
5	2I15	Uncharacterized protein MG296 homolog	2.899	0.9665

6	2GZA	Type IV secretion system protein virB11	2.881	0.9604
7	2CTK	Vigilin	2.854	0.9513
8	3B8C	ATPase 2, plasma membrane-type	2.998	0.7495
9	2CST	Aspartate aminotransferase, cytoplasmic	2.996	0.7489
10	1D06	Sensor protein fixL	2.99	0.7476
11	2CR7	Paired amphipathic helix protein Sin3b	2.987	0.7469
12	2DQN	Glutamyl-tRNA(Gln) amidotransferase subunit A	2.986	0.7465
13	1LJ0	Cytochrome b5 type B	2.984	0.7461
14	3BHY	Death-associated protein kinase 3	2.976	0.744
15	2VRE	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.974	0.7435
16	2OWI	Regulator of G-protein signaling 18	2.966	0.7414
17	2NRO	Molybdopterin biosynthesis protein moeA	2.957	0.7392
18	3HKI	Prothrombin	2.954	0.7384
19	1P35	Early 35 kDa protein	2.952	0.7381
20	1Y89	DevB protein	2.945	0.7362
21	1J3N	Transferase	2.942	0.7355
22	2HGK	Uncharacterized protein yqcC	2.93	0.7326
23	3EMJ	Inorganic pyrophosphatase	2.929	0.7323
24	2V0V	Nuclear receptor subfamily 1 group D member 2	2.929	0.7322
25	1LSH	Vitellogenin	2.928	0.7319
26	M	Transcriptional regulator, IclR family	2.927	0.7318
27	2VEQ	B	2.919	0.7298
28	1KU5	Archaeal histone A	2.919	0.7297
29	1A6Z	Hereditary hemochromatosis protein	2.915	0.7288
30	2E02	Cysteine proteinase 1, mitochondrial	2.915	0.7287
31	2GFP	Multidrug resistance protein D	2.913	0.7284
32	1W5A	Cell division protein ftsZ homolog 1	2.909	0.7273
33	1A0J	Trypsin-3	2.908	0.727
34	1YED	Ig gamma-1 chain C region secreted form	2.904	0.726
35	1E00	Odorant-binding protein	2.901	0.7251
36	2I9X	Putative septation protein spoVG	2.898	0.7245
37	2CWX	Ribulose bisphosphate carboxylase	2.897	0.7242
38	2QFD	Probable ATP-dependent RNA helicase DDX58	2.896	0.724
39	2GNX	UPF0536 protein C12orf66 homolog	2.896	0.724
40	2JWE	Tight junction protein ZO-1	2.895	0.7236
41	3DWL	Actin-related protein 3	2.894	0.7234
42	3D64	Adenosylhomocysteinase	2.89	0.7225
43	2OPX	Lactaldehyde dehydrogenase	2.887	0.7218
44	2V3C	Signal recognition particle 19 kDa protein	2.881	0.7203
45	2FM8	Surface presentation of antigens protein spaK	2.881	0.7202
46	1EYB	Homogentisate 1,2-dioxygenase	2.879	0.7199
47	2 C 9 O	RuvB-like 1	2.866	0.7165
48	3DRA	Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha	2.864	0.716
49	1R1T	Transcriptional repressor smtB	2.863	0.7157
50	1RF8	Eukaryotic translation initiation factor 4E	2.858	0.7145

Table S9. PharmMapper result for molecule 10g.

	$\begin{aligned} & \hline \text { PDB } \\ & \text { ID } \\ & \hline \end{aligned}$	Target Name	Fit Score	Normalize d Fit Score
1	1VBI	Dehydrogenase	2.989	0.9964
2	2CT7	RING finger protein 31	2.985	0.9948
3	3OK8	NONE	2.976	0.9921
4	2UXW	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	2.959	0.9864
5	1EVY	Glycerol-3-phosphate dehydrogenase [NAD+], glycosomal	2.957	0.9858
6	1UKK	Osmotically inducible protein C	2.924	0.9747
7	2115	Uncharacterized protein MG296 homolog	2.903	0.9676
8	2GWF	Ubiquitin carboxyl-terminal hydrolase 8	2.899	0.9662
9	2GZA	Type IV secretion system protein virB11	2.889	0.9629
10	1ROZ	Deoxyhypusine synthase	2.885	0.9616
11	2CTK	Vigilin	2.88	0.9601
12	1YED	Ig gamma-1 chain C region secreted form	2.996	0.749
13	2CST	Aspartate aminotransferase, cytoplasmic	2.994	0.7485
14	2QTZ	Methionine synthase reductase, mitochondrial	2.985	0.7462
15	1SH4	Cytochrome b5	2.983	0.7458
16	1LJ0	Cytochrome b5 type B	2.981	0.7454
17	2OWI	Regulator of G-protein signaling 18	2.972	0.743
18	2NRO	Molybdopterin biosynthesis protein moeA	2.965	0.7413
19	2VRE	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.957	0.7392
20	2JUB	Internal protein I	2.953	0.7382
21	1Q2Y	Uncharacterized N -acetyltransferase yjcF	2.942	0.7354
22	2E02	Cysteine proteinase 1, mitochondrial	2.938	0.7344
23	1Y89	DevB protein	2.935	0.7337
	1MK			
24	M	Transcriptional regulator, IclR family	2.93	0.7326
25	2 V 0 V	Nuclear receptor subfamily 1 group D member 2	2.93	0.7326
26	3EMJ	Inorganic pyrophosphatase	2.93	0.7324
27	1LSH	Vitellogenin	2.929	0.7321
28	3HKI	Prothrombin	2.926	0.7315
29	1J3N	Transferase	2.925	0.7314
30	2CR7	Paired amphipathic helix protein Sin 3 b	2.916	0.7291
31	1ZRT	Ubiquinol-cytochrome c reductase iron-sulfur subunit	2.916	0.729
32	2 C 9 O	RuvB-like 1	2.915	0.7288
33	2FM8	Surface presentation of antigens protein spaK	2.914	0.7285
34	2OPX	Lactaldehyde dehydrogenase	2.913	0.7282
35	1W5A	Cell division protein ftsZ homolog 1	2.912	0.7281
36	1KU5	Archaeal histone A	2.91	0.7274
37	3DWL	Actin-related protein 3	2.906	0.7265
38	2I9X	Putative septation protein spoVG	2.906	0.7264
39	3D64	Adenosylhomocysteinase	2.904	0.7261

		H-2 class II histocompatibility antigen, E-D alpha		
40	1IEB	chain	2.904	0.726
41	1VB6	Heme-regulated cyclic AMP phosphodiesterase	2.898	0.7245
42	1E00	Odorant-binding protein	2.894	0.7236
43	2GFP	Multidrug resistance protein D	2.892	0.7229
44	2QFD	Probable ATP-dependent RNA helicase DDX58	2.891	0.7228
45	3B8C	ATPase 2, plasma membrane-type	2.89	0.7225
46	1XES	Dihydropinosylvin synthase	3.61	0.722
		3-oxoacyl-[acyl-carrier-protein] synthase,		
47	2IX4	mitochondrial	2.888	0.722
48	1OSA	Calmodulin	2.878	0.7194
49	1WVC	Glucose-1-phosphate cytidylyltransferase	2.875	0.7188
50	2HGK	Uncharacterized protein yqcC	2.873	0.7181

Table S10. PharmMapper result for molecule 11.

	PDB		Fit Score	Normalize d Fit Score
1	ID	Target Name	2.935	0.9784
1	1VBI	Dehydrogenase	2.666	0.8886
3	3BHY	NONE	2.999	0.7498
4	DDeath-associated protein kinase 3	Sensor protein fixL	2.995	0.7488
5	3B8C	ATPase 2, plasma membrane-type	2.995	0.7487
6	2CR7	Paired amphipathic helix protein Sin3b	2.994	0.7484
7	2DQN	Glutamyl-tRNA(Gln) amidotransferase subunit A	2.994	0.7484
8	2CST	Aspartate aminotransferase, cytoplasmic	2.979	0.7448
9	2I15	Uncharacterized protein MG296 homolog	2.979	0.7447
10	1LJ0	Cytochrome b5 type B	2.973	0.7432
11	2OWI	Regulator of G-protein signaling 18	2.966	0.7416
12	2NRO	Molybdopterin biosynthesis protein moeA	2.947	0.7368
13	1J3N	Transferase	2.939	0.7348
14	3HKI	Prothrombin	2.939	0.7347
		Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,		
15	2VRE	mitochondrial	2.937	0.7343
16	2JWE	Tight junction protein ZO-1	2.914	0.7284
17	2QFD	Probable ATP-dependent RNA helicase DDX58	2.888	0.722
18		Protein farnesyltransferase/geranylgeranyltransferase		
18	3DRA	type-1 subunit alpha	2.883	0.7208
19	2GNX	UPF0536 protein C12orf66 homolog	2.865	0.7162
20	1YED	Ig gamma-1 chain C region secreted form	2.81	0.7026
21	2GQF	Uncharacterized protein HI0933	2.807	0.7018
22	1B0N	HTH-type transcriptional regulator sinR	2.803	0.7007
23	2IBJ	Cytochrome b5	2.795	0.6986
	1GM			
24	G	Regulatory protein rop	2.774	0.6935
25	1UYR	Acetyl-CoA carboxylase	2.76	0.69
26	1TAF	Transcription initiation factor TFIID subunit 9	2.685	0.6713
27	1FFT	Ubiquinol oxidase subunit 1	2.587	0.6466
28	2AQT	Superoxide dismutase [Cu-Zn]	2.527	0.6319

29	2JZ6	50S ribosomal protein L28	2.483	0.6208
30	1GK9	Penicillin G acylase	2.428	0.607
31	1ES8	Type II restriction enzyme BgIII	2.407	0.6018
32	1VF5	Cytochrome b6	2.999	0.5999
33	1SNL	Nucleobindin-1	2.999	0.5999
34	1GH7	Cytokine receptor common subunit beta	2.999	0.5998
35	1UFI	Major centromere autoantigen B	2.998	0.5995
36	2F8N	Histone H3.2	2.993	0.5985
37	2BTY	Acetylglutamate kinase	2.992	0.5984
38	1RKS	Ribokinase	2.991	0.5983
39	1IVH	Isovaleryl-CoA dehydrogenase, mitochondrial	2.99	0.598
40	1GGZ	Calmodulin-like protein 3	2.988	0.5977
41	1NA6	Type-2 restriction enzyme EcoRII	2.988	0.5976
42	2AY0	Bifunctional protein putA	2.988	0.5976
43	3G9K	Capsule biosynthesis protein capD	2.988	0.5976
44	1GGT	Coagulation factor XIII A chain	2.985	0.5969
45	1W8I	Uncharacterized protein AF_1683	2.984	0.5968
46	1ZXK	Cadherin-8	2.98	0.5959
47	1VRN	Photosynthetic reaction center cytochrome c subunit	2.979	0.5958
48	1E51	Delta-aminolevulinic acid dehydratase	2.979	0.5957
49	2AYN	Ubiquitin carboxyl-terminal hydrolase 14	2.978	0.5956
	2VW			
50	T	2-keto-3-deoxy-L-rhamnonate aldolase	2.976	0.5953

Table S11. PharmMapper result for molecule 13a.

	PDB		Fit Score	Normalize d Fit Score
	ID	Target Name	2.949	0.983
1	2FH0	Uncharacterized protein YMR074C	2.946	0.9821
2	4LUR	NONE		
	1M4		3.282	0.8204
3	Y	ATP-dependent protease hslV	3.013	0.7531
4	1MJE	26S proteasome complex subunit DSS1	2.975	0.7438
5	2DU7	O-phosphoseryl-tRNA(Cys) synthetase	2.973	0.7431
6	2CST	Aspartate aminotransferase, cytoplasmic	2.97	0.7425
7	1JVW	Macrophage infectivity potentiator	2.966	0.7416
8	1RF8	Eukaryotic translation initiation factor 4E	2.962	0.7405
9	2QG3	UPF0130 protein AF_2059	2.956	0.7391
10	3EMJ	Inorganic pyrophosphatase	2.951	0.7377
11	2JZ6	50S ribosomal protein L28		
		Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,	2.946	0.7366
12	2VRE	mitochondrial		
	2WA		2.935	0.7338
13	0	Melanoma-associated antigen 4		0.7325
14	1C0L	D-amino-acid oxidase		
	1BU		2.927	0.7319
15	V	Matrix metalloproteinase-14	2.924	0.731
16	2E02	Cysteine proteinase 1, mitochondrial	2.916	0.729
17	1YED	Ig gamma-1 chain C region secreted form		

2 NV				
18	B	NADP-dependent alcohol dehydrogenase	2.908	0.727
2YX				
19	R	Preprotein translocase subunit secY	2.907	0.7267
20	3FFV	Protein syd	2.903	0.7258
21	2EX5	DNA endonuclease I-CeuI	2.901	0.7254
22	2GFP	Multidrug resistance protein D	2.898	0.7245
23	1FRV	Periplasmic [NiFe] hydrogenase small subunit	2.869	0.7173
24	2PO0	Probable exosome complex exonuclease 1	2.866	0.7166
25	2VLD	UPF0286 protein PYRAB01260	2.866	0.7164
	3DR	Protein farnesyltransferase/geranylgeranyltransferase		
1 VB				
27	G	Pyruvate, phosphate dikinase 1, chloroplastic	2.852	0.7131
28	3D64	Adenosylhomocysteinase	2.85	0.7126
29	1QRJ	Gag-Pro-Pol polyprotein	2.847	0.7118
30	3FQD	5-3 exoribonuclease 2	3.313	0.6626
31	3D3L	Arachidonate 12-lipoxygenase, 12S-type	3.168	0.6335
32	1X65	Cold shock domain-containing protein E1	3.78	0.6299
33	2WBI	Acyl-CoA dehydrogenase family member 11	3.055	0.6109
34	1IGR	Insulin-like growth factor 1 receptor	3.011	0.6022
35	2GJX	Beta-hexosaminidase subunit alpha	3	0.5999
36	2ES0	Regulator of G-protein signaling 6	2.992	0.5985
37	1XES	Dihydropinosylvin synthase	2.991	0.5982
38	2RM4	Enhancer of mRNA-decapping protein 3	2.99	0.5979
39	2H63	Biliverdin reductase A	2.986	0.5971
40	1L0V	Fumarate reductase flavoprotein subunit	2.983	0.5967
41	2E55	Uracil phosphoribosyltransferase	3.579	0.5965
42	1VF5	Cytochrome b6	2.982	0.5964
43	2R46	Aerobic glycerol-3-phosphate dehydrogenase	2.98	0.596
1UW				
44	4	Regulator of nonsense transcripts 3B	2.974	0.5947
45	1IVX	Phenylethylamine oxidase	2.96	0.5921
46	10VT	Ovotransferrin	2.951	0.5902
47	1PUJ	Ribosome biogenesis GTPase A	3.537	0.5895
48	2AY0	Bifunctional protein putA	2.946	0.5893
49	2HJS	USG-1 protein homolog	2.941	0.5883
50	1JEY	ATP-dependent DNA helicase 2 subunit 1	2.938	0.5876

Table S12. PharmMapper result for molecule 15a.

PDB		Fit	Normalize	
ID	Target Name	Score	d Fit Score	
	1M4			
1	Y	ATP-dependent protease hslV	3.264	0.8159
2 1RZO	Agglutinin	3.158	0.7896	
	2XB			
3	U	NONE	3.084	0.771
4	3FFV	Protein syd	2.989	0.7473

5	2JZ6	50S ribosomal protein L28	2.973	0.7432
6	2AQT	Superoxide dismutase [$\mathrm{Cu}-\mathrm{Zn}$]	2.955	0.7386
	2VRE	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.907	0.7268
8	2CST	Aspartate aminotransferase, cytoplasmic	2.888	0.722
9	2QEQ	Genome polyprotein	2.865	0.7163
10	2B6E	Putative esterase HI1161	2.861	0.7153
	3DR	Protein farnesyltransferase/geranylgeranyltransferase		
11	A 1UY	type-1 subunit alpha	2.861	0.7152
12	R	Acetyl-CoA carboxylase	2.852	0.713
13	2VLD	UPF0286 protein PYRAB01260	2.837	0.7092
14	1R6U	Tryptophanyl-tRNA synthetase, cytoplasmic	2.827	0.7068
15	1PP9	Cytochrome b-c1 complex subunit 1, mitochondrial	2.821	0.7052
	2RFA	Transient receptor potential cation channel subfamily V member 6	2.82	0.705
17	2E0G	Chromosomal replication initiator protein dnaA	2.81	0.7024
	1KC			
18	G	NKG2D ligand 3	2.773	0.6933
19	1QZ9	Kynureninase	2.773	0.6931
20	1FRV	Periplasmic [NiFe] hydrogenase small subunit	2.77	0.6924
	3DX	Mitochondrial import inner membrane translocase subunit		
21	R	TIM9	2.763	0.6908
	2DB			
22	A	Protein unc-45 homolog A	2.756	0.689
23	2PUJ	2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase	2.753	0.6882
24	2W9S	Dihydrofolate reductase type 1 from Tn 4003	2.742	0.6855
25	1LSH	Vitellogenin	2.73	0.6825
26	1QRJ	Gag-Pro-Pol polyprotein	2.722	0.6804
	1W9			
27	C	Exportin-1	2.716	0.679
28	1F3T	Ornithine decarboxylase	2.711	0.6776
29	1SYO	Cation-independent mannose-6-phosphate receptor	2.691	0.6728
30	2D7R	Polypeptide N -acetylgalactosaminyltransferase 10	2.679	0.6697
	2DQ			
31	N	Glutamyl-tRNA(Gln) amidotransferase subunit A	3.34	0.668
	2DY	Amyloid beta A4 precursor protein-binding family B		
32	Q	member 3	2.67	0.6675
33	1EE8	Formamidopyrimidine-DNA glycosylase	2.648	0.6621
34	1FPP	Protein farnesyltransferase subunit beta	3.298	0.6596
35	1P9B	Adenylosuccinate synthetase	2.636	0.6589
36	1Q30	SH3 and multiple ankyrin repeat domains protein 1	2.634	0.6586
37	1J4A	D-lactate dehydrogenase	3.224	0.6448
38	3E7W	D-alanine--poly(phosphoribitol) ligase subunit 1	3.798	0.633
39	1IGR	Insulin-like growth factor 1 receptor	3.133	0.6267
40	2E55	Uracil phosphoribosyltransferase	3.565	0.5942
41	2H63	Biliverdin reductase A	2.963	0.5926
42	1YPF	GMP reductase	2.95	0.5901
43	2D3L	Glucan 1,4-alpha-maltohexaosidase	2.941	0.5883
44	1T9K	Methylthioribose-1-phosphate isomerase	2.922	0.5845

45	2HJS	USG-1 protein homolog	2.911	0.5822
46	2G18	Phycocyanobili	2.904	0.5809
47	1Y1U	Signal transducer and activator of transcription 5A	2.895	0.579
48	1TM0	Uncharacterized protein BMEI1586	2.893	0.5786
49	1C8S	Bacteriorhodopsin	2.89	0.578
50	2P1Q	SKP1-like protein 1A	2.874	0.5748

Table S13. PharmMapper result for molecule 15f.

	$\begin{aligned} & \text { PDB } \\ & \text { ID } \\ & \hline \end{aligned}$	Target Name	Fit Score	Normalize d Fit Score
1	1LFG	Lactotransferrin	2.97	0.9899
2	2FH0	Uncharacterized protein YMR074C	2.926	0.9754
3	2 VVJ	NONE	3.308	0.8269
	1M4			
4	Y	ATP-dependent protease hslV	3.285	0.8213
5	1RZO	Agglutinin	3.207	0.8016
6	1MJE	26 S proteasome complex subunit DSS1	3.032	0.7579
		Centromere DNA-binding protein complex CBF3 subunit		
7	2VEQ	B	2.991	0.7478
	3DR	Protein farnesyltransferase/geranylgeranyltransferase		
8	A	type-1 subunit alpha	2.975	0.7437
9	3FFV	Protein syd	2.974	0.7434
10	2AQT	Superoxide dismutase [$\mathrm{Cu}-\mathrm{Zn}$]	2.954	0.7384
		Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase,		
11	$\begin{aligned} & \text { 2VRE } \\ & 2 \mathrm{NV} \end{aligned}$	mitochondrial	2.954	0.7384
12	B	NADP-dependent alcohol dehydrogenase	2.952	0.7379
13	2GQF	Uncharacterized protein HI0933	2.943	0.7358
	3DX	Mitochondrial import inner membrane translocase subunit		
14	R	TIM9	2.942	0.7356
15	2QEQ	Genome polyprotein	2.939	0.7348
16	2JZ6	50S ribosomal protein L28	2.938	0.7346
17	1LJ0	Cytochrome b5 type B	2.917	0.7293
18	2CST	Aspartate aminotransferase, cytoplasmic	2.912	0.728
19	2PUJ	2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase	2.904	0.726
	2GN			
20	X	UPF0536 protein C12orf66 homolog	2.9	0.7249
21	2 I 15	Uncharacterized protein MG296 homolog	2.886	0.7214
22	3FQD	5-3 exoribonuclease 2	3.341	0.6682
	2DQ			
23	N	Glutamyl-tRNA(Gln) amidotransferase subunit A	3.11	0.622
24	1J4A	D-lactate dehydrogenase	3.109	0.6219
25	1FPP	Protein farnesyltransferase subunit beta	3.103	0.6206
	1D5	HLA class II histocompatibility antigen, DRB1-4 beta		
26	M	chain	3.049	0.6099
27	1IGR	Insulin-like growth factor 1 receptor	3.002	0.6003
28	1L0V	Fumarate reductase flavoprotein subunit	2.998	0.5995
29	1OVT	Ovotransferrin	2.997	0.5995

30	1XES	Dihydropinosylvin synthase	2.992	0.5983
31	2E55	Uracil phosphoribosyltransferase	3.589	0.5981
32	1B0A	Bifunctional protein folD	2.986	0.5972
33	3DF0	Calpain-2 catalytic subunit	2.986	0.5971
34	1W8I	Uncharacterized protein AF_1683	2.98	0.596
	2RN			
35	X	Histone acetyltransferase KAT2B	2.974	0.5948
36	3EXA	tRNA Delta(2)-isopentenylpyrophosphate transferase	2.974	0.5948
37	1IVX	Phenylethylamine oxidase	2.968	0.5935
38	1EXV	Glycogen phosphorylase, liver form	2.965	0.593
39	2AY0	Bifunctional protein putA	2.964	0.5928
	1YV			
40	G	Tetanus toxin	2.961	0.5922
41	2H63	Biliverdin reductase A	2.952	0.5904
42	2P1Q	SKP1-like protein 1A	2.951	0.5901
43	2F8N	Histone H3.2	2.948	0.5897
		Bifunctional dihydrofolate reductase-thymidylate	2.948	0.5896
44	1J3I	synthase	3.529	0.5882
45	3D47	L-rhamnonate dehydratase	2.927	0.5854
46	1C8S	Bacteriorhodopsin	2.926	0.5853
47	2D3L	Glucan 1,4-alpha-maltohexaosidase	2.919	0.5839
48	2H60	Probable global transcription activator SNF2L4	2.917	0.5833
49	1ZXK	Cadherin-8	2.914	0.5827
50	2GP6	3-oxoacyl-[acyl-carrier-protein] synthase 2		

Table S14. PharmMapper result for molecule 17a.

	PDB		Fit Score	Normalize d Fit Score
	ID	Target Name		
1		Membrane-associated guanylate kinase, WW and PDZ		
1	1UJV			
domain-containing protein 2	3RFW	NONE	2.996	0.7489
3	1P35	Early 35 kDa protein	2.97	0.7467
		2-hydroxy-6-oxononadienedioate/2-hydroxy-6-		
4	1U2E	oxononatrienedioate hydrolase	2.963	0.7426
5	1RZU	Glycogen synthase 1	2.959	0.7398
6	3B3D	Uncharacterized oxidoreductase ytbE	2.959	0.7397
7	1JL2	Ribonuclease HI	2.956	0.7391
8	1YAV	Uncharacterized protein ykuL	2.938	0.7345
9	2AQT	Superoxide dismutase [Cu-Zn]	2.921	0.7301
10	2CWX	Ribulose bisphosphate carboxylase	2.92	0.7301
		Centromere DNA-binding protein complex CBF3 subunit		
11	2VEQ	B	2.918	0.7295
12	2CUE	Paired box protein Pax-6	2.907	0.7268
13	2NVB	NADP-dependent alcohol dehydrogenase	2.907	0.7267
14	2CST	Aspartate aminotransferase, cytoplasmic	2.896	0.724
15	1U94	Protein recA	2.869	0.7172
16	1RZO	Agglutinin	2.864	0.716
17	3FQD	5-3 exoribonuclease 2	3.407	0.6814

18	1QOX	Beta-glucosidase	3.274	0.6548
19	1XJV	Protection of telomeres protein 1	3.242	0.6484
20	1WIN	Flotillin-2	3.237	0.6474
21	1BUC	Acyl-CoA dehydrogenase, short-chain specific	3.196	0.6392
22	1OGY	Periplasmic nitrate reductase	3.136	0.6273
23	3DLJ	Beta-Ala-His dipeptidase	3.127	0.6253
24	2QVV	Fructose-1,6-bisphosphatase 1	4.31	0.6158
25	1S40	Cell division control protein 13	3.682	0.6136
		Short-chain specific acyl-CoA dehydrogenase,		
26	2VIG	mitochondrial	3.067	0.6134
27	1J3I	Bifunctional dihydrofolate reductase-thymidylate synthase	3	0.6
28	1U08	Aminotransferase ybdL	3	0.6
29	2RNX	Histone acetyltransferase KAT2B	3	0.6
30	1EXV	Glycogen phosphorylase, liver form	2.995	0.599
	2YW			
31	W	Aspartate carbamoyltransferase regulatory chain	2.988	0.5975
32	1Q4R	Probable protein Pop3	2.977	0.5955
33	2G18	Phycocyanobili	2.972	0.5944
34	2Z6E	Disheveled-associated activator of morphogenesis 1	2.964	0.5927
35	2GP6	3-oxoacyl-[acyl-carrier-protein] synthase 2	2.954	0.5908
36	1R0U	Uncharacterized beta-barrel protein ywiB	2.95	0.5899
37	1Y1U	Signal transducer and activator of transcription 5A	2.944	0.5888
38	3EXA	tRNA Delta(2)-isopentenylpyrophosphate transferase	2.943	0.5886
39	2AY0	Bifunctional protein putA	2.94	0.5881
40	1C9B	Transcription initiation factor IIB	2.936	0.5872
41	1I3R	H-2 class II histocompatibility antigen, E-K alpha chain	2.929	0.5857
42	2R0N	Glutaryl-CoA dehydrogenase, mitochondrial	2.925	0.585
43	2F8N	Histone H3.2	2.917	0.5834
44	2BTV	Core protein VP3	2.899	0.5798
45	2FY4	Choline O-acetyltransferase	2.891	0.5781
46	2BTY	Acetylglutamate kinase	2.889	0.5778
47	1VRN	Photosynthetic reaction center cytochrome c subunit	2.888	0.5777
48	1B0A	Bifunctional protein folD	2.887	0.5774
49	3GVI	Malate dehydrogenase	2.883	0.5767
50	2EJE	General transcription factor II-I	3.455	0.5758

Table S15. PharmMapper result for molecule 20.
$\begin{array}{lllrr}\hline & \text { PDB } \\ \text { ID }\end{array}$ Target Name $\left.\quad \begin{array}{rlrr}\text { Fit } \\ \text { Score }\end{array} \begin{array}{rlrl}\text { Normalize } \\ \text { d Fit Score }\end{array}\right]$

9	2CST	Aspartate aminotransferase, cytoplasmic	2.983	0.7457
10	2IBJ	Cytochrome b5	2.981	0.7453
11	1JFI	Dr1-associated corepressor	2.98	0.7451
	1WV			
12	C	Glucose-1-phosphate cytidylyltransferase	2.979	0.7447
13	1QRJ	Gag-Pro-Pol polyprotein	2.977	0.7443
14	1F81	CREB-binding protein	2.977	0.7442
15	3CA8	Protein ydcF	2.976	0.7441
16	1YED	Ig gamma-1 chain C region secreted form	2.976	0.7441
17	1JVW	Macrophage infectivity potentiator	2.973	0.7433
18	3DRA	Protein farnesyltransferase/geranylgeranyltransferase	3	22
19	1W1G	3-phosphoinositide-dependent protein kinase 1	2.969	0.7422
20	3FFV	Protein syd	2.969	0.7422
21	1BG5	Glutathione S-transferase class-mu 26 kDa isozyme	2.969	0.7422
22	2QFD	Probable ATP-dependent RNA helicase DDX58	2.969	0.7421
23	1LK3	Interleukin-10	2.968	0.742
24	2OWI	Regulator of G-protein signaling 18	2.965	0.7413
25	1FRV	Periplasmic [NiFe] hydrogenase small subunit	2.965	0.7412
26	2NRO	Molybdopterin biosynthesis protein moeA	2.964	0.7409
27	2RGV	Peroxide operon regulator	2.964	0.7409
28	1IOD	Agkisacutacin subunit A	2.962	0.7406
29	2OPX	Lactaldehyde dehydrogenase	2.955	0.7387
	1GM			
30	G	Regulatory protein rop	2.953	0.7384
31	1ZZG	Glucose-6-phosphate isomerase	2.953	0.7384
32	3EMJ	Inorganic pyrophosphatase	2.953	0.7381
33	2VRE	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.952	0.7379
34	3FQD	5-3 exoribonuclease 2	3.512	0.7024
35	3HBF	Flavonoid 3-O-glucosyltransferase	3.307	0.6614
36	1 I 4 H	Enterotoxin type A	3.293	0.6587
37	2Z6E	Disheveled-associated activator of morphogenesis 1	3.234	0.6468
38	1Q4R	Probable protein Pop3	3.229	0.6459
39	2E2E	Formate-dependent nitrite reductase complex subunit	5	0.645
		HLA class II histocompatibility antigen, DRB1-4 beta		
40	1D5M	chain	3.195	0.6389
41	2DQN	Glutamyl-tRNA(Gln) amidotransferase subunit A	3.192	0.6385
42	1TXO	PP2C-family Ser/Thr phosphatase	3.164	0.6327
43	2IWQ	Multiple PDZ domain protein	3.157	0.6314
44	1WJI	Tudor domain-containing protein 3	3.767	0.6279
45	1R44	D-alanyl-D-alanine dipeptidase	3.117	0.6234
46	1LYL	Lysyl-tRNA synthetase, heat inducible	3.112	0.6225
47	1IGR	Insulin-like growth factor 1 receptor	3.111	0.6221
48	1J4A	D-lactate dehydrogenase	3.089	0.6177
49	1X65	Cold shock domain-containing protein E1	3.694	0.6156
50	3E7W	D-alanine--poly(phosphoribitol) ligase subunit 1	3.658	0.6096

Table S16. PharmMapper result for molecule 21a.

	PDB		Fit	Normalize Score
	dD Fit Score			

42	3EMJ	Inorganic pyrophosphatase	2.94	0.735
	2CW			
43	X	Ribulose bisphosphate carboxylase	2.94	0.7349
44	3D64	Adenosylhomocysteinase	2.938	0.7344
45	1UD9	DNA polymerase sliding clamp A	2.936	0.734
46	2GFP	Multidrug resistance protein D	2.936	0.734
		PTS-dependent dihydroxyacetone kinase,		
47	3CT4	dihydroxyacetone-binding subunit dhaK	2.935	0.7338
48	1JFI	Dr1-associated corepressor	2.934	0.7335
49	1ES8	Type II restriction enzyme BgIII	2.934	0.7334
50	1UYR	Acetyl-CoA carboxylase	2.93	0.7326

Table S17. PharmMapper result for molecule 21d.

	PDB		Fit Score	Normalized Fit
	ID	Target Name		

32	3FFV	Protein syd	2.92	0.7299
33	1KCG	NKG2D ligand 3 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	2.919	0.7297
34	2VRE	2.918	0.7295	
		U11/U12 small nuclear ribonucleoprotein 25 kDa		
35	1V2Y	protein	2.917	0.7292
36	1UYR	Acetyl-CoA carboxylase	2.916	0.7289
37	3CRC	Protein mazG	2.908	0.7269
38	2KA5	Putative anti-sigma factor antagonist TM_1081	3.829	0.6382
39	3BID	UPF0339 protein NMA1193/NMA1859	3.683	0.6139
40	2RNX	Histone acetyltransferase KAT2B	3.06	0.6121
41	1E51	Delta-aminolevulinic acid dehydratase	3	0.6
42	1SNL	Nucleobindin-1	2.999	0.5997
		Bifunctional dihydrofolate reductase-thymidylate		
43	1J3I	synthase	2.998	0.5996
44	1GH7	Cytokine receptor common subunit beta	2.997	0.5995
45	1EXV	Glycogen phosphorylase, liver form	2.996	0.5993
46	2YWW	Aspartate carbamoyltransferase regulatory chain	2.985	0.597
47	1DK8	Axin-1	2.985	0.5969
48	3DF0	Calpain-2 catalytic subunit	2.984	0.5968
49	1XES	Dihydropinosylvin synthase	2.984	0.5968
50	1L0V	Fumarate reductase flavoprotein subunit	2.981	0.5962

Table S18. Pharmacophore screening results.

$\underset{\substack{\mathrm{N} \\ \text { molecules }}}{\mathrm{N}}$	PDB ID	Target Name
6	2CST	Aspartate aminotransferase, cytoplasmic
5	2 I 15	Uncharacterized protein MG296 homolog
4	1D06	Sensor protein fixL
4	1M4Y	ATP-dependent protease hslV
4	1VBI	Dehydrogenase
4	2AQT	Superoxide dismutase [$\mathrm{Cu}-\mathrm{Zn}$]
3	1LJ0	Cytochrome b5 type B
3	1RZO	Agglutinin
3	2FH0	Uncharacterized protein YMR074C
3	2GWF	Ubiquitin carboxyl-terminal hydrolase 8
3	2GZA	Type IV secretion system protein virB11
3	3B8C	ATPase 2, plasma membrane-type
2	1DK8	Axin-1
2	1EVY	Glycerol-3-phosphate dehydrogenase [NAD+], glycosomal
2	1LFG	Lactotransferrin
2	1MJE	26 S proteasome complex subunit DSS1
2	1R1T	Transcriptional repressor smtB
2	1RF8	Eukaryotic translation initiation factor 4E
2	1ROZ	Deoxyhypusine synthase

		2-hydroxy-6-oxononadienedioate/2-hydroxy-6-oxononatrienedioate hydrolase
	1U2E	Membrane-associated guanylate kinase, WW and PDZ domain-containing
2	1UJV	protein 2

${ }^{a}$ number of molecules that have the indicated target among the best 10 proteins targets identified by the pharmacophore mapping analysis.

Figure S1. Docking pose of compound 1a.

Figure S2. Docking pose of compound 2a.
$\left(\begin{array}{c}\text { TTp } \\ 140 \\ 10\end{array}\right)$
(2) (2)
(:3)

$\binom{$ Atr }{386}
Phe
360

$\left(\begin{array}{l}110 \\ 17 \\ \hline\end{array}\right.$

Figure S3. Docking pose of compound 3a.

Figure S4. Docking pose of compound 5a.

Figure S5. Docking pose of compound 7.

(sis)

Figure S6. Docking pose of compound 8.

Figure S7. Docking pose of compound 9.

©

Figure S8. Docking pose of compound 10b.
(2:)
(:3) (:)

(ait) (it)

Figure S9. Docking pose of compound $\mathbf{1 0 g}$.

$\left(\begin{array}{c}919 \\ 141 \\ \hline\end{array}\right.$

Figure S10. Docking pose of compound 11.

Figure S11. Docking pose of compound 13a.

Figure S12. Docking pose of compound 15a.

Figure S13. Docking pose of compound 15f.

Figure S14. Docking pose of compound 17a.

(Asin)

Figure S15. Docking pose of compound 20.

Figure S16. Docking pose of compound 21a.

Figure S17. Docking pose of compound 21d.

Simulation cell lengths

Figure S18. Simulation cell lengths [vertical axis] as a function of simulation time [horizontal axis]

Total potential energy of the system

Figure S19. Total potential energy of the system [vertical axis] as a function of simulation time [horizontal axis]. Note: The first value of the plot [-639667.06], coming from the energy minimized starting structure, has been replaced with the second value of the plot [-517460.65] to show this plot with a smaller energy range and thus a higher resolution.

Figure S20. Potential energy components [vertical axis] as a function of simulation time [horizontal axis].

Surface areas of the solute

Figure S21. Surface areas of the solute [vertical axis] as a function of simulation time [horizontal axis], obtained with the command "SurfObj Solute".

Number of hydrogen bonds in the solute

Figure S22. Number of hydrogen bonds in the solute [vertical axis] as a function of simulation time [horizontal axis].

Number of hydrogen bonds between solute and solvent

Figure S23. Number of hydrogen bonds between solute and solvent [vertical axis] as a function of simulation time [horizontal axis].

Protein secondary structure content

Figure S24. Protein secondary structure content [vertical axis] as a function of simulation time [horizontal axis], obtained with the command "SecStr". Note: Graph HelixPi has all zero values.

Figure S25. Protein residue secondary structure type [vertical axis] as a function of simulation time [horizontal axis].

Figure S26. Solute RMSD from the starting structure [vertical axis] as a function of simulation time [horizontal axis].

Figure S27. SwissADME results for molecule 1a.

Figure S28. SwissADME results for molecule 2a.

2a			(2)
H○○ LIPO		Water Solubility	
	$\log S(E S O L) 9$	-5.18	
	Solubility	$2.65 \mathrm{e}-03 \mathrm{mg} / \mathrm{ml} ; 6.64 \mathrm{e}-06 \mathrm{~mol} / \mathrm{l}$	
FLEX SIZE	Class -	Moderately soluble	
	$\log S$ (Ali) ${ }^{\text {a }}$	-5.48	
	Solubility	$1.33 \mathrm{e}-03 \mathrm{mg} / \mathrm{ml} ; 3.34 \mathrm{e}-06 \mathrm{mo} / / \mathrm{l}$	
	Class ${ }^{\text {P }}$	Moderately soluble	
	$\log S$ (SILICOS-IT) ${ }^{\text {O }}$	-8.18	
	Solubility	$2.62 \mathrm{e}-06 \mathrm{mg} / \mathrm{ml} ; 6.58 \mathrm{e}-09 \mathrm{~mol} / \mathrm{l}$	
insolu	Class (1)	Poorly soluble	
		Pharmacokinetics	
	Gl absorption ©	High	
SMILES CCCCOc1ccc(cc1)c1cnn(c(=0)c1Cl)Cc1ccc(cc1)OC	BBB permeant ${ }^{\text {O }}$	Yes	
Physicochemical Properties	P-gp substrate ${ }^{\text {(}}$	No	
Formula \quad C22H23CIN2O3	CYP1A2 inhibitor ${ }^{\text {e }}$	Yes	
Molecular weight $\quad 398.88 \mathrm{~g} / \mathrm{mol}$	CYP2C19 inhibitor ${ }^{\text {a }}$	Yes	
Num. heavy atoms 28	CYP2C9 inhibitor ${ }^{(1)}$	Yes	
Num. arom. heavy atoms 18	CYP2D6 inhibitor ${ }^{\text {e }}$	No	
Fraction Csp3 0.27	CYP3A4 inhibitor ${ }^{\text {(}}$	Yes	
$\begin{array}{ll}\text { Num. rotatable bonds } & 8 \\ \text { Num. H-bond acceptors } & 4\end{array}$	Log K_{p} (skin permeation) \bigcirc	$-5.45 \mathrm{~cm} / \mathrm{s}$	
$\begin{array}{ll}\text { Num. H-bond acceptors } & 4 \\ \text { Num. H-bond donors } & 0\end{array}$		Druglikeness	
$\begin{array}{ll}\text { Num. } \mathrm{H} \text {-bond donors } \\ \text { Molar Refractivity } & 112.10\end{array}$	Lipinski ${ }^{\text {P }}$	Yes; 0 violation	
TPSA © $53.35 \AA^{2}$	Ghose ${ }^{\text {(}}$	Yes	
\square Lipophilicity	Veber ${ }^{(}$	Yes	
Log $P_{\text {o/w }}(\text { (LOGP) })^{\text {O }}$	Egan ${ }^{\text {(1) }}$	Yes	
	Muegge - Bioavailability Score ${ }^{\text {a }}$	Yes 0.55	
Log $P_{0 / W}$ (WLOGP) © $\quad 4.80$		Medicinal Chemistry	
$\log \mathrm{P}_{\mathrm{o} / \mathrm{w}}(\mathrm{MLOGP})$ © 3.68	PAINS ${ }^{\text {e }}$	0 alert	
$\log \mathrm{P}_{\text {O/W }}($ SILICOS-IT) $0 \quad 5.31$	Brenk ${ }^{\text {e }}$	0 alert	
Consensus Log $\mathrm{P}_{\text {o/w }}$ (${ }^{\text {a }}$ (4.53	Leadlikeness ©	No; 3 violations: $\mathrm{MW}>350$, Rotors>7, XLOGP3>3.5	
	Synthetic accessibility ${ }^{\text {e }}$	3.20	

Figure S29. SwissADME results for molecule 3a.

Figure S30. SwissADME results for molecule 5a.

Figure S31. SwissADME results for molecule 7.

		Water Solubility

Figure S32. SwissADME results for molecule 8.

		Water Solubility

Figure S33. SwissADME results for molecule 9.

| | Water Solubility |
| :--- | :--- | :--- |

Figure S34. SwissADME results for molecule $10 b$.

		Water Solubility

Figure S35. SwissADME results for molecule 10g.

		Water Solubility

Figure S36. SwissADME results for molecule 11.

		Water Solubility

Figure S37. SwissADME results for molecule 13a.

Figure S38. SwissADME results for molecule 15a.

Figure S39. SwissADME results for molecule $15 f$.

15f		
If \bigcirc		Water Solubility
	$\log S(E S O L){ }^{\text {P }}$	-5.55
	Solubility	$1.12 \mathrm{e}-03 \mathrm{mg} / \mathrm{ml}$; 2.82e-06 mol/
FLEX	Class ${ }^{\text {(3) }}$	Moderately soluble
-	$\log S$ (Ali) ${ }^{\text {P }}$	-6.23
-	Solubility	$2.32 \mathrm{e}-04 \mathrm{mg} / \mathrm{ml} ; 5.86 \mathrm{e}-07 \mathrm{~mol} / \mathrm{l}$
	Class ${ }^{(1)}$	Poorly soluble
	Log S (SILICOS-IT) ${ }^{\text {P }}$	-8.61
InSATU	Solubility	$9.71 \mathrm{e}-07 \mathrm{mg} / \mathrm{ml} ; 2.45 \mathrm{e}-09 \mathrm{~mol} / \mathrm{l}$
	Class (3)	Poorly soluble
		Pharmacokinetics
	Gl absorption ${ }^{(3)}$	High
SMILES $\quad \mathrm{O}=\mathrm{c} 1 \mathrm{c}(\mathrm{N}) \mathrm{c}(\mathrm{C}(=\mathrm{O}) \mathrm{CCc} 2 \mathrm{ccccc} 2) \mathrm{c}(\mathrm{nn} 1 \mathrm{c} 1 \mathrm{ccccc} 1) \mathrm{c} 1 \mathrm{ccccc} 1$	BBB permeant ${ }^{\text {P }}$	No
Physicochemical Properties	P-gp substrate ${ }^{(1)}$	No
Formula C 25 H 21 N 3 O 2	CYP1A2 inhibitor ${ }^{(2)}$	Yes
Molecular weight $\quad 395.45 \mathrm{~g} / \mathrm{mol}$	CYP2C19 inhibitor (3)	Yes
Num. heavy atoms 30	CYP2C9 inhibitor ${ }^{\text {(1) }}$	Yes
Num. arom. heavy atoms 24	CYP2D6 inhibitor ${ }^{(3)}$	No
Fraction Csp3 0.08	CYP3A4 inhibitor ${ }^{(2)}$	Yes
Num. rotatable bonds 6	Log K_{p} (skin permeation)	$-5.26 \mathrm{~cm} / \mathrm{s}$
Num. H-bond acceptors 3		Druglikeness
Num. H-bond donors 1		
Molar Refractivity $\quad 119.16$	Lipinski	Yes; 0 violation
TPSA ${ }^{\text {a }}$ (77.98 A 2	Ghose ${ }^{\text {(}}$	Yes
Lipophilicity	Veber ${ }^{(1)}$	Yes
$\log P_{\text {o/w }}$ (iLOGP) © 3.44	Egan ${ }^{(3)}$	Yes
Log $P_{\text {o/w }}($ XLOGP3) 04.86	Muegge	Yes
Log $P_{\text {o/w }}\left(\right.$ WLOGP) $0^{\text {(}}$	\square Medicinal Chemistry	
Log $P_{\text {o/w }}(\mathrm{MLOGP}) ~(3.55$	PAINS ${ }^{(3)}$	0 alert
Log $P_{\text {o/w }}($ SILICOS-IT) $0 \quad 4.56$	Brenk ${ }^{\text {a }}$	0 alert
4.14	Leadlikeness ${ }^{\text {a }}$	No; 2 violations: $\mathrm{MW}>350, \mathrm{XLOGP} 3>3.5$
	Synthetic accessibility ${ }^{\text {(}}$	3.45

Figure S40. SwissADME results for molecule 17a.

		Water Solubility

Figure S41. SwissADME results for molecule 20.

Figure S42. SwissADME results for molecule 21a.

Figure S43. SwissADME results for molecule 21d.

| | | Water Solubility |
| :--- | :--- | :--- | :--- |

Table S19. pkCSM absorption results

mol	Water solubilit y	Caco2 permeabilit y	Intestinal absorptio n (human)	Skin Permeabilit y	P- glycoprotei n substrate	P- glycoprotei n I inhibitor	P- glycoprotei n II inhibitor
1a	-5.127	1.075	100	-2.73	No	Yes	Yes
2a	-5.72	1.087	99.635	-2.712	No	Yes	Yes
3a	-2.944	1.441	95.475	-2.673	No	No	No
5a	-4.58	1.407	98.203	-2.701	No	No	Yes
7a	-3.761	0.893	95.774	-2.751	No	No	Yes
8	-5.603	1.01	87.741	-2.736	Yes	Yes	Yes
9	-4.621	1.183	95.913	-2.735	Yes	Yes	Yes
10b	-5.176	1.028	100	-2.726	No	Yes	Yes
10 g	-3.335	1.355	99.99	-2.448	No	No	No
11	-4.673	1.341	98.693	-2.557	No	Yes	Yes
13a	-4.269	1.034	94.435	-2.737	Yes	Yes	Yes
15a	-4.175	1.199	97.888	-2.751	No	Yes	Yes
15 f	-4.74	1.029	96.488	-2.735	Yes	Yes	Yes
17a	-4.442	1.052	91.796	-2.738	Yes	Yes	Yes
20a	-4.815	1.17	96.381	-2.735	Yes	Yes	Yes
21a	-4.844	0.909	97.177	-2.705	Yes	Yes	Yes
21d	-4.773	0.856	95.71	-2.708	Yes	Yes	Yes

Table S20. pkCSM distribution results

mol	VDss (human)	Fraction unbound (human)	BBB permeability	CNS permeability
$\mathbf{1 a}$	0.1	0.202	-0.451	-2.46
$\mathbf{2 a}$	0.242	0.167	-0.372	-2.155
$\mathbf{3 a}$	-0.45	0.302	-0.157	-2.902
$\mathbf{5 a}$	-0.139	0.121	0.628	-2.016
$\mathbf{7 a}$	-0.223	0.131	0.001	-2.191
$\mathbf{8}$	-0.318	0.045	-0.452	-1.898
$\mathbf{9}$	-0.122	0.181	-1.149	-2.285
$\mathbf{1 0 b}$	0.035	0.267	0.395	-2.03
$\mathbf{1 0 g}$	-0.094	0.207	0.388	-2.297
$\mathbf{1 1}$	-0.045	0.134	0.084	-1.947
$\mathbf{1 3 a}$	-0.563	0.042	0.14	-2.362
$\mathbf{1 5 a}$	-0.445	0.022	-0.119	-2.256
$\mathbf{1 5 f}$	-1.036	0.17	0.09	-1.978
$\mathbf{1 7 a}$	-0.184	0.086	0.166	-2.02
20a	-0.799	0.098	-0.013	-2.122
21a	-0.24	0.201	0.263	-2.33
$\mathbf{2 1 d}$	-0.243	0.179	0.336	-2.291

Table S21. pkCSM metabolism results

mol	CYP2D6 substrate	CYP3A4 substrate	CYP1A2 inhibitior	CYP2C19 inhibitior	CYP2C9 inhibitior	CYP2D6 inhibitior	CYP3A4 inhibitior
1a	No	Yes	Yes	Yes	Yes	No	Yes
2a	No	Yes	Yes	Yes	Yes	No	Yes
3a	No	No	Yes	No	No	No	No
5a	No	Yes	Yes	Yes	Yes	No	No
7a	No	Yes	Yes	Yes	No	No	Yes
8	No	Yes	No	Yes	Yes	No	Yes
9	No	Yes	No	Yes	Yes	No	Yes
10b	No	Yes	Yes	Yes	Yes	No	Yes
10 g	No	Yes	Yes	Yes	Yes	No	Yes
11	No	Yes	Yes	Yes	Yes	No	No
13a	No	Yes	Yes	Yes	No	No	Yes
15a	No	Yes	Yes	Yes	Yes	No	Yes
15f	No	Yes	Yes	Yes	Yes	No	Yes
17a	No	Yes	Yes	Yes	Yes	No	Yes
20a	No	Yes	Yes	Yes	Yes	No	Yes
21a	No	Yes	Yes	Yes	Yes	No	Yes
21d	No	Yes	Yes	Yes	Yes	No	Yes

Table S22. pkCSM excretion results

mol	Total Clearance	$\begin{aligned} & \hline \text { Renal } \\ & \text { OCT2 } \\ & \text { substrate } \\ & \hline \end{aligned}$
1a	0.353	No
2a	0.304	No
3a	0.527	No
5a	0.237	Yes
7a	0.189	No
8	-0.79	No
9	-0.422	No
10b	1.161	No
10 g	1.087	Yes
11	0.564	No
13a	0.286	No
15a	0.331	No
15 f	0.195	No
17a	0.223	No
20a	0.563	No
21a	0.558	No
21d	0.438	No

Table S23. pkCSM toxicity results

mol	AMES toxicity	Max. tolerate d dose (human)	hERG I inhibito \qquad	hERG II inhibito r	Oral Rat Acute Toxicit y (LD50)	Oral Rat Chronic Toxicity (LOAEL)	Skin Sensitisatio n	Minno w toxicity
1a	No	0.632	No	Yes	2.455	1.119	No	-1.537
2a	No	0.629	No	Yes	2.411	1.005	No	-2.409
3a	No	1.017	No	No	2.301	1.996	No	1.424
5a	No	0.56	No	Yes	2.258	1.165	No	-0.459
7a	No	0.36	No	Yes	3.057	0.988	No	0.542
8	No	0.556	No	Yes	2.615	0.727	No	-1.355
9	No	0.525	No	Yes	3.089	0.434	No	0.162
10b	No	0.759	No	Yes	2.233	0.507	No	-0.965
10g	Yes	-0.136	No	No	2.064	1.299	No	1.439
11	No	0.383	No	No	2.058	1.574	No	-0.022
13a	No	0.502	No	Yes	2.91	1.116	No	0.861
15a	No	0.089	No	Yes	2.627	1.227	No	-1.131
15f	Yes	0.452	No	Yes	3.137	0.538	No	-2.663
17a	Yes	0.205	No	Yes	2.93	0.81	No	-1.849
20a	Yes	0.445	No	Yes	3.175	0.7	No	-2.595
21a	Yes	0.73	No	Yes	1.929	1.268	No	-0.053
21d	Yes	0.79	No	Yes	1.919	1.267	No	-0.315

4. References

For Refs [18] and [23-34] in SI, see reference list in main manuscript.

