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A Asymptotic Properties

A.1 Asymptotic results and conditions

In this supplementary material, we provide the asymptotic results of the proposed estimator. For

ease of presentation, we restate asymptotic results along with required regularity condition.

(a) The function A0(t) ∈ A and α0 = A′0 exists, where A is the collection of strictly increasing

and continuously differentiable functions satisfying 0 < inft∈[0,τ ] α0(t) ≤ supt∈[0,τ ] α0(t) <∞.

The parameter θ0 lies in the interior of a compact set Θ in Rd.

(b) The covariate Z ∈ Rd has a bounded support and for any b 6= b0, the probability P (bTZ 6=
bT0 Z) > 0.

(c) The underlying distribution of failure time T is continuous, and τ denotes the time at the

end of the study that satisfies P{Y (τ) = 1|Z} > 0 and P (X ≥ τ, δ = 0|Z) > 0 with

probability one. Also, there exists 0 < σ < τ such that P (X ≥ σ, δ = 1|Z) = 1 and

0 < η0 < A0(σ) < A0(τ) <∞ for some η0.

(d) For any positive constant a0, lim supx→∞{G(a0x)}−1 log{x supy≤x g(y)} = 0.

Under these conditions, we claim asymptotic consistency and normality for the proposed esti-

mator (θ̂, Â) as follows.

Theorem A.1. Suppose that assumptions (a)–(d) hold. Then, ‖θ̂− θ0‖ → 0 and supt∈[0,τ ] |Â(t)−
A0(t)| → 0 almost surely.

Theorem A.2. Suppose that assumptions (a)–(d) hold and that n1/n → α1 as n → ∞, with

0 < α1 ≤ 1. Then

n1/2(θ̂ − θ0) → N(0,Σ−1) and n1/2(Â−A0) → G

in distribution, where Σ is the information matrix with respect to θ and G is a Gaussian process.

In addition, θ̂ is semiparametrically efficient.
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A.1.1 Proof of Theorem 1

The proofs of the asymptotic properties of the nonparametric maximum likelihood estimator essen-

tially follow the steps outlined by Zeng and Lin (2007). Let l∞[0, τ ] denote the space of functions

with bounded total variation in [0, τ ] under the supremum norm ‖ · ‖l∞[0,τ ], and ‖µ‖BV [0,τ ] be the

total variation of µ(t) in [0, τ ]. Also, define H = {µ(t) : ‖µ‖BV [0,τ ] ≤ 1}. Then we can regard Â(·)
as a bounded linear function in l∞(H),and {θ̂− θ0, Â(·)−A0(·)} as a random element in the metric

space Rd × l∞(H).

First, observe that l(θ,A) ≤ l1(θ,A), which is bounded by

O(1) +

n1∑
i=1

[
log{dA(T̃i) sup

t≤A(T̃i)eM
g(t)} −G{e−MA(T̃i)}

]
, (1)

where O(1) is some positive constant and M > 0 is a constant satisfying

exp(−M) ≤ inf
t,θ,Z

[exp{θTZi(t)}] ≤ sup
t,θ,Z

[exp{θTZi(t)}] ≤ exp(M),

such that M exists by conditions (a) and (b). By condition (d), expression (1) would diverge to

−∞ if dA(T̃i) is infinite for some T̃i. Thus, the jump sizes of A must be finite.

Let Ã(·) = Â(·)/Â(τ). Note that

0 ≤ n−1{l(θ̂, Â)− l(θ̂, Ã)}

≤ O(1) + n−1
[ n1∑
i=1

log{Â(τ) sup
t≤Â(τ)eM

g(t)} −
n∑

i=n1+1

(1− δi)I(T̃i = τ)G{e−M Â(τ)}
]
.

By conditions (c) and (d), the right-hand side of the above expression would be negative if Â(τ)

diverges to −∞, which is a contradiction of the definition of (θ̂, Â). Thus, Â must be bounded

almost surely over [0, τ ]. By Helly’s selection theorem, there is thus a convergent subsequence such

that Ân → A∗ and θ̂n → θ∗.

By taking a derivative of l(θ,A) with respect to the jump size dA, we obtain

Â(t) = n−1
∫ t

0

∑n
i=1 dNi(s)

|ωn(s; θ̂n, Ân)|
, (2)

where Ni(s) = I(T̃i ≤ s, εi = 1) is the counting process that counts the number of events observed

by time t on the ith subject, with εi = 1 or 0 denoting whether the subjectÕs data belongs to the
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exact data group or not. Here,

ωn(s; θ̂n, Ân) = n−1
n1∑
i=1

Yi(s) exp(θ̂TnZi){gi(ti; θ̂n, Ân)− ψi(ti; θ̂n, Ân)}

+ n−1
n∑

i=n1+1

Yi(s) exp(θ̂TnZi){(1− δi)− δiΛi(ti; θ̂n, Ân)}gi(ti; θ̂n, Ân).

By the Glivenko-Cantelli theorem, ωn(t; θ̂n, Ân) converges uniformly to a continuously differen-

tiable function ω∗(t; θ∗, A∗). Note that for t ≤ τ0,

|ωn(t; θ̂n, Ân)| ≤ (eM/n)

n∑
i=1

Yi(t) sup
t∈[0,τ0]

∣∣∣gi(ti; θ̂n, Ân) + |ψi(ti; θ̂n, Ân)|
∣∣∣ <∞;

thus there exists η > 0 such that Â(τ0) > η for all sufficiently large n. Also, by condition (c),

Xi ≥ τ0 for censored observations, and thus ωn(t; θ̂n, Ân) ≥ ωn(τ0; θ̂n, Ân) for t ≤ τ0. For t ≥
τ0, ωn(t; θ̂n, Ân) ≥ [e−Mg{e−M Â(τ0)}]{n−1

∑n
i=n1+1(1 − δi)Yi(t)}. Thus, it can be argued that

mint∈[0,τ ] |ω∗(t; θ∗, A∗)| = mint∈[τ0,τ ] |ω∗(t; θ∗, A∗)| must be bounded above from zero.

Define

Ǎ(t) = n−1
∫ t

0

∑n
i=1 dNi(s)

|ωn(s; θ0, A0)|
. (3)

Then, Ǎ converges to A0 uniformly by the Glivenko-Cantelli theorem. It follows from (2), (3) and

the strict positivity of |ωn| that Â(t) is absolutely continuous with respect to Ǎ(t) and that dÂ/dǍ

converges uniformly to some bounded function. Note that n−1{l(θ̂, Â)− l(θ0, Ǎ)} ≥ 0. This implies

that the Kullback-Leibler distance between the density that is indexed by (θ∗, A∗) and the true

density would be negative. Therefore, almost surely∫ τ

0
[log{dA∗(t)}+ θ∗

TZi(t) + log{gi(t; θ∗, A∗)} −Gi(t; θ∗, A∗)]dNi(t)

+ (1− εi)[δi log[1− exp{−Gi(Xi; θ∗, A∗)}]− (1− δi)Gi(Xi; θ∗, A∗)]

=

∫ τ

0
[log{dA0(t)}+ θ0

TZi(t) + log{gi(t; θ0, A0)} −Gi(t; θ0, A0)]dNi(t)

+ (1− εi)[δi log[1− exp{−Gi(Xi; θ0, A0)}]− (1− δi)Gi(Xi; θ0, A0)].

By condition (c), the above equality holds in the special case where Yi(t) = 1 for t ∈ [0, τ ]. For

observations with εi = δi = 0, consider the equality under Ni(τ) = 0 and Xi ≥ τ and the equality

under Ni(τ−) = 0 and Ni(τ) = 1. The difference between these two equalities and the identifiability

condition (b) imply that θ∗ = θ0 and A∗ = A0. We have thus established the consistency property.

By the continuity of A0(·), we have the uniform convergence of Â(t) to A(t) in t ∈ [0, τ ].
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A.1.2 Proof of Theorem 2

As the model involves an infinite-dimensional parameter, we need to derive semiparametric ana-

logues of the parametric score equation and the information matrix. The overall idea is to utilize

these operators to establish the asymptotic normality of n1/2(ϑ̂−ϑ0) by checking the conditions of

Theorem 3.3.1 of van der Vaart and Weller (1996).

Likelihood equations for ϑ can be obtained by inserting a smooth family ϑs that approaches

ϑ as s → 0. In particular, given a real vector h1 ∈ Rd, a bounded and measurable function

h2 ∈ H and every sufficiently small number |s|, we can consider a parametric submodel s 7→ ϑs ≡
ϑ + s(h1,

∫
h2dA). Taking a derivative with respect to s of this submodel leads to the likelihood

equation Sn(ϑ̂)(h) = 0 for any h = (h1, h2), where the score operator Sn(ϑ)(h) is defined by

Sn(ϑ)(h) =
(∂/∂s)l(ϑs)

n

∣∣∣∣
s=0

= hT1 S1n(ϑ) + S2n(ϑ)(h2),

where

S1n(ϑ) =
n1
n

n1∑
i=1

∫ τ

0
[Zi(t)− {gi(t; θ,A)− ψi(t; θ,A)}

∫ t

0
Yi(s)Zi(s)e

θTZi(s)dA(s)]dNi(t)

n1

+
n2
n

n∑
i=n1+1

[{δiΛi(Xi; θ,A)− (1− δi)}gi(Xi; θ,A)

∫ Xi

0
Yi(s)Zi(s)e

θTZi(s)dA(s)]

n2

≡ (n1/n)Pn1 l̇1θ(θ,A) + (n2/n)Pn2 l̇2θ(θ,A),

and

S2n(ϑ)(h2) =
n1
n

n1∑
i=1

∫ τ

0
[h2(t)− {gi(t; θ,A)− ψi(t; θ,A)}

∫ t

0
Yi(s)h2(s)e

θTZi(s)dA(s)]dNi(t)

n1

+
n2
n

n∑
i=n1+1

[{δiΛi(Xi; θ,A)− (1− δi)}gi(Xi; θ,A)

∫ Xi

0
Yi(s)h2(s)e

θTZi(s)dA(s)]

n2

≡ (n1/n)Pn1 l̇1A(θ,A)(h2) + (n2/n)Pn2 l̇2A(θ,A)(h2).

Here, Pn = (Pn1 , Pn2) denotes the empirical joint measure of the exact observations and the case-1

interval-censored observations. Let P0 = (P10, P20) be the corresponding true distribution of an

exact observation and a censored observation.

Note that Sn(ϑ) = {S1n(ϑ),S2n(ϑ)} is the element of Rd × l∞(H). The asymptotic version of

4



Sn, denoted by S(ϑ) = {S1(ϑ),S2(ϑ)} of Rd × l∞(H), is obtained by replacing Pn with P0 in the

definition of Sn and given by

S1(ϑ) = α1P10 l̇1θ + α2P20 l̇2θ

S2(ϑ) = α1P10 l̇1A(h2) + α2P20 l̇2A(h2)

= α1

∫
l̇1A(h2)dP10 + α2

∫
l̇2A(h2)dP20.

Clearly, Sn(ϑ̂) = 0 and S(ϑ0) = 0. It can be shown that the elements in S(ϑ) are P0-Donsker classes.

Also, by conditions (a), (b) and the Donsker theorem, n1/2{(Sn−S)(ϑ̂)− (Sn−S)(ϑ0)} = op(1) in

the metric space Rd × l∞(H). Furthermore, n1/2{Sn(ϑ0)− S(ϑ0)} = n1/2Sn(ϑ0) weakly converges

to a tight Gaussian process. The Fréchet-differentiability of S at ϑ = ϑ0 can be directly checked

under the assumed conditions.

We now verify that the inverse of the derivative Ṡ exists and is continuous at ϑ0. Let

l̈iθθ(ϑ) =
∂

∂θ
l̇iθ(θ,A) and l̈iθA(ϑ)(h2) =

∂

∂s
l̇iθ(θ,As)

∣∣∣∣
s=0

,

l̈iAθ(ϑ)(h2) =
∂

∂θ
l̇iA(θ,A)(h2) and l̈iAA(ϑ)(h2, h

′
2) =

∂

∂s
l̇iA(θ,A2s)(h2)

∣∣∣∣
s=0

,

where i = 1, 2, h2, h
′
2 ∈ H and A2s =

∫
(1 + sh′2)dA. Note that the derivative of S at ϑ0, denoted

by Ṡϑ0 , is given by the map

(θ − θ0, A−A0) 7→
(
Ṡ11 Ṡ12
Ṡ21 Ṡ22

)(
θ − θ0
A−A0

)
(h) =

(
hT1 Ṡ11(θ − θ0) + hT1 Ṡ12(A−A0)

Ṡ21(θ − θ0)(h2) + Ṡ22(A−A0)(h2)

)
where

Ṡ11(θ − θ0) = (α1P10 l̈1θθ + α2P20 l̈2θθ)(θ − θ0) = B0(θ − θ0),

Ṡ12(A−A0) = α1

∫
l̈1θA(A−A0)dP10 + α2

∫
l̈2θA(A−A0)dP20 = C∗0(A−A0),

Ṡ21(θ − θ0)(h2) = (α1P10 l̈1Aθ + α2P20 l̈2Aθ)(θ − θ0)(h2) = C0(θ − θ0)(
∫
h2dA0),

Ṡ22(A−A0)(h2) = α1

∫
l̈1AA(A−A0)(h2)dP10 + α2

∫
l̈2AA(A−A0)(h2)dP20

=

∫
{−a0(t)I +D0}(h2)d(A−A0),

where a0(t) > 0, I is the identity operator, C0 and D0 are both linear operators, C∗0 is the dual

operator of C0, and B0 is the Fisher information matrix for θ in the situation when A0 is known.
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Then the information operator Ω = (Ω1,Ω2) satisfies

Ṡϑ0(θ̂ − θ0, Â−A0)(h) = Ω1(h)T (θ̂ − θ0) +

∫
Ω2(h)d(Â−A0),

where Ω1 is a linear map from Rd ×H to Rd and Ω2 is a linear map from Rd ×H to l∞[0, τ ].

Essentially, the invertibility of Ṡϑ0 can be obtained by checking that the information operator Ω

is one-to-one and Òonto.Ó The “onto” property is easy to verify and has been omitted here. For the

“one-to-one” property, fix an h = (h1, h2) ∈ Rd ×H, for which Ω(ϑ0)(h) = 0 and we wish to show

h = 0. Define the one-dimensional submodel s 7→ ϑ0s = ϑ0+s(h1,
∫
h2dA). Note that Ω(ϑ0)(h) = 0

implies that P0{∂2l(ϑ0s)/(∂s)2|s=0} = −P0{S(ϑ0)(h)}2 = 0, which implies S(ϑ0)(h) = 0. It can be

seen that it holds almost surely as long as

hT1 Z(t) + h2(t) = −[ψ(t; θ0, A0)− δg(t; θ0, A0){1 + Λ(t; θ0, A0)}]

×
∫ t

0
Y (s){hT1 Z(s) + h2(t)} exp{θT0 Z(s)}dA(s)

for all t ∈ [0, τ ] with respect to the conditional distribution of (T,X) given Z, where we let δ = 1

for left censoring, otherwise, 0. This equation is a homogeneous integral equation for the function

hT1 Z(t) + h2(t), which leads to hT1 Z(t) + h2(t) = 0. Then identifiability condition (b) implies that

h = (h1, h2) = 0, which ensures the invertibility of Ṡ.

It now follows from Theorem 3.3.1 of van der Vaart and Wellner (1996) that, in the metric

space Rd × l∞(H),
√
n(θ̂ − θ0, Â−A0) weakly converges to some Gaussian process. Furthermore,

n1/2Ṡϑ0(θ̂ − θ0, Â−A0)(h) = n1/2Ω1(h)T (θ̂ − θ0) + n1/2
∫

Ω2(h)d(Â−A0)

= n1/2{Sn(ϑ0)(h)− S(ϑ0)(h)}+ op(1).

Since the invertibility of Ṡϑ0 implies the invertibility of the map Ω, we have that

n1/2hT1 (θ̂ − θ0) + n1/2
∫
h2(u)d{Â(u)−A0(u)} = n1/2{Sn(ϑ0)(Ω

−1(h))− S(ϑ0)(Ω
−1(h))}+ op(1),

uniformly in h as n → ∞. Setting h2 = 0 leads to n1/2hT1 (θ̂ − θ0) = n1/2{Sn(ϑ0)(Ω
−1(h1, 0)) −

S(ϑ0)(Ω
−1(h1, 0))} + op(1), and by the central limit theorem, n1/2hT1 (θ̂ − θ0) is asymptotically

normal with mean zero and variance P0{S(ϑ0)(Ω
−1(h1, 0))}2 = {Ω−11 (h1, 0)}Th1 = hT1 Σh1, where

Σ = {Ω−11 (e1, 0), ...,Ω−11 (ed, 0)}, with ek denoting the d-dimensional vector with the kth component

equal to 1 and elsewhere 0. Also, letting h1 = 0 and h2 = I(u ≤ t) in the above equation

gives n1/2{Â(t) − A0(t)} = n1/2{Sn(ϑ0)(Ω
−1(0, I(u ≤ t))) − S(ϑ0)(Ω

−1(h1, 0, I(u ≤ t)))} + op(1),
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which has an asymptotically normal distribution with mean zero and variance
∫ t
0 Ω−12 (0, I(u ≤

t))dA0(u). Moreover, the above argument shows that θ̂ is an asymptotically linear estimator for θ0

and that its influence function lies on the space spanned by the score function, implying that θ̂ is

semiparametrically efficient. The consistency of the variance estimators can be justified along the

lines of Zeng and Lin (2007), by showing that the linear operator constructed from the negative

Hessian matrix of the log-likelihood function approximates the information operator. The detailed

derivation is omitted here.
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