Supplementary Material

Table 1: Selected catchment descri	ptors and landscape metrics:	definition, explanation and derivation.

Descriptor/	Definition	Explanation	Parameters
Descriptory	- Seminion	Explanation	
Metric			
FEH catchme	nt descriptors		
Area		Catchment drainage area (km ²)	A = Area of catchment
SAAR	$\frac{\sum_{i=1961}^{1990} P_i}{30}$	Standard-period Average Annual Rainfall (mm) rainfall for the period 1961-1990 in Great Britain and Northern Ireland	P = Precipitation (annual total)
FARL	$FARL = \prod_{i \in} \alpha_i$ where: $\alpha = (1 - \sqrt{r})^w$ $r = \frac{water \ surface \ area}{subcatchment \ area}$ $w = \frac{subcatchment \ area}{catchment \ area}$	Index of flood attenuation from rivers and lakes. The overall <i>FARL</i> index has a value close to one when a catchment has low attenuation from water bodies, and as attenuation effects become more important the index decreases.	A = effect of individual water body r = relative size of water body to upstream catchment w = weighting reflecting importance of water body
BFIHOST	Estimate of base flow index (BFI) assigned from catchment area weighted 1km gridded HOST classes	Base flow index from Hydrology of Soil Types (HOST) Boorman et al. (1995)	

URBEXT	URBEXT = Urban + 0.5 Suburban	FEH index of fractional urban extent	Urban and Suburban are Land Cover Mapping (LCM) classes for urbanised surfaces
PROPWET	$\frac{\sum_{i=1961}^{1990} \text{No. days SMD} > 6\text{mm}}{\sum_{i=1961}^{1990} \text{No. days}}$	Index of proportion of time that soils are wet (%)	SMD = soil moisture deficit (as calculated on last day of month and linearly interpolated)
DPLBAR	Mean distance of all 10m DEM grids to catchment outlet	Mean drainage path length	NEXTmap Digital Elevation Model (10m)
DPSBAR	Mean slope between all 10m DEM grids - based on steepest route – within catchment	Mean drainage path slope	NEXTmap Digital Elevation Model (10m)
Class based la	andscape metrics		<u> </u>
Contiguity Index	$CONTIG = \frac{\left[\frac{\sum_{i=1}^{r} c_{ijr}}{a_{ij}}\right]}{v-1}$	Assesses the spatial connectedness, or contiguity, of cells within a grid-cell patch to provide an index of patch boundary configuration and thus patch shape	 c_{ijr} = contiguity value for pixel r in patch ij. V = sum of the values in a 3-by-3 cell template (13 in this case). A_{ij} = area of patch ij in terms of number of cells.
Largest Patch Index	$LPI = \frac{a}{\frac{j=1}{A}}(100)$	Largest patch index at the class level quantifies the percentage of total landscape area comprised by the largest patch. As such, it is a simple measure of dominance.	a _{ij} = area (m²) of patch ij. A = total landscape area (m²).
Clumpiness index	Given: $G_{i} = \left(\frac{g_{ii}}{(\sum_{i=1}^{m} g_{ii}) - mine_{i}}\right)$	The proportional deviation of the proportion of like adjacencies involving the corresponding class from that	g _{ii} = number of like adjacencies (joins) between pixels of patch type (class) I based on the <i>double-count</i> method.

	$G_{i} - P_{i}$ $G_{i} = P_{i}$	expected under a spatially	G _{ik} = number of adjacencies (joins)		
	$CLUMPY = \left[\frac{G_i - P_i}{P_i} \text{ for } G_i < P_i \& P_i\right]$	random distribution.	between pixels of patch types (classes) I		
	$< 5, e; else \ \frac{G_i - P_i}{1 - P_i}]$		and k based on the <i>double-count</i> method.		
			Min-e _i = minimum perimeter (in		
			number of cell surfaces) of patch type		
			(class) I for a maximally clumped class.		
			P _i = proportion of the landscape		
			occupied by patch type (class) i.		
Cohesion	$COHESION = \left[1 - \frac{\sum_{j=1}^{n} p_{ij}}{\sum_{i=1}^{n} p_{ij} \sqrt{a_{ij}}}\right] \left[1\right]$	Patch cohesion	p _{ij} = perimeter of patch ij in terms of		
	, - , , , , , , , , , , , , , , , , , ,	index measures the physical	number of cell surfaces		
	$-\frac{1}{\sqrt{A}}\Big]^1$ (100)	connectedness of the	a _{ij} = area of patch ij in terms of number		
		corresponding patch type.	of cells.		
			A = total number of cells in the		
			landscape.		
Landscape mo	Landscape metrics				
Contagion	$CONTAG = 1 + \sum \sum [q_{ij}ln(q_{ij})]/2ln(2)$	Assesses the extent to which	P _i =proportion of the landscape occupied		
Index		patch types are aggregated or	by patch type (class) i.		
		clumped as a percentage of	g _{ik} =number of adjacencies (joins)		
		the maximum possible;	between pixels of patch types (classes) i		
		characterised by high	and k based on the <i>double-count</i> method.		
		characterised by high dispersion and interspersion.	and k based on the <i>double-count</i> method. m =number of patch types (classes)		
			m =number of patch types (classes)		
РХ	$PX = \sum A_k / m do_k$		m =number of patch types (classes) present in the landscape, including the		
РХ	$PX = \sum A_k / m do_k$	dispersion and interspersion.	m =number of patch types (classes) present in the landscape, including the landscape border if present.		
PX	$PX = \sum A_k / m do_k$	dispersion and interspersion. Proximity Index (PX) accounts	m =number of patch types (classes) present in the landscape, including the landscape border if present. A_k = area of patch k , mdo_k = mean distance to the outlet of		
РХ	$PX = \sum A_k / m do_k$	dispersion and interspersion. Proximity Index (PX) accounts for hydrological distance and	m =number of patch types (classes) present in the landscape, including the landscape border if present. A_k = area of patch k , mdo_k = mean distance to the outlet of		
РХ	$PX = \sum A_k / m do_k$	dispersion and interspersion. Proximity Index (PX) accounts for hydrological distance and connectivity of all suburban	m =number of patch types (classes) present in the landscape, including the landscape border if present. A_k = area of patch k , mdo_k = mean distance to the outlet of		